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Abstract: In a traditional convolutional neural network structure, pooling layers generally use an 

average pooling method: a non-overlapping pooling. However, this condition results in similarities 

in the extracted image features, especially for the hyperspectral images of a continuous spectrum, 

which makes it more difficult to extract image features with differences, and image detail features 

are easily lost. This result seriously affects the accuracy of image classification. Thus, a new 

overlapping pooling method is proposed, where maximum pooling is used in an improved 

convolutional neural network to avoid the fuzziness of average pooling. The step size used is smaller 

than the size of the pooling kernel to achieve overlapping and coverage between the outputs of the 

pooling layer. The dataset selected for this experiment was the Indian Pines dataset, collected by 

the airborne visible/infrared imaging spectrometer (AVIRIS) sensor. Experimental results show 

that using the improved convolutional neural network for remote sensing image classification can 

effectively improve the details of the image and obtain a high classification accuracy. 

Keywords: remote sensors; hyperspectral remote sensing image; image classification; convolution 

neural network 

 

1. Introduction 

Hyperspectral remote sensing imaging is one of the hottest issues in the field of remote sensing. 

Remote sensing refers to the non-contact, remote detection of the radiation and reflection 

characteristics of electromagnetic waves of objects by means of sensors [1]. Hyperspectral remote 

sensing images (HSI) are obtained by high-resolution optical sensors; these images generally consist 

of tens or even hundreds of different spectral bands of the same remote sensing target and can be 

viewed as a three-dimensional (3D) dataset [2]. Continuous data can be obtained spatially and 

spectrally. HSIs contain a large amount of data and can provide hundreds of continuous and 

subdivided spectral bands. Therefore, HSI has good application prospects. 

The development of hyperspectral remote sensing technology mainly benefits from the 

development and maturity of imaging spectrum technology. So far, more than 40 sets of 

international aviation imaging spectroradiometer are in running state, including AVIRIS, developed 

by NASA’s jet laboratory, HYDICE, developed by the U.S. naval research laboratory, ROSIS, 

developed by the reflection imaging spectrometer in Germany, FTHSI, represented by the 

third-generation hyperspectral imager, and Hyperion, aboard the EO-1 earth observation satellite 
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launched by the U.S. [3]. The development of imaging spectrometer in China is closely following the 

international development. For example, airborne imaging spectrometers PHI and OMIS [4] have 

been successfully developed in China. They can obtain spectral information of 224 and 128 

continuous bands, respectively. PHI and OMIS show the advanced level of the Asian imaging 

spectrometers among the many high-light spectral imaging equipment independently developed by 

China. Therefore, it can be seen that the short-wave infrared hyperspectral camera is at the forefront 

of the international imaging spectrum research. 

Most scholars initially used traditional processing methods, such as the support vector machine 

(SVM) [5], k nearest neighbor classification algorithm (KNN) [6], and the Bayesian network [7], for 

HSI to classify surficial objects. However, these classification results were not ideal. In recent years, 

deep learning has received a considerable research attention from scholars, such as the Deep Belief 

Nets (DBN) [8], Restricted Boltzmann Machine (RBM) [9] and Automatic encoder (AE) [10]. In 

particular, convolutional neural network (CNN) has been confirmed to exhibit an excellent image 

processing performance [11–14]. However, in the traditional CNN structure, pooling layers 

generally adopt average pooling and are non-overlapping pools [15]. This structure mainly refers to 

using a fixed-size sampling window in the pooling layer to perform an average pooling operation on 

all non-overlapping fixed-size regions in the convolutional layer and output corresponding feature 

maps. However, using non-overlapping average pooling tends to result in unclear and 

difficult-to-distinguish extracted image features and a serious loss of image detail features, thereby 

affecting the subsequent classification accuracy. To avoid this problem, many scholars have selected 

to adopt the largest pooling method. For example, Serre et al. applied two-dimensional (2D) 

maximum pooling for optimization [16], and Fu et al. proposed a 3D maximum pooling method [17]. 

However, these researchers did not observe the effect of the relationship between the step and 

pooling nuclear sizes on classification accuracy. That is, when a step size is greater than or equal to a 

pooling nuclear size, the experimental results are unsatisfactory, fine experimental results cannot be 

obtained, many details are overlooked, expected requirements are unsatisfied, and considerable HSI 

information cannot be exploited. 

To solve the abovementioned problems, in this paper, an improved convolutional neural 

network structure was studied. Based on the Alexnet network, the pooling method was improved, 

in which the maximum pooling was adopted in the pooling layer to avoid the fuzzy effect of average 

pooling. In the maximum overlap pooling CNN, the step size was smaller than the size of the pooling 

kernel. Thus, the output of the pooling layer overlapped and covered to form an overlapping pool, 

thereby improving the details of the image and the classification accuracy. This study aims to propose 

an improved remote sensing image classification algorithm on the basis of CNN and to extract 

valuable feature information from this; experiments show that the proposed method is superior to the 

old one in performance. This work is critical to improve the classification accuracy of HSI. 

2. Convolutional Neural Network 

The CNN is mainly composed of input, convolutional, pooling, fully-connected, and output 

layers [18]. Figure 1 illustrates a typical model structure of a CNN. 

 

Figure 1. Typical model structure of a convolutional neural network (CNN). 
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2.1. Convolutional Layer 

The full connection of neurons between two adjacent layers is infeasible when the input of the 

neural networks is an HSI. The convolutional layer and neurons in the upper layer are connected in 

part through a local receptive field, because the full connection method disregards the spatial 

structure of an input image. That is, the neurons of the next layer are connected to a certain part of 

the neurons in the previous layer, and thus, indicate that the local features are extracted using the 

spatial structure of the input image. In addition, the convolutional layer reduces the number of 

model parameters by sharing weights and lessens the complexity of the network model. The 

convolutional layer in the CNN is crucial for feature extraction. The feature obtained by the local 

receptive field method has an invariance of translation, rotation, and scaling. The output of the 

convolutional layer is a feature map of the convolutional layer in the network depicted in Figure 1. 

Let the original image of the input of the CNN be P, then iF  is used to denote the feature map 

of the i-th layer. A convolutional layer is assumed, and generation process can be described as 

follows: 

If iF  represents a convolutional layer, then the iF  creation process can be defined as 

1( )i i i iF f F W b    (1) 

where iW  represents the weight of the i-th layer convolution, ib  represents the offset of the i-th 

layer,   represents the convolution of the i-th layer feature map using the convolution kernel, f 

represents the activation function, and iF  represents the feature map of the i-th layer. In a 

conventional CNN, a saturated nonlinear function, such as a sigmoid or a tanh function, is 

generally used as an activation function, and the output value is mapped to (0, 1) or (−1, 1) through 

an activation function. The sigmoid function is expressed as 

1
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and the tanh function is defined as 
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their curves are shown in Figure 2. 

 

Figure 2. The curve of sigmoid function and tanh function. 

However, a saturation nonlinear function easily leads to explosion or disappearance of a 

gradient, and the convergence is slow. Therefore, in the current CNN structure, an unsaturated 

nonlinear function similar to the rectified linear unit (ReLU) function [19] was used as an activation 
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function of the convolutional layer, and ReLU function expression is f(x) = max(0, x). The curve is 

exhibited in Figure 3. 

 

Figure 3. ReLU function curve. 

The ReLU can achieve sparse parameters through a simple thresholding activation function, 

and the training is faster than the sigmoid and tanh functions. 

The convolutional layer extracts different features of the input image through different-sized 

convolutional kernels. An underlying convolutional layer mainly extracts low-level features, such as 

lines, edges, and corners, whereas a high-level convolutional layer extracts advanced features, such 

as clear semantic information, to improve the recognition accuracy. 

2.2. Pooling Layer 

The pooling layer is also called the downsampling layer [20]. This layer aims to achieve local 

averaging and sampling. Pooling not only reduces the eigenvector dimension and the number of 

parameters of a model but also reduces the sensitivity of the output features to factors, such as 

translation, rotation, and scaling, to prevent overfitting. The combination of the pooling and 

convolutional layers constitutes a two-time feature extraction structure, which strengthens the 

tolerance of a network model for distortion and enhances the robustness of the model [21].  

Pooling methods include mean, maximum, and random pooling. Mean pooling mainly 

averages the pixels in a neighborhood and adopts a method for preserving the background 

information of an image to reduce the error caused by an estimation variance given the limited size 

of the neighborhood. Maximum pooling uses the maximum value of the pixels in the neighborhood 

to preserve image texture information and reduce the error of an estimated mean value offset caused 

by convolutional parameter errors. Random pooling between the mean and maximum pooling 

randomly selects the elements in a pooling feature layer by the size of a probability value; the 

probability for selecting a large-valued element is also high. In accordance with the pooling value, 

the pixel points are provided with a corresponding probability, after which downsampling is 

performed in accordance with the probability.  

According to the relevant theory, the error of feature extraction mainly comes from two aspects: 

(1) the variance of the estimated value increases due to the size of the neighborhood constraints; (2) 

the error of convolution layer parameters causes the deviation of the estimated mean. Generally 

speaking, average pooling can reduce the first error and preserve more background information of 

the image. Maximum pooling can reduce the second error and retain more texture information. 

Random pooling is between the two. By assigning probability to pixels according to their numerical 

values, and then sub-sampling according to the probability, it obeys the criterion of maximum 

pooling in the mean sense and approximate to the mean pooling in the local sense. 
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2.3. Fully Connected Layer 

Several fully connected layers were added at the end of the CNN model after several 

convolutional and pooling layers. Each neuron in the fully connected layer was fully connected to 

all neurons in the previous layer, and the output value of the last fully connected layer was passed 

to the output layer that is classified using SoftMax logistic regression classifier [22]. 

3. Hyperspectral Image Classification Based on Maximum Overlap Pooling CNN 

A new hyperspectral image classification based on maximum overlap pooling CNN was 

designed in this paper. This chapter mainly introduces the main structure of the CNN designed and 

the main contributions made. 

3.1. Major Improvement Methods and Advantages 

Scholars have slightly focused on the influence of the relative relationship between step and 

pooling nuclear sizes on the classification accuracy in previous works. Most scholars have opted to 

equalize step and pooling nuclear sizes during experiments. We observed that, if the pooling step is 

larger than the pooling kernel size, then the effect is close to the situation where the step and 

pooling kernel sizes are equal. However, if the pooling step size is smaller than the pooling kernel 

size, then the CNN classification accuracy will be improved. We considered that these results are 

due to the outputs of the pooling layer will overlap and cover one another and form overlapping 

pools, thereby improving the details of the image and the classification accuracy. 

We used this method to design a maximum overlap pooling CNN in which the pooling layer 

used the maximum pooling, and the step size was smaller than the pooling kernel size. Thus, the 

outputs of the pooling layers overlapped and covered one another and formed overlapping pools. 

Therefore, the details of the image were improved, and favorable experimental results were 

obtained. 

3.2. Training Model Design 

The CNN training process is mainly divided into two phases. The first stage is the forward 

propagation stage, consisting of: 

(1) Select training samples. 

(2) Randomly initialize weights, offsets, and error thresholds, and set a learning rate. The 

learning rate will affect the weight adjustment range. An excessive learning rate will cause the 

adjustment of the weights to omit the optimal value and the divergence of the network. A too small 

learning rate will cause the model to fall into the local optimal problem. We must initialize the 

learning rate on the basis of prior knowledge, analyze specific problems, and set the optimal 

learning rate.  

(3) Select a sample vector from the training sample, and input it into the network. The input 

vector enters the model from the input layer, trains the vector gradually to the output layer, and 

multiplies the input vector and the weight matrix in layers to obtain the output. 

The second stage is the backpropagation stage [23]:  

(1) Calculate the error between the actual and the expected output values of a single sample 

vector.  

(2) In accordance with minimization error method, the error value calculated in Step (1) is 

propagated consecutively in layers to adjust the weight item and offset term.  

(3) Compare the network error value and error threshold after adjusting the weights. If the error 

value is less than the threshold, then proceed to the next step. If the error value is greater than the 

threshold, then the network model has not reached the expected goal and must proceed to Step (3) of 

the first stage to continue training. 

(4) The relative ideal CNN is learned after the training, and the network parameters in the 

steady state are saved [24]. 
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3.3. Classification Steps 

This study used the concept of the LeNet-5 model [25] in designing an HSI classification model 

on the basis of the CNN, as displayed in Figure 4. The model consists of an input layer, two 

convolutional layers (C), two pooling layers (S), two full-attachment layers (FC), and a SoftMax 

regression output layer [26]. Among these layers, the preprocessing step completes the extraction of 

samples, normalizes input samples, and selects a 14 × 14 pixel window as the input sample of the 

model. The output section of the convolutional layer used the ReLU activation function to prevent 

gradient diffusion. The pooling layer used the maximum overlap pooling, which eliminated the 

requirement for additional processing of the raw image input to the CNN. The maximum overlap 

pooling method after each convolution of the original image was used to reduce the dimension of 

the convolution product and reduce the image size. Stochastic gradient descent method was used to 

optimize the weights of the network, and weight attenuation method [27,28] was also adopted. 

 

Figure 4. Image classification framework based on CNN. 

The specific learning steps for HSI classification based on the maximum overlap pooling CNN 

framework are as follows: 

(1) Input layer: The original data undergoes dimension reduction processing to extract a 14 × 14 

pixel sample to ensure that the input of the model satisfies the requirements. Image classification 

refers to the classification of each pixel in accordance with a specific rule or algorithm based on the 

brightness, spatial characteristics, or other information of an image. In training a CNN, the 

convolution kernel convolutes each input to extract spatial structural features. A small block 

containing 145 × 145 pixels is selected as a sample centered on each pixel of the HSI to maintain the 

consistency with the input of the CNN; furthermore, each of the small blocks contains the spectral 

and spatial structure information of a specified pixel [29].  

(2) Convolutional layer C1: The input pictures of the input layer are convolved with six 5 × 5 

convolution kernels to obtain six 7 × 7 2D feature maps. The result is output to the next layer after 

multiplying the ReLU activation function and adding the offset. The size of the convolution kernel 

significantly influences the classification accuracy. If the convolution kernel is small, then local 

features cannot be effectively extracted; if the convolution kernel is large, then ideal characteristics 

cannot be obtained. 

(3) Pooling layer S1: A 3 × 3 pixel sampling window is used through the maximum overlap 

pooling to perform the maximum pooling operation on all 2 × 2 areas in C1 and output six 4 × 4 pixel 

feature maps. The maximum overlap pooling CNN uses the maximum pooling than the average 

pooling commonly used in the traditional CNN to avoid the feature blurring caused by the average 

pooling. Moreover, the maximum overlap pooling CNN sets a smaller step size than the size of the 

pooling kernel; thus, the outputs of the pooling layer overlap and cover one another, thereby 

enhancing the details of the image.  
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(4) Convolutional layer C2: An S1 output picture is convoluted using 5 × 5 convolution kernels 

to obtain 16 4 × 4 pixel 2D feature maps. The result is output to the next layer after multiplying the 

ReLU activation function and adding the offset. 

(5) Pooling layer S2: A 3 × 3 pixel sampling window is used through the maximum overlap 

pooling to perform the maximum pooling operation on all 2 × 2 areas in C2 and output 16 2 × 2 pixel 

feature maps. Maximum pooling is still used, and the pooling step size is set smaller than the 

pooling kernel size to overlap and cover between the pooling layer outputs, thereby resulting in 

enhanced details. 

(6) Fully connected layer FC1: The number of neurons of the fully connected layer FC1 is set to 

120, and the ReLU function is used as an activation function. The number of output neurons is 120.  

(7) Fully connected layer FC2: The number of neurons in the fully connected layer FC2 is set to 

84, and the ReLU function is selected as the activation function. The number of output neurons is 84.  

(8) Output layer: The number of output neurons is related to the number of categories in the 

input image. The experimental data has 16 types of ground objects. Thus, the number of output 

neuron nodes is set to 16.  

(9) The forward propagation network structure is designed, and the backpropagation algorithm 

is used to optimize the network parameters. 

(10) The trained CNN model is used to verify the classification of the input test samples. 

The HSI classification flowchart based on the CNN is presented in Figure 5. 

 

Figure 5. Classification flow chart of CNN hyperspectral remote sensing imaging (HSI). 

4. Experiments and Results Analysis 

4.1. Experimental Environment 

This study uses Google’s TensorFlow deep learning framework. TensorFlow supports multiple 

GPUs and distributed operations, supports different hardware platforms such as PCs and mobile 

phones, and has the advantages of an open source code and an active community. These 

advantages provide favorable accuracy and scalability for the experiments in this study. 

This method was applied to actual HSI classification to validate the proposed method 

effectively, and simulation experiments were conducted. We used Intel Core i7 Quad-Core 

processor clocked at 2.50 GHz with 8 GB memory. We selected the 64-bits Windows 10 operating 

system, TensorFlow deep learning framework, and Python 2.7 as the development environment. 

We also utilized the following tools: MultiSpecWin64, MATLAB R2015b, and JetBrains PyCharm ×64. 

In order to reduce the experimental error, the experimental results in this paper were obtained 

from the average of five experiments. Two data sets were adopted, namely, the Indian Pines dataset 

and Salinas dataset, as follows: 

4.2. Experimental Data 

With the development of sensor technology, the resolution of remote sensing image is getting 

higher and higher, which provides a strong support for remote sensing image classification. 

Nowadays, the progress of sensor technology is of great significance to the remote sensing field. 

Due to the development of sensor technology, the Indian Pines dataset and Salinas dataset adopted 
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in this paper have higher resolution. The data in the Indian Pines dataset and Salinas dataset were 

all collected by an airborne visible/infrared imaging spectrometer (AVIRIS) sensor. AVIRIS was 

flown for the first time in 1986 (first airborne images), obtained its first science data in 1987, and has 

been fully operational since 1989. In June/July 1991, the instrument was flown over numerous 

European test sites in the framework of EMAC (European Multi-Sensor Airborne Campaign). 

AVIRIS uses scanning optics and a group of four spectrometers to image a 677 pixel swath width 

simultaneously in 224 contiguous spectral bands. A spatial image is built up through the scanner 

motion, which defines an image line 677 pixels wide perpendicular to the aircraft direction, and 

through the aircraft motion, which defines the length of the image frame. The sensor is an 

optomechanical whiskbroom scanner (12 Hz) that uses line arrays of detectors to image a 677 

pixel-wide swath in 224 contiguous bands (four grating spectrometers). The spectral range is 360–

2500 nm with a total of 224 bands [30].  

The Indian Pines dataset of AVIRIS mainly covers the entire northwestern part of Indiana, USA. 

This dataset was derived from this website 

(http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes). Its original 

image size was 145 × 145 pixels, with a spatial resolution of 20 m. The dataset contains 220 bands 

and 16 ground object categories, covering a spectral range of 0.2–2.4 phenotypes, with a spectral 

resolution of 10 nm. However, since the bands 104–108, 150–163, and 220 cannot be reflected by 

water, we generally used the remaining 200 bands after eliminating these 20 bands as the object of 

study. The number of different types of ground objects is shown in Table 1. 

Table 1. Indian Pines dataset ground object type situation. 

Label Name Number of Samples 

C1 Alfalfa 46 

C2 Corn-notill 1428 

C3 Corn-mintill 830 

C4 Corn 237 

C5 Grass-pasture 483 

C6 Grass-trees 730 

C7 Grass-pasture-mowed 28 

C8 Hay-windrowed 478 

C9 Oats 20 

C10 Soybean-notill 972 

C11 Soybean-mintill 2455 

C12 Soybean-clean 593 

C13 Wheat 205 

C14 Woods 1265 

C15 Buildings-Grass-Trees-Drives 386 

C16 Stone-Steel-Towers 93 

Total  10249 

Partial bands were deleted on the Indian Pines dataset to facilitate the conversion of 

space-spectral information of an HSI to a gray image with the same height and width. The (CVIE, 

Coefficient of Variation for Interclass)2/CVIA (Coefficient of Variation for Interclass) minimum 104–

109, 149–164, 219, and 220 bands (for a total of 24 bands) were excluded, and the remaining 196 

bands were retained. In addition, the 24 bands rejected by this method include the largest 20 bands 

that were affected by water and air noise in this dataset, that is, the 104–108, 150–163, and 220 

bands. This result effectively enhances the reliability of the data and significantly reduces 

interference factors. The training and test samples obtained by pretreatment are shown in Figure 6. 

Table 1 shows the number of samples from the Indian Pines dataset. 
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(a) (b) (c) 

Figure 6. (a) Training sample; (b) Test sample; (c) Tag block. 

The Salinas dataset of AVIRIS mainly covers the Salinas Valley. This dataset is derived from 

the same website as Indian Pines dataset. Its original image size was 512 × 217 pixels, and the 

spatial resolution was 3.5 m. The dataset contains 204 bands and 16 ground object categories. The 

number of different types of ground objects is shown in Table 2.  

Both of the two experimental data included 16 ground object categories. From all datasets, 25% 

were selected randomly as training samples, and the remaining 75% were used as test samples. The 

training and test samples obtained by pretreatment are shown in Figure 7. Table 2 shows the 

number of samples from the Salinas dataset. 

Table 2. Salinas dataset ground object type situation. 

Label Name Number of Samples 

C1 Brocoli_green_weeds_1 2009 

C2 Brocoli_green_weeds_2 3726 

C3 Fallow 1976 

C4 Fallow_rough_plow 1394 

C5 Fallow_smooth 2678 

C6 Stubble 3959 

C7 Celery 3579 

C8 Grapes_untrained 11271 

C9 Soil_vinyard_develop 6203 

C10 Corn_senesced_green_weeds 3278 

C11 Lettuce_romaine_4wk 1068 

C12 Lettuce_romaine_5wk 1927 

C13 Lettuce_romaine_6wk 916 

C14 Lettuce_romaine_7wk 1070 

C15 Vinyard_untrained 7268 

C16 Vinyard_vertical_trellis 1807 

Total  54,129 
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(a) (b) (c) 

Figure 7. (a) Training sample; (b) Test sample; (c) Tag block. 

4.3. Classification Results and Analysis 

On the basis of the traditional and maximum overlap pooling CNNs, two kinds of CNN 

models were designed and used in this study to classify HSIs. The two methods were compared 

with the network-in-network (NIN) classification methods for HSIs. The network parameters of the 

traditional and maximum overlap pooling CNNs designed in this study are listed in Tables 3 and 4. 

Table 3. Traditional CNN parameter table. 

Number 

of Layers 

Species Number of 

Output Features 

Size of Output 

Features 

Convolution 

Kernel Size 

0 Input layer 1 14 × 14 / 

1 Convolutional layer C1 6 7 × 7 5 × 5 

2 Maximum pooling layer S1 6 4 × 4 2 × 2 

3 Convolutional layer C2 16 4 × 4 5 × 5 

4 Maximum pooling layer S2 16 2 × 2 2 × 2 

5 Fully connected layer FC1 1 120 / 

6 Fully connected layer FC2 1 84 / 

Table 4. Maximum overlap pooling CNN parameter table. 

Number 

of Layers 
Species 

Number of 

Output Features 

Size of Output 

Features 

Convolution 

Kernel Size 

0 Input layer 1 14 × 14 / 

1 Convolutional layer C1 6 7 × 7 5 × 5 

2 Maximum pooling layer S1 6 4 × 4 3 × 3 

3 Convolutional layer C2 16 4 × 4 5 × 5 

4 Maximum pooling layer S2 16 2 × 2 3 × 3 

5 Fully connected layer FC1 1 120 / 

6 Fully connected layer FC2 1 84 / 
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4.3.1. Comparison of Convergence Rates 

All experiments in this paper were carried out under the same experimental environment. The 

variation of the training error with the increase in the number of iterations is exhibited in Figure 8 

when two kinds of CNN are applied to the Indies Pines dataset. 

Figure 8 displays that the training loss during training probably stabilized after 80 iterations in 

the Indian Pines dataset. Clearly, the maximum overlap pooling CNN converges more quickly than 

the traditional CNN during training. The maximum overlap pooling CNN may converge to the 

final loss accuracy of the traditional CNN approximately at the 50th iteration, which is nearly half 

of the time required by the traditional CNN. The maximum overlap pooling CNN, which has a 

lower training loss accuracy than the traditional CNN, can achieve better training results and fully 

learn the characteristics of the images. The maximum overlap pooling CNN demonstrates 

advantages over the traditional CNN in terms of training loss, with faster convergence speed and 

higher accuracy. 

Figure 9 displays that the training loss during training probably stabilized after 80 iterations in 

the Salinas dataset. Clearly, the maximum overlap pooling CNN converges more quickly than the 

traditional CNN during training. The maximum overlap pooling CNN may converge to the final 

loss accuracy of the traditional CNN approximately at the 30th iteration, which is less than half of 

the time required by the traditional CNN. The maximum overlap pooling CNN, which has a lower 

training loss accuracy than the traditional CNN, can achieve better training results and fully learn 

the characteristics of the images. The maximum overlap pooling CNN demonstrates advantages over 

the traditional CNN in terms of training loss, with faster convergence speed and higher accuracy. 

 

Figure 8. Training error of traditional CNN and maximum overlap pooling CNN iteration in the 

Indian Pines dataset. 
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Figure 9. Training error of traditional CNN and maximum overlap pooling CNN iteration in the 

Salinas dataset. 

4.3.2. Comparison of Time and Classification Accuracies 

Experiments were performed to verify the performance of the different methods in terms of 

accuracy. The experimental results where the Indian Pines dataset was used are summarized in Table 5, 

and the experimental results where the Salinas dataset was used are summarized in Table 6. 

Table 5. Convergence time and accuracy of different classification methods used Indian Pines 

dataset. 

Method Time/s 
Kappa 

Coefficient 

Overall 

Accuracy 

Average 

Accuracy 

Traditional CNN 114.60 0.8302 85.12% 84.96% 

Densenet 124.20 0.8397 85.92% 82.52% 

Maximum overlap pooling CNN 118.80 0.8714 88.73% 87.62% 

Table 6. Convergence time and accuracy of different classification methods used Salinas dataset. 

Method Time/s 
Kappa 

Coefficient 

Overall 

Accuracy 

Average 

Accuracy 

Traditional CNN 584.40 0.9303 93.75% 97.22% 

Densenet 609.00 0.9372 94.35% 97.18% 

Maximum overlap pooling CNN 615.00 0.9416 94.76% 97.45% 

Figure 10 demonstrates the results of the final classification accuracy based on the traditional 

CNN that used the Indian Pines dataset. Figure 11 exhibits the results of the final classification 

accuracy based on the maximum overlap pooling CNN that used the Indian Pines dataset. 

Figure 12 demonstrates the results of the final classification accuracy based on the traditional 

CNN that used the Salinas dataset. Figure 13 exhibits the results of the final classification accuracy 

based on the maximum overlap pooling CNN that used the Salinas dataset. 
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(a) (b) 

Figure 10. (a) Traditional CNN classification results. (b) Traditional CNN classification accuracy 

results. 

  
(a) (b) 

Figure 11. (a) Maximum overlapping pooling CNN classification results. (b) Maximum overlapping 

pooling CNN classification accuracy results. 

  
(a) (b) 

Figure 12. (a) Traditional CNN classification results. (b) Traditional CNN classification accuracy 

results. 
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Figure 13. (a) Maximum overlapping pooling CNN classification results. (b) Maximum overlapping 

pooling CNN classification accuracy results. 

Table 5 displays that, in the time accuracy analysis, the training and classification times when 

using the traditional CNN was the shortest, at only 114.60 s. The Densenet training recorded the 

longest time of 124.20 s. The classification time of the maximum overlap pooling CNN was 118.80 s 

has exhibited no obvious increase compared with the traditional CNN. Therefore, if the time 

accuracy is considered, the traditional CNN, Densenet, and maximum overlap pooling CNN 

method can be used. 

The overall classification accuracy value reached 85.12%, the average accuracy reached 84.96%, 

the Kappa coefficient value was 0.8302, and the classification effect was poor. The analysis of the 

classification accuracy indicates that the overall classification accuracy reached 85.92%, the average 

accuracy reached 82.52%, the Kappa coefficient was 0.8397, and the classification effect was normal 

when the Densenet training was used. The classification accuracy reached 88.73%, the average 

accuracy reached 87.62%, the Kappa coefficient was 0.8714, and the accuracy was relatively 

favorable when the maximum overlap pooling CNN was used. The classification accuracy value is 

acceptable when the overall accuracy was higher than 85%, and the Kappa coefficient was more 

than 0.8. Therefore, if the classification accuracy is used as the evaluation basis, then the methods in 

the experiment all satisfy the requirements. 

As can be seen from Table 6, from the time accuracy analysis, the training, and classification 

time of traditional convolution neural network training was the shortest, which only needed to be 

584.40 s. The time required for Densenet training was 609 s. The classification time of the improved 

convolution neural network was 615.00 s. Compared to the traditional convolution neural network, 

the classification time did not increase significantly. Therefore, the traditional convolution neural 

network, Densenet and the improved convolution neural network method can be realized on the 

basis of time accuracy. 

From the classification accuracy analysis and the training conducted by the traditional 

convolutional neural network, the overall classification accuracy reached 93.75%, the average 

accuracy reached 97.22%, the Kappa coefficient value was 0.9303, and the classification effect was 

poor; in the training conducted by Densenet, the overall classification accuracy reached 94.35%, the 

average accuracy reached 97.18%, the Kappa coefficient was 0.9372, and the classification effect was 

medium. Using the improved convolutional neural network classification training, the overall 

classification accuracy reached 94.76%, the average accuracy reached 97.45%, the Kappa coefficient 

was 0.9416, and the accuracy performance was relatively good. The overall accuracy of these three 

methods is above 93% and the Kappa coefficient is above 0.93. Therefore, if the classification 

accuracy is used as the evaluation basis, the methods in this experiment have met the requirements. 

Table 7 presents the confusion matrix of the traditional CNN classification that used the Indian 

Pines dataset, and Table 8 displays the corresponding mapping accuracy for when the Indian Pines 

dataset was used. 
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Table 7. Confusion matrix for traditional CNN classification used Indian Pines dataset. 

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 20 0 0 0 4 0 0 9 0 0 1 1 0 0 1 0 

2 0 913 34 23 0 0 0 0 2 18 84 9 0 0 0 0 

3 0 9 518 40 0 0 0 0 1 2 24 16 0 0 1 0 

4 0 5 18 033 0 4 0 3 1 2 4 3 0 0 0 0 

5 3 5 1 2 326 3 0 0 0 0 5 3 0 1 1 0 

6 0 0 0 0 0 523 0 0 0 0 3 0 0 4 12 0 

7 0 0 0 0 0 0 19 1 0 0 1 0 0 0 0 0 

8 11 0 0 0 2 0 0 350 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 11 0 0 0 0 0 1 0 

10 0 23 3 1 0 3 0 0 0 608 88 2 0 0 1 0 

11 0 70 106 6 0 0 0 0 0 30 1587 18 1 0 11 0 

12 0 7 33 15 0 0 0 1 0 4 28 366 0 0 2 1 

13 0 0 1 0 0 0 0 0 1 0 0 0 157 0 0 0 

14 0 0 0 1 7 1 0 0 0 0 0 0 1 930 14 0 

15 0 0 2 0 9 18 0 0 3 1 3 0 1 87 176 1 

16 0 3 1 0 0 0 0 0 0 0 3 1 0 0 1 58 

Table 8. Statistics of traditional CNN classification chart accuracy used Indian Pines dataset. 

No. Ground Category 
Total Number 

of Pixels 

Correct 

Classification 

Classification 

Accuracy 

1 Alfalfa 36 20 55.56% 

2 Corn-notill 1083 913 84.30% 

3 Corn-min 611 518 84.78% 

4 Corn 73 33 45.21% 

5 Grass/Pasture 350 326 93.14% 

6 Grass/Trees 542 523 96.49% 

7 Pasture-mowed 21 19 90.48% 

8 Hay-windrowed 363 350 96.42% 

9 Oats 12 11 91.67% 

10 Soybeans-notill 729 608 83.40% 

11 Soybeans-min 1829 1587 86.77% 

12 Soybeans-clean 457 366 80.09% 

13 Wheat 159 157 98.74% 

14 Woods 954 930 97.48% 

15 Building-trees- 301 176 58.47% 

16 Stone-steel 67 58 86.57% 

/ Overall classification accuracy / / 86.93% 

From the results in Tables 7 and 8, we can conclude that the traditional CNN has achieved a 

favorable classification effect for the Indian Pines dataset. That is, there are 159 pixels in the 13th 

place category (Wheat) and 954 pixels in the 14th category (Woods) that have higher classification 

accuracy, achieving 98.74% and 97.48% in classification accuracy. The types of ground categories 

that were misclassified are mainly the first land category (Alfalfa) and the fourth land category 

(Corn), mainly because the total number of pixels in the two land categories was relatively small. 

Table 9 lists the confusion matrix of the maximum overlap pooling CNN classifications that 

used the Indian Pines dataset. Table 10 summarizes the corresponding classification accuracy for 

when the Indian Pines dataset was used. 
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Table 9. Confusion matrix for maximum overlap pooling CNN classification used Indian Pines dataset. 

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 22 0 0 0 1 0 0 11 0 0 1 1 0 0 0 0 

2 0 844 21 7 1 0 0 0 3 54 103 9 0 0 1 0 

3 0 14 475 36 0 0 0 0 1 6 63 15 0 0 1 0 

4 0 4 11 136 0 1 0 0 2 0 13 5 0 0 1 0 

5 1 0 0 1 321 8 0 0 0 0 10 2 0 3 4 0 

6 0 0 0 2 0 521 0 0 0 0 2 0 0 3 14 0 

7 0 0 0 0 0 0 21 0 0 0 0 0 0 0 0 0 

8 1 0 0 0 00 0 0 360 0 0 1 0 0 0 1 0 

9 0 0 0 0 00 0 0 0 12 0 0 0 0 0 0 0 

10 0 24 3 3 3 2 0 0 0 619 70 4 0 0 1 0 

11 0 40 46 4 2 2 1 0 0 56 1661 8 0 0 9 0 

12 0 9 19 4 4 1 0 0 0 2 27 387 0 0 3 1 

13 0 0 0 0 0 0 0 0 1 0 1 0 156 0 1 0 

14 0 0 0 0 6 1 0 0 0 0 0 0 1 918 28 0 

15 0 0 0 0 8 21 0 0 4 0 2 0 4 63 198 1 

16 0 0 0 0 1 0 0 0 0 0 4 0 0 0 1 61 

Table 10. Statistical tables for maximum overlap pooling CNN classification charting accuracy used 

Indian Pines dataset. 

No. Ground Category Total Number of 

Pixels 

Correct 

Classification 

Classification 

Accuracy 

1 Alfalfa 36 22 61.11% 

2 Corn-notill 1043 844 80.92% 

3 Corn-min 611 475 77.74% 

4 Corn 173 136 78.61% 

5 Grass/Pasture 350 321 91.71% 

6 Grass/Trees 542 521 96.13% 

7 Pasture-mowed 21 21 100.00% 

8 Hay-windrowed 363 360 99.17% 

9 Oats 12 12 100.00% 

10 Soybeans-notill 729 619 84.91% 

11 Soybeans-min 1829 1661 90.81% 

12 Soybeans-clean 457 387 84.68% 

13 Wheat 159 156 98.11% 

14 Woods 954 918 96.23% 

15 Building-trees 301 198 65.78% 

16 Stone-steel 67 61 91.04% 

/ Overall classification accuracy / / 87.78% 

From the results provided in Tables 9 and 10, we can conclude that the maximum overlap 

pooling CNN for the Indian Pines dataset achieves an improved classification effect. Among the 

result, the accuracy of the seventh land object type (Pasture-mowed) and the ninth land object type 

(Oats) reached 100.00%; thus, these land object types are not representative, because the total 

number of pixels was small. The total number of pixels in the eighth land category 

(Hay-windrowed) was high, and the accuracy is 99.17%. The types of ground objects that were 

mainly misclassified are the first floor object category (Alfalfa) and the fifteenth floor class 

(Building-trees). 

Table 11 presents the confusion matrix of the traditional CNN classification that used the 

Salinas dataset. Table 12 displays the corresponding mapping accuracy for when the Salinas dataset 

was used. 
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Table 11. Confusion matrix for traditional CNN classification used Salinas dataset. 

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1470 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 2789 0 0 0 0 0 1 0 0 0 0 1 0 0 1 

3 0 0 1458 4 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 1 1048 2 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 99 10 1896 0 0 0 2 0 0 0 0 0 0 0 

6 0 0 0 0 1 2981 0 0 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 0 2641 1 0 0 0 0 1 4 0 1 

8 0 0 0 0 0 0 0 7540 1 25 0 0 0 5 873 1 

9 0 0 0 0 0 0 0 0 4666 1 0 0 0 0 0 0 

10 0 0 3 1 3 0 0 16 27 2389 2 4 1 13 0 6 

11 0 0 0 0 0 0 0 0 0 0 805 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 2 1430 0 2 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 703 2 0 0 

14 0 0 0 0 0 0 0 1 1 2 0 0 13 815 0 0 

15 0 0 2 0 1 0 1 1416 0 20 0 0 0 0 4021 1 

16 0 4 0 0 0 0 0 0 0 1 0 0 0 0 0 1349 

Table 12. Statistics of traditional CNN classification chart accuracy used Salinas dataset. 

No. Ground category 
Total number of 

Pixels 

Correct 

Classification 

Classification 

Accuracy 

1 Brocoli_green_weeds_1 1485 1470 98.99% 

2 Brocoli_green_weeds_2 2793 2789 99.86% 

3 Fallow 1462 1458 99.73% 

4 Fallow_rough_plow 1051 1048 99.71% 

5 Fallow_smooth 2007 1896 94.47% 

6 Stubble 2982 2981 99.97% 

7 Celery 2649 2641 99.70% 

8 Grapes_untrained 8445 7540 89.28% 

9 Soil_vinyard_develop 4667 4666 99.98% 

10 Corn_sensced_green_weeds 2465 2389 96.92% 

11 Lettuce_romaine_4wk 805 805 100% 

12 Lettuce_romaine_5wk 1434 1430 99.72% 

13 Lettuce_romaine_6wk 705 703 99.72% 

14 Lettuce_romaine_7wk 832 815 97.96% 

15 Vinyard_untrained 5462 4021 73.62% 

16 Vinyard_vertical_trellis 1354 1349 99.63% 

/ Overall classification accuracy / / 93.60% 

From Tables 11 and 12, it can be concluded that for the Salinas dataset, CNN obtained a good 

classification effect. In which the classification accuracy of most ground objects was higher, reaching 

above 96%. Ground objects category 5, Fallow_smooth, category 8, Grapes_untrained, and category 

15, Vinyard_untrained, were mainly misclassified; it is believed that this was caused by the 

geographical proximity of these three types of ground objects and their similar spectra. 

Table 13 lists the confusion matrix of the maximum overlap pooling CNN classifications that 

used the Salinas dataset. Table 14 summarizes the corresponding classification accuracy for when 

the Salinas dataset was used. 

From Tables 13 and 14, it can be concluded that for the Salinas data set, the improved CNN 

achieved better classification effect. The classification accuracy of most ground objects was higher, 

reaching over 97%. Ground objects category 8, Grapes_untrained, category 15, Vinyard_untrained, 

were mainly misclassified; it is believed that this was caused by the geographical proximity of these 

two types of ground objects and their similar spectra. 

Based on the above experimental data, the maximum overlap pooling CNN has a high 

classification accuracy, which also achieves an ideal classification effect, and the training network 

model consumes less time. 
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Table 13. Confusion matrix for maximum overlap pooling CNN classification used Salinas dataset. 

Category 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1479 4 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

2 0 2792 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

3 0 0 1546 0 2 0 0 0 0 4 0 0 0 0 0 0 

4 0 0 0 1046 5 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 1 8 1997 0 0 0 0 0 1 0 0 0 0 0 

6 0 1 0 0 1 2980 0 0 0 0 0 0 0 0 0 0 

7 0 1 0 0 0 1 2642 0 0 0 0 0 0 3 0 1 

8 0 0 0 0 0 0 0 7576 1 7 0 0 0 0 861 0 

9 0 0 0 0 0 0 0 0 4666 1 0 0 0 0 0 0 

10 0 0 0 1 1 2 0 19 24 2399 1 2 0 8 3 5 

11 0 0 0 0 0 0 0 0 1 0 802 2 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 1432 2 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 703 2 0 0 

14 0 0 0 0 0 0 0 1 0 5 0 0 12 814 0 0 

15 0 0 0 0 2 0 0 1069 0 4 0 0 0 0 4387 0 

16 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 1350 

Table 14. Statistical tables for maximum overlap pooling CNN classification charting accuracy used 

Salinas dataset. 

No. Ground Category 
Total Number of 

Pixels 

Correct 

Classification 

Classification 

Accuracy 

1 Brocoli_green_weeds_1 1485 1479 99.60% 

2 Brocoli_green_weeds_2 2793 2792 99.96% 

3 Fallow 1552 1546 99.61% 

4 Fallow_rough_plow 1051 1046 99.52% 

5 Fallow_smooth 2007 1997 99.50% 

6 Stubble 2982 2980 99.93% 

7 Celery 2648 2642 99.77% 

8 Grapes_untrained 8445 7576 89.71% 

9 Soil_vinyard_develop 4667 4666 99.98% 

10 Corn_sensced_green_weeds 2465 2399 97.32% 

11 Lettuce_romaine_4wk 805 802 99.63% 

12 Lettuce_romaine_5wk 1434 1432 99.86% 

13 Lettuce_romaine_6wk 705 703 99.72% 

14 Lettuce_romaine_7wk 832 814 97.84% 

15 Vinyard_untrained 5462 4387 80.32% 

16 Vinyard_vertical_trellis 1354 1350 99.70% 

/ Overall classification accuracy / / 94.90% 

5. Conclusions 

This study proposes a framework for classifying the maximum overlap pooling CNN of HSI, 

which improve the pooling layer. The maximum overlap pooling CNN classification method was 

compared with the traditional CNN through experimental simulation. It can be concluded from the 

experimental results that the improved convolutional neural network is faster in loss convergence 

than traditional convolution in training, and that the training loss accuracy is lower, which can 

achieve a better training effect. Referring to the main results given in the experimental results 

section, the maximum overlap pooling CNN has a high classification accuracy, which also achieves 

an ideal classification effect, and the training network model consumes less time. Therefore, we 

conclude that the maximum overlap pooling CNN model has less training error, and the improved 

algorithm has a better effect on improving the classification accuracy of HSI and network 

convergence. The pooling layer can still be improved during the experiment, and further research on 

the improvement method will be conducted in the future. 
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