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Abstract: A fast direction of arrival (DOA) estimation method using a real-valued cross-correlation 
matrix (CCM) of coprime subarrays is proposed. Firstly, real-valued CCM with extended aperture 
is constructed to obtain the signal subspaces corresponding to the two subarrays. By analysing the 
relationship between the two subspaces, DOA estimations from the two subarrays are 
simultaneously obtained with automatic pairing. Finally, unique DOA is determined based on the 
common results from the two subarrays. Compared to partial spectral search (PSS) method and 
estimation of signal parameter via rotational invariance (ESPRIT) based method for coprime arrays, 
the proposed algorithm has lower complexity but achieves better DOA estimation performance and 
handles more sources. Simulation results verify the effectiveness of the approach. 
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1. Introduction 

Direction of arrival (DOA) estimation via a sensor array is an important issue for radar, sonar, 
and wireless communication systems [1–4], and many well-known DOA estimation algorithms have 
been established [5–12]. Multiple signal classification (MUSIC)-based methods [5,6] obtain the DOA 
estimation via a peak search, which is highly computational. To reduce the complexity, root-MUSIC 
based methods [7,8] were proposed to estimate the DOA via polynomial root finding instead of the 
peak search. Estimation of signal parameters via the rotational invariance technique (ESPRIT)-based  
methods [9,10] exploit the invariance property within the signal subspace to obtain closed-form DOA 
solutions, and generalized ESPRIT [11] can be suitable for arbitrary geometries. The support vector 
classifier-based method proposed in [12] can obtain DOA estimation with a low complexity by 
exploiting a multi-scaling procedure. These methods all can provide accurate DOA estimations by 
using arrays whose inter-element distances are no larger than a half-wavelength to avoid the 
ambiguity problem of angle estimation. However, the compact arrays they used have many 
limitations, e.g., the high estimation error bound and the mutual coupling problem [13,14]. 

As a new concept for array geometry, coprime arrays use two sparse uniform linear arrays 
(ULAs) with coprime antenna numbers and coprime inter-element distances to achieve high 
resolution DOA estimation and reduce mutual coupling influence [15–17]. To overcome the 
ambiguity problem of DOA estimation using sparse arrays, the common peaks of the MUSIC spectra 
obtained from the two coprime subarrays are selected to uniquely determine the DOA estimations [18], 
but the high-computational peak searches are required. Thereafter, in order to reduce the complexity 
involved in the peak search of whole angular space, a partial spectral search (PSS) MUSIC method 
was proposed in [19] to reduce the search range, and an ESPRIT-based method was proposed in [20] 
to estimate the DOA without peak search. However, these methods all process the subarrays 
separately, and the obtained results from the two subarrays are mis-pairing, which result in angular 
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interference between different sources and degradation of the DOA estimation performance, 
especially with low signal to noise ratio (SNR). To deal with this problem, Ref. [20] proposed an 
additional processing procedure relying on peak search and angle difference chosen, but this makes 
the algorithm inefficient. 

In this paper, a low-complexity DOA estimation method using real-valued cross correlation 
matrix (CCM) of coprime arrays is proposed. Based on the uniformity of the subarrays, the smaller 
aperture between the two coprime subarrays can be extended and real-valued CCM can be 
constructed. After singular value decomposition (SVD) of the real-valued CCM, the relationship 
between the two subspaces of the subarrays is analysed, and then the closed-form solutions of the 
DOA estimations corresponding to the two subarrays can be simultaneously obtained with 
automatically pairing. The automatically paired solutions make it simple and accurate to determine 
the unique DOA estimation. Compared to the PSS method in [19] and ESPRIT-based method in [20], 
the proposed algorithm requires lower complexity, achieves better DOA estimation performance and 
handles more sources. Multiple simulations are conducted to verify the effectiveness of our approach. 

Notation:  . T ,  *. ,  . H ,   1.  , and  .   denote the operations of transpose, conjugate, 
conjugate-transpose, inverse, and pseudo-inverse, respectively. [.]E  is the expectation operator.  
Re (.) and Im (.) represent the real and imaginary parts of the complex, respectively. 

2. Data Model 

As Figure 1 shows, coprime arrays consist of two sparse ULAs, where subarray 1 has M elements 
with Nd being the inter-element spacing and subarray 2 has N elements with Md being the inter-
element spacing. M and N are coprime integers, and d is generally set as / 2d  , where λ denotes 
the signal wavelength. 

 
Figure 1. The structure of coprime arrays. 

Assume that there are K far-field uncorrelated signals impinging on the arrays, and use k  to 
denote the DOA of the kth signal with respect to the array normal, then the outputs of the two 
subarrays are: 

1 1 1( ) ( ) ( )t t t x A s n  (1a) 

2 2 2( ) ( ) ( )t t t x A s n  (1b) 

where 1( )=[ ( ),...,t s ts ( )]TKs t  is the baseband signal vector. 1( )tn  and 2 ( )tn  are the noise vectors, 
which are assumed to be uncorrelated to each other and independent to the signals. 

1 1 1 1=[ ( ),..., ( )]K A a a  and 2 2 1 2=[ ( ),..., ( )]K A a a  are the direction matrices of subarray 1 and  
subarray 2, respectively. The steering vectors corresponding to the k-th signal are: 

sin ( 1) sin
1( ) = [1, ,..., ]k kjN j M N T

k e e      a  (2a) 

 

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sin ( 1) sin
2 ( ) = [1, ,..., ]k kjM j N M T

k e e      a  (2b) 

3. Proposed DOA Estimation Method 

In this section, the proposed DOA estimation method will be presented. Section 3.1 to Section 
3.3 contain the three major steps of the method, and Section 3.4 includes the algorithm summaries, 
algorithm comparison, and remarks. 

3.1. Construction of Real-Valued CCM with Extended Aperture 

In this section, we will construct a real-valued CCM with extended aperture. As the maximum 
number of detectable source depends on the minimum aperture of the two subarrays, we consider 
extending the smaller aperture between the two subarrays. In the following section, we assume 
subarray 1 has smaller aperture than subarray 2, i.e., M < N (refer to remark 1 for the situation when 
M > N).  

Realize that the subarrays are sparse, but still uniform, which means that their manifolds are 
symmetrical and do not exhibit inclination [21]. Define unitary matrices as: 

2
1
2

k k
k

k k

j

j

 
   

I I
Q

Π Π
 (3a) 

2 1

0
1 0 2 0
2 0

k k

k

k k

j

j


 
 

  
  

I I

Q

Π Π

 (3b) 

where KI  and KΠ  are K × K identity matrix and reverse identity matrix (90° rotation of KI ), 
respectively. Assume N is odd, then the steering vector of subarray 2 is transformed as: 

2 2

( 1) sin
2

2

( )  ( )

( 1) ( 3) e 2 [cos( sin ), cos( sin ),cos( sin ),
2 2

11/ 2,sin( sin ), sin( sin )]
2
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j M
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M M M
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M M
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 
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     

   
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  
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
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


 (4) 

where 
( 1) sin

2 = e
k

N
j M

kv
 

  
   is a scalar. According to Equation (4), the steering vector can be 

transformed into a real-valued vector 2( )kh  multiplied by a scalar kv . 
Construct the CCM of the two outputs in Equation (1) as: 

1 2 1 2[ ( ) ( )]H H
c sE t t R x x A R A  (5) 

where 2 2
1 ( ,..., )s Kdiag  R  is a real-valued diagonal matrix composed of signal powers [22]. 

According to Equation (4), transform CCM in Equation (5) as: 

1 2
* *

1 2 1 2

 

= 

H
cr c N s N

T T
s v v s

 



R R Q A R A Q

A R Ψ H A Ψ R H
 (6) 

where 2 2 1 2= [ ( ),..., ( )]K H h h  is the real-valued direction matrix of subarray 2, and 1= ( ,..., )v Kdiag v vΨ  
is a diagonal matrix, which means the orders of *

vΨ  and sR  can be exchanged (has been shown in 
Equation (6)). Based on the real-valued property of 2H , construct extended CCM as: 

1

* *
1 2 1

2* * *
1 2 1

E

T
M cr TM v s M v

z sT
cr v s v

    
      
     

A

Π R Π A Ψ R H Π A Ψ
R R H

R A Ψ R H A Ψ
 

(7) 
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where MΠ  is used in Equation (7) to make the extended direction matrix 1EA  conjugate symmetric. 
Now the virtual aperture of subarray 1 is 2M, and its steering vector (i.e., the column of 1EA ) can be 
expressed as: 

1
( 1) sin ( 2) sin sin ( 1) sin* * *

( ) =

[ , ,..., , , ,..., ]k k k k

E k

j M N j M N jN j M N T
k k k k k ke v e v v v v e v e       


    

a
 (8) 

Due to the conjugate symmetric property, the steering vector in Equation (8) can also be 
transformed into a real-valued one, which is 1 2 1( ) ( )H

k M E k h Q a . So the real-valued CCM with 
extended aperture is constructed: 

2 1 2
H T

h M z s R Q R H R H  (9) 

where 2
1 1 1 1 2 1= [ ( ),..., ( )] = RH M K

K M E  H h h Q A  is the extended real-valued direction matrix of subarray 
1. 

3.2. Ambiguous DOA Estimation 

To obtain the signal subspaces of the two subarrays, SVD of the CCM in Equation (9) is 
performed: 

T
h R UΛV  (10) 

where U  and V  are left and right singular vectors, respectively. Λ  is a K × K diagonal matrix 
composed of singular values. The real-valued signal subspaces U  and V  satisfy, 

1 1U H T  (11a) 

2 2V H T  (11b) 

where 1T  and 2T  are two non-singular matrices. 
Before the usage of the signal subspaces, we briefly review the properties of the direction 

matrices. Based on the Vandermonde structures of the direction matrices shown in Equations (2b) 
and (8), we define selecting matrices as 1 2 ( 1) 1 ( 1)[ , ]M M   J I 0 I , 2 2 ( 1) ( 1) 1[ , ]M M   J I I 0 , 

3 ( 1) ( 1) 1[ , ]N N  J I 0 , and 4 ( 1) 1 ( 1)[ , ]N N  J 0 I , then the direction matrices satisfy: 

1 1 1 2 1E EJ A Φ J A  (12a) 

3 2 2 4 2J A Φ J A  (12b) 

where 1sin
1= ( ,...,jNdiag e  Φ 2sin )jNe    and 1 2sin sin

2 = ( ,..., )jM jMdiag e e    Φ  are diagonal matrices. As 
now the direction matrices are all transformed into real-valued ones ( 1H  and 2H ), then the 
relationships in Equation (12) are also transformed into real-valued forms [10]: 

1 1 1 2 1K H Ω K H  (13a) 

3 2 2 4 2K H Ω K H  (13b) 

where 1 (2 1) 2 2Re( )H
M MK Q J Q , 2 (2 1) 2 2Im( )H

M MK Q J Q , 3 ( 1) 4Re( )H
N NK Q J Q , and 4 K  ( 1) 4Im( )H

N NQ J Q  
are all real-values selecting matrices. 1 1(tan( sin / 2), ,diag N  Ω   tan( sin / 2))KN   and 

2 1(tan( sin / 2), ,)diag M  Ω   tan( sin / 2))KM   are real-valued diagonal matrices. 
Combine Equations (11) and (13), the signal subspaces satisfy: 

1 1 2K UΣ K U  (14a) 

3 2 4K VΣ K V  (14b) 

where 1
1 1 1 1 = Σ T Ω T  and 1

2 2 2 2 = Σ T Ω T , which can be estimated via least squares (LS): 
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1 1 2( )Σ K U K U  (15a) 

2 3 4( )Σ K V K V  (15b) 

After Equation (15), the eigenvalues of 1Σ  and 2Σ  will, respectively, provide the estimations 
of the diagonal elements of 1Ω  and 2Ω , which can give the DOA estimations. However, as 1Σ  and 

2Σ  are processed separately, and their eigenvalues are mis-pairing, which will cause the interference 
between the angles when determining the unique DOA. Sun et al. [20] proposed an additional 
processing method relying on peak search and angle difference chosen to deal with this problem, but 
this procedure also adds computation complexity. We will analyse the relationship between 1Σ  and 

2Σ  below, and conduct a method to simultaneously obtain the eigenvalues of 1Σ  and 2Σ  with 
automatically pairing. 

Firstly, substitute Equation (11) into Equation (10); then it can be obtained that  
1 1 2 2

T T
h R H TΛT H . Combine Equation (9), then it is shown that: 

1 2 = T
sTΛT R  (16) 

Equation (16) means that -1 1
2 1= ( )Ts

T R T Λ , which can be substituted into 1
2 2 2 2= Σ T Ω T , then 2

TΣ  
can be expressed as: 

1
2 2 2 2

1 1
1 2 1

1 1
1 2 1

( )

= 

= 

T T T

s s



 

 

Σ T Ω T

Λ T R Ω R TΛ

Λ T Ω TΛ

 (17) 

Combine 1
1 1 1 1 = Σ T Ω T  and Equation (17), constructing a K × K matrix as: 

1
1 2

1 1
1 1 1 1 2 1

1
1 1 2 1

 = + ( )

= 

= ( )

Tj

j

j



 







Σ Σ ΛΣ Λ

T Ω T T Ω T

T Ω Ω T

 (18) 

where Λ  has already been obtained after the SVD of CCM in Equation (10). According to Equation (18), 
the eigenvalues of Σ  provide the estimations of the diagonal elements of 1 2jΩ Ω , whose real part 
and imaginary part give the DOA information corresponding to subarray 1 and subarray 2, 
respectively. Use k  to denote the k-th eigenvalue of Σ , then the DOA estimations from subarray 1 and 
subarray 2, respectively, are: 

,sin 2arctan(Re( )) / ( ),  1,...,k n k N k K    


 (19a) 

,sin 2arctan(Im( )) / ( ),  1,...,k m k M k K    


 (19b) 

The DOA estimations from subarray 1 and subarray 2 are automatically paired based on the 
same k . Due to the range limitation of the function arctan( )  ([−π/2, π/2]) in Equation (19), the two 
DOA estimations in Equation (19) may be ambiguous (original range within the tangent function is 
[−πM/2, πM/2] or [−πN/2, πN/2], which has been shown in 1Ω  or 2Ω  in Equation (13)), and unique 
DOA will be determined in the next section. 

3.3. Unique DOA Estimation 

Now two ambiguous DOA estimations are obtained from subarray 1 and subarray 2, 
respectively. In this section, we continue to uniquely determine the true DOA based on the coprime-
ness between the two subarrays. As now the DOA estimations are automatically paired 
(corresponding to the same source), the angles can be determined without interference from other 
sources. 
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For the k-th DOA shown in Equation (19), due to the large inter-element spacing, there are totally 
N solutions for subarray 1 and M solutions for subarray 2, respectively [18–20]. The adjacent intervals 
between the estimations are 2/N for subarray 1 and 2/M for subarray 2, respectively: 

, 1 ,
2sin sin ,  1,..., 1k n k n n N
N

     
 

 (20a) 

, 1 ,
2sin sin ,  1,..., 1k m k m m M
M

     
 

 (20b) 

Based on the relationship in Equation (20) and the obtained two arbitrary ambiguous estimations 
in Equation (19), all the N estimations ,sin ,k n


 1,...,n N  for subarray 1 and all of the M estimations 

for subarray 2 ,sin , 1,...,k m m M 


 can be obtained. 
Finally, based on the coprime-ness between M and N, the unique estimation can be obtained by 

finding the coincidence between ,sin ,  1,...,k n n N 


 and ,sin ,  1,...,k m m M 


 [18]. In practical 
situations, the unique estimation is actually obtained from the average of two nearest ones: 

ˆ ˆ, ,sin sinˆ arcsin( ),  1,...,
2

k n k m
k k K

 



 

 
 (21) 

where ˆ,sin k n


 and ˆ,sin k m


 denote the two nearest results. 
It should be noted that the CCM is estimated via finite snapshots in practice: 

1 2
1

1 ( ( ) ( ))
T

H
c

t

t t
T 

 R x x  (22) 

where T  denotes the number of snapshots. Therefore, the signal subspaces U  and V  are actually 
obtained by respectively selecting the left and right singular vectors corresponding to K largest 
singular-values. 

3.4. Summaries and Remarks 

The major steps of the proposed algorithm are: 

1. Construct the real-valued CCM with extended aperture via Equations (22), (7), and (9). 
2. Perform SVD of the CCM obtained in step 1 to obtain the signal subspaces, and estimate two 

initial ambiguous DOAs via Equations (15), (18), and (19). 
3. Determine the unique DOA via Equations (20) and (21). 

In our algorithm, the CCM construction, SVD and pseudo-inverse dominate the complexity, and 
it should be noted that the SVD and the pseudo-inverse are all based on real-valued computations, 
while the PSS method and ESPRIT based method both require multiple complex  
eigenvalue-decompositions and pseudo-inverses. The complexity of our algorithm is about  
O(MNT + NM2 + (2M + N)K2 + K3), which is lower than those of the PSS method and ESPRIT based 
method (PSS: O((M2 + N2)T + M3 + N3 + (J/N)M(M − K) + (J/M)N(N − K) and ESPRIT based:  
O((M2 + N2)T + M3 + N3 + 3(M + N)K2 + 4K3) without considering the additional peak search based 
processing procedure). 

The advantages of our algorithm can be summarized as: 

1. It requires CCM construction, real-valued SVD, and eigenvalue-decomposition only once, so it 
has low complexity. 

2. It extends the aperture of subarray 1, thus, the number of managed source is increased 
(according to Equation (15), the maximum number depends on the minimum aperture between 
the two subarrays, i.e., min (2M − 1, N − 1)). 

3. It achieves better DOA estimation performance than the PSS method and the ESPRIT-based 
method. 

The last two advantages will be verified in the simulation section below. 
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Remark 1. For the situation when M > N, we should consider to extend the aperture of subarray 2 to increase 
source number that the method can handle. Just transform the direction matrix of subarray 1 into real-valued 
one firstly: 

2 1 2

1 2

H H H
cr M c M s

H
u s

 



R Q R Q A R A

G Ψ R A
 (23) 

where 1G  is the real-valued direction matrix and uΨ  is the diagonal matrix composed of the rest scalars 
(similar to the processing of subarray 2 in Equation (4)). Then construct the extended CCM as: 

*
2 2

*
1 2 1 2

* *
1 2 2

[ , ]

[ , ]

[ , ]

z cr cr

H T
u s u s

H
s u u







R R R

G Ψ R A G Ψ R A

G R A Ψ A Ψ

 (24) 

Now the aperture of subarray 2 has been extended, and similar steps as those from Equation (8) can be conducted. 

Remark 2. In real situations, the residual noise will make hR  in Equation (9) none real-valued, so the  
real-valued CCM is actually acquired via 2Re( )H

h M zR Q R . 

4. Simulation Results 

Consider coprime arrays with M = 5 antennas for subarray 1 and N = 7 antennas for subarray 2, 
respectively. Assume there are two uncorrelated signals with DOAs being 1 15    and 2 30   , 
respectively. Collect T = 200 snapshots, and define the root mean square error (RMSE) of the DOA 
estimation as:  

1 1 2
,1 1

ˆ[( ) ]K L

k l kK Lk l
RMSE  

 
    (25) 

where ,k̂ l  is the estimation of k  of the l-th Monte Carlo trial, and the total trial number is L = 200. 
In the simulations below, the DOA estimation performance comparison between the PSS method [19], 
ESPRIT based method [20] and the proposed algorithm under the measurement of RMSE will be 
presented. The PSS method uses search grid 0.1°, and both PSS method and ESPRIT based method 
exploit additional peak search based procedure [20] to avoid the interference between sources after 
obtaining the DOA estimations. Multi-source Cramer-Rao Bound (CRB) [23] of the DOA estimation 
using coprime arrays is also presented as a benchmark. 

Figure 2 shows the DOA estimation results of the proposed algorithm over 100 trials when  
SNR = 0 dB, and it is shown that the proposed algorithm can accurately estimate both of the two DOAs. 

 
Figure 2. DOA estimation results over 100 trials (SNR = 0 dB). 
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The DOA estimation performance comparison is shown in Figure 3, and it is indicated that our 
algorithm has better DOA estimation performance than the PSS method and the ESPRIT-based 
method due to the extended aperture and automatically solutions from the two subarrays. Due to the 
self-limitation of peak search based method [20], the PSS method performs worse than the  
ESPRIT-based method with high SNR. 

 
Figure 3. DOA estimation performance comparison. 

Figure 4 shows the DOA estimation results when the source number is K = 5, and the angles of 
the sources are uniformly distributed among the range [5°, 50°]. As M < N, the maximum source 
number that the PSS method and the ESPRIT-based method can handle depends on the minimum 
aperture between the two subarrays, i.e., (M − 1) = 4. In contrast, the proposed algorithm can deal 
with min(2M − 1, N − 1) = 6 sources due to the aperture extension in Section 3.1. Thus, Figure 4 verifies 
that the proposed algorithm can handle more sources than the PSS method and the ESPRIT-based 
method. 

 
Figure 4. DOA estimation results with K = 5 sources (SNR = 10 dB). 

In Figure 5, we show the DOA estimation performance comparison with two closely-spaced 
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and the ESPRIT-based method have significant performance degradations with low SNR compared 
to those shown in Figure 3, while the proposed method still maintains stable performance. With high 
SNR, their estimation errors are close to each other due to the closely-spaced sources. 

To clearly observe the resolutions of the algorithms, we use resolution probability to investigate 
the DOA estimation performance versus angular separation in Figure 6. The two DOAs are 1 50    
and 2 1     , where   denotes the angular separation. The two sources can be resolvable if 

both 1 1̂   and 2 2̂   are smaller than 1 2 / 2   [20]. The SNR is set to 10 dB, and it is shown 

that the proposed algorithm achieves the best resolution performance among the algorithms.  

 
Figure 5. DOA estimation performance comparison with closely-spaced sources. 
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Figure 7 shows the DOA estimation performance comparison with K = 3 sources, whose DOAs 
are 30°, 35°, and 50°, respectively. With the increase of the source number, it is indicated that both 
PSS method and the ESPRIT-based method degrade significantly, especially with low SNR. The 
proposed algorithm still outperforms the other methods and also has performance degradation with 
low SNR compared to the two-source situation. 
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Figure 7. DOA estimation performance comparison with three sources. 

5. Conclusions 

A real-valued CCM based fast DOA estimation method for coprime arrays is proposed. A real-
valued CCM with extended aperture is constructed and is then exploited to obtain the closed-form 
solutions of DOA estimations from the two subarrays. By analysing the relationship between the two 
subarrays, the obtained solutions are automatically paired, which can avoid angular interference 
when determining the unique DOA estimation. Compared to the PSS method and the ESPRIT-based 
method for coprime arrays, the proposed algorithm reduces the computational burden, achieves 
better DOA estimation performance, and handles more sources. Several simulations have been 
carried out to verify the validity of our algorithm. 
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