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Abstract: Defocus of the reconstructed image of synthetic aperture radar (SAR) occurs in the 
presence of the phase error. In this work, a phase error correction method is proposed for 
compressed sensing (CS) radar imaging based on approximated observation. The proposed method 
has better image focusing ability with much less memory cost, compared to the conventional 
approaches, due to the inherent low memory requirement of the approximated observation 
operator. The one-dimensional (1D) phase error correction for approximated observation-based  
CS-SAR imaging is first carried out and it can be conveniently applied to the cases of random-
frequency waveform and linear frequency modulated (LFM) waveform without any a priori 
knowledge. The approximated observation operators are obtained by calculating the inverse of 
Omega-K and chirp scaling algorithms for random-frequency and LFM waveforms, respectively. 
Furthermore, the 1D phase error model is modified by incorporating a priori knowledge and then 
a weighted 1D phase error model is proposed, which is capable of correcting two-dimensional (2D) 
phase error in some cases, where the estimation can be simplified to a 1D problem. Simulation and 
experimental results validate the effectiveness of the proposed method in the presence of 1D phase 
error or weighted 1D phase error. 

Keywords: phase error correction; compressed sensing; approximated observation; radar imaging 
 

1. Introduction 

The synthetic aperture radar (SAR) is able to achieve image reconstruction with high resolution 
in both range and azimuth direction. However, higher range resolution of SAR requires wider 
bandwidth of signal, and thereby a higher sampling rate. Similarly, higher azimuth resolution 
requires longer synthetic aperture and higher sampling rate in azimuth direction. When both higher 
range and azimuth resolutions are expected, much higher sampling rate and larger volume of 
sampled data are required. It is thus a great challenge to design a high-resolution radar system 
hardware with limited cost. 

Based on the theory of compressed sensing (CS) [1,2], both the sampling rate and the volume of 
sampled data can be reduced, if the reconstructed scene is sparse or compressible. The assumption 
made in the image reconstruction algorithm is that the observation matrix is known exactly. The 
observation matrix, however, depends on the mathematical model of the observation process. The 
uncertainties of the observation position will lead to the mismatch of the mathematical model and 
the observation matrix, which will cause phase error of the raw data, and thus the defocus of the 
reconstructed image. 
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The autofocus techniques, which are developed for correcting the phase error, are still attracting 
the interests of scientists. Chen et al. [3] proposed a method of SAR motion compensation based on 
parametric sparse representation to achieve autofocus of high-resolution SAR image, which assumed 
that the motion parameters of the radar were constant in each subaperture. Then the trajectory error 
can be corrected by the estimated motion parameters. Mao et al. [4] proposed a knowledge-aided 
two-dimensional (2D) autofocus approach, but the method did not utilize the CS theory or sparse 
regularization method to enhance the feature of the reconstructed image. 

Many methods were proposed to deal with the model error in the case of CS-based radar 
imaging. Önhon et al. [5] proposed a sparsity-driven method for joint SAR imaging and phase error 
correction, which can remove either one-dimensional (1D) or 2D phase error. Kelly et al. [6] proposed 
a stable algorithm, which corrects phase error and reconstructs SAR image with compressively 
sampled data. An approach was proposed in [7], which can solve a joint optimization problem to 
achieve model error parameter estimation and SAR image formation simultaneously. Yang et al. [8] 
reported a method that can estimate the observation position error accurately and thus the quality of 
reconstructed image is improved significantly. 

Up to now, the existing methods correcting the phase error of CS-based radar imaging were 
achieved by solving a two-step optimization problem, i.e., image formation processing and phase 
error estimation. The frameworks of CS-based image formation processing in [5,7,8] were formulated 
using exact observation functions, which were inefficient to be applied to the high-dimensional cases. 
The method proposed in [6] made a small aperture angle approximation, which hampered the 
application of high-resolution radar. 

In [9,10], the approximated observation operators were proposed, which reduce the computational 
complexity and memory cost dramatically, and thus can be applied in high-dimensional cases 
efficiently. The approximated observation-based method proposed in [9] was called “range-azimuth 
decoupled method” in [10]. 

The intent of this paper is twofold. First, we propose a method to correct 1D phase error for 
approximated observation-based CS-SAR imaging by replacing the exact observation with the 
mentioned approximated observation in the two-step optimization framework. Then, a modified 1D 
phase error model is proposed to make the phase error model more precise, while the number of the 
unknowns does not increase in the phase error model. 

The method proposed in this paper is capable of correcting the phase error in the case of 
approximated observation-based CS-SAR imaging. Compared with the existing methods mentioned 
above, the proposed method reduces the memory cost. The proposed method is achieved by solving 
a two-step optimization problem. In the step of image formation processing, the approximated 
observations can be derived from the inverse of Omega-K [11] and chirp scaling [12] algorithms for 
random-frequency waveform and linear frequency modulated (LFM) waveform, respectively. The 
images can thus be reconstructed by conducting the iterative thresholding algorithm (ITA) [9]. In the 
step of phase error estimation, the 1D phase error model, which can be conveniently applied to the 
cases of random-frequency and LFM waveforms without any a priori knowledge, is utilized first, and 
a weighted 1D phase error model is then proposed, which is able to model the phase error more 
precisely. When incorporating the a priori knowledge of the phase error structures, the method using 
the proposed weighted 1D phase error model can compensate the 2D phase error by solving a 1D 
problem. Accordingly, the weighted 1D phase error model achieves a better performance compared 
to the 1D phase error model, while the number of unknowns keeps the same. Furthermore, data 
redundancy will not be decreased for the weighted 1D phase error estimation compared with 1D 
phase error estimation. 

This paper is organized as follows. Section 2 describes the signal models of radar imaging, along 
with model expressions for random-frequency and LFM waveforms. The inherent relationships 
between the geometric models and the phase error models are also introduced. In Section 3, a phase 
error correction method is proposed for approximated observation-based CS-SAR imaging, including 
the target reconstruction method, the phase error estimation approach, the memory cost analysis, the 
convergence analysis, and the computational complexity analysis. The simulation and experimental 
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results are presented in Section 4 to validate the effectiveness of the proposed method. We conclude 
the work in Section 5. 

Notation: We will use the subsequent notations in this paper. Vectors, matrices and operators 
will be denoted by bold lower case, bold upper case and roman upper case, respectively, e.g., f  is a 
vector, S  is a matrix, and M  is an operator. Superscripts TS , S  and HS  denote the transpose, 
conjugate and Hermitian transpose of S , respectively. 

2. Radar Imaging Model 

2.1. Signal Model 

In applications of strip-map SAR, wide bandwidth signals are always used to achieve the high 
range resolution. In this paper, we consider two types of signal waveforms, namely the random-
frequency waveform [13] and the LFM waveform [8,12]. 

2.1.1. Random-Frequency Waveform 

To overcome the limitations of the stepped-frequency SAR system, a random-frequency SAR 
imaging scheme was proposed in [13]. In the strip-map SAR using stepped-frequency waveform [11], 
the demodulated baseband echo signal for a point target can be expressed as 

   exp 4 cs n g j πf n R c      (1)

where 1,2, ,n N   is the n -th frequency point in one sequence, g  is reflectivity coefficient of the 

point target,  cf n  is the frequency value of the n -th frequency, R  is the range from radar to the 

point target, and c  is the velocity of light. The stepped-frequency points are denoted as 

  Δ , 1,2, ,c cf n f n f n N     (2)

where Δf  is the frequency interval and cf  is the starting frequency. 
The received signal of a radar is the superposition of echoes from all scatterers in the scene. 

Based on Equation (1), the received signal of the n -th pulse in the m -th sequence is given by 

       
0

4 , ,
, , exp c

G

πf n R m x y
s m n g x y j dxdy

c

 
  

  
  (3)

where 1,2, ,m M   denotes the m -th observation position,  ,x y  is the coordinate of a target, 

 ,g x y  is reflectivity coefficient of the target on  ,x y ,  , ,R m x y  is the range from the radar to the 

target in the m -th observation position, and 0G  is the area illuminated by the wave beam. Here, 
referring to [8], we also assume that the transmitting period for each frequency is relatively short. 
Thus, the range from the radar to the scene is not changed in one observation. 

There is a trade-off between resolution and imaging width [11]. If the scene is sparse or 
compressible, it is found [13] that the frequency points can be reduced and the imaging width can be 
increased, while the range and azimuth resolutions remain the same based on the theory of CS. The 
difference between stepped-frequency waveform and random-frequency waveform is the frequency 
interval. In the strip-map SAR using random-frequency waveform,  cf n  will be substituted by 

 c sf n , 1,2, ,s sn N  , and the sequence  c sf n  is selected from the sequence  cf n  randomly. 

sN  is generally much smaller than N . The relationship between the stepped-frequency points and 
the random-frequency points is expressed in matrix form as: 

c c r
 f fΘ  (4)
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where   1 sN
cf   and  1 N

cf   denote the set of random-frequency and stepped-frequency points, 

respectively, and  sN N
rΘ   is the sampling matrix. 

Substituting  cf n  by  c sf n  in Equation (3), the received signal of the random-frequency 

SAR is expressed as: 

       
0

4 , ,
, , exp c s

s
G

πf n R m x y
s m n g x y j dxdy

c

 
  
 
 

 . (5)

We consider that the scene consists of a series of point scatterers. Based on Equation (5), the 
received signal of the random-frequency SAR will be rewritten as: 

       
1

4 ,
, exp

K
c s

s
k

πf n R m k
s m n g k j

c

 
  
 
 

  (6)

where K  is the number of point scatterers,  g k  is reflectivity coefficient of the k -th point, and 

R  is the range from the radar to the k -th point in the m -th observation position. 

2.1.2. LFM Waveform 

The LFM waveform is another kind of signal waveform, which can achieve wide bandwidth. 
Transmitted LFM waveform can be expressed as: 

     exp 2T cs t p t j πf t  (7)

where t  is fast time, cf  is the carrier frequency, and  p t  is denoted as: 

   2rect exptp t jπγt
T
 

  
 

 (8)

where  rect   is the time window, and γ  is the chirp rate. 

In the strip-map SAR using LFM waveform, the demodulated baseband echo signal for a point 
target is given by: 

     2 exp 4 cs t g p t R c j πf R c     (9)

where g  is reflectivity coefficient of the point target, R  is the range from the radar to the point 
target, and c  is the velocity of light. 

The received data are the superposition of echoes from all scatterers in the scene. Based on 
Equation (9), the demodulated echo data in the m -th observation will be expressed as: 

       
0

4 , ,
, , 2 , , exp c

G

πf R m x y
s m t g x y p t R m x y c j dxdy

c

 
        

 . (10)

where  ,g x y  is reflectivity coefficient of the target,  , ,R m x y  is the range from radar to the target, 

and 0G  is the area of imaging. We consider that the scene is discretized, and then the received signal 
will be rewritten as: 

       
1

4 ,
, 2 , exp

K
c

k

πf R m k
s m t g k p t R m k c j

c

 
        

  (11)

where K  is the number of scatterers. In practice, the continuous signal should be discretized. Then, 
the echo signal using LFM waveform is given by 
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         
1

4 ,
, 2 , exp

K
c

k

πf R m k
s m n g k p t n R m k c j

c

 
        

 . (12)

2.2. Phase Error Model 

After reviewing the existing signal models, the phase error models are analyzed as follows. In 
the SAR system, a radar transmits a series of pulse signals, and receives a series of echo data scattered 
from the illuminated scene. Considering 2-D slant-range plane [3], geometry of a SAR system is 
shown in Figure 1. The curved line indicates the real radar path, and the vertical axis indicates the 
known radar path, also nominated as “nominal path” in [3]. P  is the real radar position, and P  is 
the known radar position. 0T  is the reference point of the scene, and kT  is the k -th target in the 
illuminated scene. 

0T
O x

y

kT

PP

 
Figure 1. SAR imaging model. 

Under the far-field assumption [14,15], range from the known radar position to the k -th target 
can be approximated as: 


  


0

0 0
0

k k

P T
P T P T T T

P T




 (13)

where  0P T


 and 0P T  denote the direction vector and the range from P  to 0T , respectively. 

Furthermore, radar platform position uncertainties will result in the difference between the 
known radar positon and the real radar position. Therefore, applying the far-field approximation, the 
range from the real radar position to the k -th target will be given by: 

 
   

 
0 0

0 0
0 0

k k

P T T P
PT P T T T P P

P T T P

 
 

. (14)

The third item on the right side in Equation (14) arises from the radar position uncertainties, 
which will result in phase error of echo data. Note that the third item is a common parameter for all 
the scatterers. 

Considering the random-frequency waveform, the received signal of the random-frequency SAR 
can be expressed as Equation (6). Due to the radar position uncertainties, the received signal with 
model error must be modified as: 

   
     

1

4 , Δ ,
, exp

K
c s

ε s
k

πf n R m k R m k
s m n g k j

c

      
 
 

  (15)
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where  Δ ,R m k  arises from the radar position uncertainties. Referring to Equation (14), Equation 

(15) is approximated as: 

   
     

         

     

1

1

4 , Δ
, exp

4 Δ 4 ,
exp exp

4 Δ
exp ,

K
c s

ε s
k

K
c s c s

k

c s
s

πf n R m k R m
s m n g k j

c

πf n R m πf n R m k
j g k j

c c

πf n R m
j s m n

c





      
 
 

    
     
   
   
 
  
 
 



  (16)

where    exp 4 Δc sj πf n R m c 
 

 arises from the radar position uncertainties, which will result in 

phase error in echo data and must be corrected in the phase error correction process. During the 
compensation of phase error,  ΔR m  must be estimated. Equation (16) is expressed in matrix form as: 

 1ε W DS D S   (17)

where 1
sM N

W DD   denotes the phase error,   denotes the Hadamard product, and  sM N
εS   

and  sM NS   denote the echo data with phase error and without phase error, respectively. The 
phase error arising from radar position uncertainties is 

     
     

 

    
      
 
 




1 1 1 1

1

1 , 2 , ,
exp 1 , j 2 , , j

exp

c c c sT

W D W D W D W D
c

T
W D

f f f N
jφ φ φ M

f

j

D

φ w

  (18)

where  1
1

M
W Dφ   denotes the fundamental phase error, and  1 sNw   denotes the weight. The 

vectors and matrix are given by: 

   
  1

4 Δ
, 1,2, ,c

W D

πf R m
φ m m M

c
  (19)

   
 , 1,2, ,c s

s s s
c

f n
w n n N

f
  (20)

     
   

   
 
  
 
 

1 1, exp

4 Δ
exp

W D s W D s

c s

D m n jφ m w n

π R m f n
j

c

. (21)

The function  exp   in Equation (18) is defined as follows: 

 

 
 
 

  
 
 
 

1,1 1,2 1,

2 ,1 2 ,2 2 ,

,1 ,2 ,

e e e

e e eexp

e e e

N

N

M M M N

G G G

G G G

G G G

G




  



 (22)

where  ,[ ] M N
i jGG   is an arbitrary matrix. In Equation (19),  1W Dφ m  is proportional to 

 ΔR m , which is unknown and must be estimated in the phase error correction method. 
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For the narrow bandwidth system, the frequency interval Δf  can be neglected, i.e.,  Δ cn f f
. Therefore, Equation (20) can be approximated as 

   1, 1,2, ,s s sw n n N  (23)

Based on Equation (17), the received signal using random-frequency waveform with model error 
for the narrow bandwidth system will be expressed as: 

 

     

      
     





              
   

   


1 1 1

1

1

1 1 1

1 1 1

1 2

1

exp

exp 1 , j 2 , , j 1,1, ,1

exp diag 1 , j 2 , , j

diag , , ,

s

D D D

ε W D
T

W D

T

D D D
N

D D D

jφ jφ jφ M

D

jφ

jφ φ φ M

jφ φ φ M

e e e

S D S

w S

S

S

S

D S





  





. (24)

Comparing Equation (18) to Equation (24), the 1D phase error model is an approximation of the 
weighted 1D phase error model in the case of the narrow bandwidth system. Note that the former 
can only correct 1D phase error, while the latter can correct 2D phase error. 

Similarly, the received signal using LFM waveform with model error for the narrow bandwidth 
system can also be written as: 

1ε DS D S  (25)

where  M N
εS   and  M NS   denote the echo data with and without phase error, respectively.  

3. Phase Error Correction for Approximated Observation-Based CS-SAR Imaging 

In this section, we will formulate the method to correct phase error for approximated 
observation-based CS-SAR imaging. First, some preliminary knowledge of approximated 
observation is reviewed. Then, a method is proposed to correct phase error for approximated 
observation-based CS-SAR imaging. 

3.1. Approximated Observation 

3.1.1. Random-Frequency Waveform 

Referring to [9,10], the approximated observation operators will be obtained by calculating the 
inverse of matched filtering (MF)-based algorithm. The Omega-K algorithm, which is a type of  
MF-based algorithm, can be used to achieve the stepped-frequency SAR imaging [11]. In this paper, 
the Omega-K algorithm is also used to achieve the imaging procedure of the random-frequency SAR, 
which can be expressed as: 

       M CH T H
a a c r ref rS F F S H Θ H F   (26)

where  sM NS   is the echo data without model error, C  is the Stolt interpolation operator, cH  

is the range difference compensation function, and refH  is the reference function. The details of cH  

and refH  can be seen in [11]. F  and HF  are DFT matrix and inverse DFT matrix, respectively. The 

lower notation a  and r  are the azimuth and range direction, respectively. rΘ  can be found in 

Equation (4). The function  M : sM N M N   is the imaging procedure. 
Based on the above exposition, the approximated observation operator I  is obtained by 

calculating the inverse of imaging procedure as: 
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         
1I CH

a a r ref r cG F F G F H Θ H   (27)

where  M NG   is the matrix form of  ,g x y  in Equation (3), and 1C  is the inverse of Stolt 

interpolation operator. The notation   　I : sM NM N   denotes the approximated observation 
operator. 

Based on Equation (27), we acquire the approximated observation-based CS-SAR model (named 
as CS-Omega-K [16,17]) as follow: 

  2

1,1
min I

F
λ 

G
S G G  (28)

where 
F

  is the Frobenius norm of a matrix, and 0λ   is a regularization parameter. 

 1,1 1
vecG G  is the 1,1l  (pseudo) matrix norm [18]. The regularization item 

1,1
G  also can be 

substituted by  vec
q

q
G  to enhance feature of imaging when 0 1q  . In this paper, we simply set 

1q  , since the widely used soft-thresholding corresponds to 1q   and the soft-thresholding 
operator can be analytically specified. 

3.1.2. LFM Waveform 

In [10,19], the chirp scaling algorithm, which is also a type of MF-based algorithm, was used to 
achieve the LFM SAR imaging. In this paper, the chip scaling algorithm is used to achieve the imaging 
procedure of the LFM SAR, which can be expressed as: 

        3 2 1M H H
a a r rS F H H H F S F F    (29)

where  M NS   denotes the echo data without model error. 1H , 2H  and 3H  are the standard 

phase functions of the chirp scaling [19] ( 1Φ , 2Φ  and 3Φ ). The function  M : M N M N   is the 
imaging procedure. 

Based on the above exposition, the approximated observation I  is obtained by calculating the 
inverse of imaging procedure as: 

          1 2 3I H H
a a r rG F H H H F G F F    (30)

where  M NG   is the matrix form of  ,g x y  in Equation (10). The notation  I : M N M N   

denotes the approximated observation operator. 
Based on Equation (30), we are able to acquire the approximated observation-based CS-SAR 

model (named as CS-chirp scaling [10]) as follow: 

  2

1,1
min I

F
λ 

G
S G G . (31)

The aim of briefing the published research is to suggest a new phase error correction method, 
which will be formulated as follows and can achieve the phase error correction for approximated 
observation-based CS-SAR imaging. 

3.2. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging 

Thus far, we have derived the inexact (nominal) observation model, but the model error is still 
unknown. Thus, CS-SAR imaging models must be modified. Considering the 1D phase error models 
in Equations (24) and (25), the CS-SAR imaging models in Equation (28) using random-frequency 
waveform and in Equation (31) using LFM waveform will be modified as: 
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  
1

2

1 1,1,
min I

D
ε D F

λ 
G D

S D G G . (32)

The cost function is denoted by: 

   
2

1 1 1,1
J , ID ε D F

λ  G D S D G G  (33)

where the phase error 1DD  is written, referring to Equation (24), as: 

        
1 1 11 2

1 diag , , ,D D Djφ jφ jφ M
D e e eD  . (34)

By solving Equation (32), both the image and the 1D phase error can be jointly obtained. Using 
similar methods proposed in the [5,8], both the image and phase error are estimated by solving a two-
step optimization problem. In the first step, G  is estimated by minimizing the cost function 
Equation (33) using the given 1DD . In the second step, 1DD  is obtained by minimizing the cost 
function using the estimated G . By iteratively updating G  and 1DD  as described above, both the 
image and the 1D phase error can be jointly estimated. The algorithm flow is outlined as Algorithm 
1. Initially, let 

 
  

  
1 diag 1,1, ,1D

M

D  , (35)

i.e.,    1 0, 1,2, ,Dφ m m M . 

Algorithm 1. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging. 

Initialize: 0i  , 0
1 diag 1,1, ,1D    D   

Step 1: Image reconstruction  1
1argmin J ,i i

D
  GG G D  

Step 2: Phase error estimation  
1

1 1
1 1argmin J ,

D

i i
D D
  DD G D  

Step 3: Let 1i i   and return to step 1. 
Terminate when i  is equal to a preset threshold maxI . 

Steps 1 and 2 are the major steps of Algorithm 1. In Step 1, the image is reconstructed by the 
given phase error. The optimization problem is expressed as: 

 
  

1
1

2

1 1,1

argmin J ,

argmin I

i i
D

i
ε D F

λ

 

  

G

G

G G D

S D G G
 (36)

Since 1
i
DD  is a diagonal matrix, seen in Equation (34), Equation (36) can be rewritten as: 

  21
1 1,1

argmin Ii i
D ε F

λ   GG D S G G  (37)

Then, due to the linearity of I , we solve the optimization problem efficiently by iterative 
thresholding algorithm (ITA) [9,10,20]. Let 0 G 0 , and the optimal solution is obtained by using the 
iteration: 

   1
1, 1E M Ii i i i
λμ D εμ   G G D S G  (38)

where μ  is step size, which controls the convergence of the ITA. In Equation (38), 1,E λμ  is a 

thresholding operator, which is defined as: 
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 

     
     

     

 
 
 

  
 
 
 

1, 1,1 1, 1,2 1, 1,

1, 2 ,1 1, 2 ,2 1, 2 ,
1,

1, ,1 1, ,2 1, ,

E E E

E E E
E

E E E

λμ λμ λμ N

λμ λμ λμ N
λμ

λμ M λμ M λμ M N

G G G

G G G

G G G

G





  



 (39)

where soft-thresholding operator 1,E λμ  is analytically specified as: 

    
1,

sign , if ,
E

0, otherwise.λμ

x x λμ x λμ
x

  
 


 (40)

In the proposed method, we simply set 1μ   (
2

2
0 Iμ   [9]). With fixed parameter μ , the 

parameter λ  will depend on the sparsity parameter 0K . We set 
0 1K

λ μ


 G  (
0K

G  is the 0K -th 

largest component of G  in magnitude). 
In Step 2, the phase error is estimated by the reconstructed image. The optimization problem is 

expressed as: 

 
  

1

1

1 1
1 1

2
1 1

1 1,1

argmin J ,

argmin I

D

D

i i
D D

i i
ε D F

λ

 

 



  

D

D

D G D

S D G G
. (41)

Since 1

1,1

iλ G  is a constant, Equation (41) is rewritten as: 

 
1

2
1 1

1 1argmin I
D

i i
D ε D F

  DD S D G . (42)

From Equations (34) and (42), it is quite obvious that the data error of the m -th observation 
position is only related to  1Dφ m . Then, the optimization problem Equation (42) is divided into a 

set of independent optimization problems as follows: 

   
           

1

1

2
j1 1

1
2

argmin ID

D

φ mi i
D εφ m m m

φ m eS G  (43)

where notation 
m

   denotes the m -th row of the matrix. The phase error  1
1
i
Dφ m  and/or 

 1
1 ,i

D m mD  can be obtained as follows (the details can be found in the Appendix A): 

              
1 1

1 angle I
H

i i
D ε m m

φ m S G  (44)

Substituting Equation (44) into Equation (34), Step 2 of Algorithm 1 can be implemented 
straightforwardly. 

3.3. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging 

Considering the SAR imaging system using random-frequency waveform without narrow 
bandwidth approximation, the SAR imaging model (28) is modified as: 

   
1

2

1 1,1,
min I

W D
ε W D F

λ
G D

S D G G . (45)

The cost function is denoted by 

     
2

1 1 1,1
J , IW D ε W D F

λG D S D G G  (46)
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where 1
sM N

W DD   can be seen in Equation (18). By solving Equation (45), both the image and the 
weighted 1D phase error will be estimated jointly. The method is similar to Algorithm 1, and the 
algorithm flow is outlined in Algorithm 2. In the initialization, let 

 

 
 
  
 
 
  

1

1 1 1
1 1 1

ones ,

1 1 1

W D sM ND




  


, (47)

i.e.,    1 0, 1,2, ,W Dφ m m M . 

Algorithm 2. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging. 

Initialize: 0i  ,  0
1 ones ,W D sM ND  

Step 1: Image reconstruction  1
1argmin J ,i i

W D
  GG G D  

Step 2: Phase error estimation  
1

1 1
1 1argmin J ,

W D

i i
W D W D
  DD G D  

Step 3: Let 1i i   and return to step 1. 
Terminate when i  is equal to a preset threshold maxI . 

In Step 1, the optimization problem is expressed as: 

 
  
  







  

  

1
1

2

1 1,1

2

1 1,1

argmin J ,

argmin I

argmin I

i i
W D

i
ε W D F

i
W D ε F

λ

λ

G

G

G

G G D

S D G G

D S G G





. (48)

Let 0 G 0 , and use the iteration 

      1
1, 1E M Ii i i i
λμ W D εμG G D S G  (49)

Then, the optimization problem (48) is efficiently solved by the same method as Algorithm 1. 
In Step 2, the optimization problem is expressed as: 

 
  
 

 

 





  

 

1

1

1

1 1
1 1

2
1 1

1 1,1

2
1

1

argmin J ,

argmin I

argmin I

W D

W D

W D

i i
W D W D

i i
ε W D F

i
ε W D F

λ

D

D

D

D G D

S D G G

S D G





. (50)

From Equations (18) and (50), it can be seen that the data error of the m -th observation position 
is only related to  1W Dφ m . Then, the optimization problem in Equation (50) can also be divided into 

a set of independent optimization problems as follows: 

                 1

2
1 1
1 1

2
argmin exp j I

W D

i i
W D ε W Dφ m m m
φ m φ mS w G . (51)

The weight w , which is a priori knowledge, must be obtained before solving Equation (51). 
Equation (51) is an unconstrained optimization problem, which can be solved using gradient-based 
optimization method [8]. In Equation (51), there is only one unknown  1W Dφ m  to be estimated and 

it belongs to a real number. Hence, the optimal solution is able to be obtained by line search [21]. 
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3.4. Memory Cost 

The proposed method consists of a two-step optimization problem. In the first step, the image is 
reconstructed. In the second step, the phase error is estimated and compensated. The second step is 
divided into a set of independent optimization problems. Thus the biggest matrix will appear in the 
first step. There are some notations to be denoted as follows. M , N  and K  denote the number of 
azimuth samples, the number of range samples, and the number of scatterer points after discretizing 
the scene, respectively. The size of the sensing matrix in the phase error correction for exact 
observation based CS-SAR imaging is MN K  complex numbers, but the size of the matrix in the 
proposed method is M N  complex numbers. Therefore, the proposed method can reduce the 
memory cost and the hardware requirement significantly. 

3.5. Convergence 

The proposed method is achieved by calculating a two-step optimization problem. The cost 
function of 1D phase error correction or weighted 1D phase error correction for approximated 
observation-based CS-SAR imaging can be denoted as  J ,G D . 

In the first step,  1 argmin J ,i i  GG G D , and thus    1J , J ,i i i i G D G D . 

In the second step,  1 1argmin J ,i i  DD G D , i.e.,    1 1 1J , J ,i i i i  G D G D . 

Combining the two steps, there will be    1 1J , J ,i i i i  G D G D , and then the cost function 

 J ,G D  is a monotonous decrease function. Since  J , 0G D , the convergence of this process can 

be guaranteed. 

3.6. Computational Complexity 

In order to calculate the computational complexity, we have defined some notations, which are 
the number of azimuth samples M , the number of range samples N , the number of required 
iteration in the first step 1I , and the number of required iteration in algorithm maxI . 

In the first step, the image is reconstructed. This process is an iterative process. One-step iteration 
includes the calculations of imaging procedure, approximated observation procedure, and 
thresholding operation. Both imaging procedure and approximated observation procedure have the 
same computational complexity of  2logO MN MN   . The complexity of thresholding operator is 

order  O MN . Thus, the complexity of the first step is at the order  1 2logO I MN MN   . 

In the second step, the phase error is estimated and compensated. The optimal solution of the 
second step in Algorithm 1 can be analytically expressed. The complexity of this procedure is order 
 O MN . The optimal solution of the second step in Algorithm 2 is able to be obtained by line search. 

The complexity of this procedure is order  2O I MN , where 2I  denotes the number of iteration in 

line search. 
Based on the above exposition, the computational complexities of Algorithm 1 and Algorithm 2 

are at the order  max 1 2logO I I MN MN    and   max 1 2 2logO I MN I MN I   , respectively. 

4. Simulation and Experimental Results 

In this section, we will present a series of simulation and experimental results to verify the 
effectiveness of the proposed method. All experiments are performed using MATLAB R2015a on a 
PC equipped with an Intel Core i5-4590 CPU (3.30 GHz and 8 GB memory, University of Science and 
Technology of China, Hefei, China). 
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4.1. 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging 

4.1.1. Simulation Results 

The simulation parameters for the random-frequency waveform are shown in Table 1. We then 
choose a sparse imaging scene consisting of four-point scatterers, the positions of which are shown 
in Table 2. In order to make each observation position have the same data volume to estimate phase 
error, the random-frequency points are selected as follows: in one observation position, the frequency 
points are selected randomly from stepped-frequency points, and then this selecting scheme is 
utilized in each observation position. The raw data are first generated in the time domain by exact 
observation. Then, we add the Gaussian noise and the 1D phase error to the data. The signal-to-noise 
ratio (SNR) is 20 dB. Two types of phase error are 1D quadratic phase error and 1D random phase 
error. The 1D quadratic phase error is distributed in [−π/2, +π/2], and the 1D random phase error is 
uniformly distributed in [−0.8π, +0.8π]. 

Table 1. Simulation parameters for the random-frequency waveform. 

Paramater Value 
Center Frequency 5 GHz 
Bandwidth 512 MHz 
Frequency Interval 0.33 MHz 
Frequency Number 1536 
Pulse Time Interval 4 × 10−6 s 
Radar Velocity 50 m/s 
Azimuth Beam Width 4.3° 
Squint Angle 0° 
Scene Center Range 400 m 
Number of Sequences 98 
Number of Selected Frequencies 154 

Table 2. Target positions. 

 Azimuth (m) Range (m) 

Target 1 0 354.9 
Target 2 0.9 354.9 
Target 3 0 355.8 
Target 4 0.9 355.8 
Scene Center 0 400 

Figure 2 shows the phase error distribution and the imaging results for the random-frequency 
waveform. Figure 2a shows the results of the 1D quadratic phase error, and Figure 2b shows the 
results of the 1D random phase error. The top subfigures show the 1D phase error added to the raw 
data. The middle subfigures show the results of approximated observation-based CS-SAR imaging 
(named as CS-Omega-K [16,17]) without phase error correction. The bottom subfigures show the 
results of Algorithm 1. For both imaging methods, the approximated observation operator is acquired 
from the inverse of Omega-K algorithm, and the sparsity is set to 0 12K  , which determines the 
threshold of ITA. 

In the middle subfigures, the images of point targets are defocused in the azimuth direction due 
to the 1D phase error. In the bottom subfigures, the results show the effectiveness of Algorithm 1, 
which can correct the 1D phase error and focus the images better in the azimuth direction. 
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(a) (b) 

Figure 2. Results for the random-frequency waveform. (Top) 1D quadratic phase error and 1D 
random phase error. (Middle) Results of CS-Omega-K without phase error correction. (Bottom) 
Results of Algorithm 1. (a) Results for 1D quadratic phase error; and (b) results for 1D random phase 
error. 

Then, we conduct experiments to compare the performance of the proposed method with the 
existing method [8]. The SNR is 20 dB, and the extent of 1D random phase error is 0.1π . 

Figure 3 shows the imaging results of the proposed method and other existing methods. Figure 3a 
shows the reconstruction result without phase error correction. Figure 3b shows the reconstruction 
result with compensation of observation position errors [8]. Figure 3c shows the result of the 
proposed method (Algorithm 1). In Figure 3a, it can be seen that the 1D phase error will defocus the 
reconstructed image in the azimuth direction without phase error correction. Both the proposed 
method and the existing method can correct phase error and focus image better in Figure 3b,c, but 
the proposed method requires much less memory cost referring to Section 3.4. In the simulation of 
the proposed method, the numbers of azimuth samples and range samples are  98M  and 

1536N  , respectively. Thus, the size of the matrix in the proposed method is   98 1536M N  
complex numbers, and the memory requirement is 1.15 MB. In the simulation of the existing method, 
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the scene needs to be discretized, which is taken as 40 40 . Thus, the number of scatterer points 
after discretizing the scene is 1600K  . Therefore, the size of the matrix in the existing method is 

   98 1536 1600MN K  complex numbers, and the memory requirement is 1.79 GB. 

 
       (a)       (b) 

       (c) 

Figure 3. Imaging results of the different methods: (a) reconstruction result without phase error 
correction; (b) reconstruction result with compensation of observation position errors; and (c) 
reconstruction result of the proposed method (Algorithm 1). 

Next, we perform a series of one-point simulations for investigating the influence of the sparsity 
parameter 0K  and the noise size to the proposed algorithm. The imaging scene is composed of one 
point scatterer. Then, the target-to-background ratio (TBR) [5] can be used as a criterion to evaluate 
the performance of the proposed method conveniently. The TBR of a reconstructed image can be 
given as follows: 

  10

max
TBR 20 log

1
i T i

jj B
B

X

X
I





 
 
 
 
 
 


X  (52)

where T  and B  denote the pixel indices for the target and the background regions, respectively. 
BI  is the number of background pixels. 

The extent of 1D random phase error is varied from 0.2 , 0.2π π     to 0.5 , 0.5π π    . First, 

the sparsity parameter 0K  is changed from 3 to 11. The SNR is 20 dB. Second, we simulate the cases 
of different SNR from 0 dB to 30 dB. The sparsity parameter 0K  is set to 4. Other simulation 
parameters are the same as Table 1. 

Figure 4 shows the behavior of TBR values with respect to the sparsity parameter and the noise 
size, respectively. In Figure 4a, the TBR decreases with the increase of sparsity parameter. Therefore, 
exact prior knowledge can contribute to the choice of sparsity parameter positively. In Figure 4b, the 
TBR increases as the SNR increases. Note that there is an insignificant difference between different 
phase error sizes in the case of high SNR. 
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(a) (b) 

Figure 4. Imaging performance with respect to: the sparsity parameter (a); and the noise size (b). 

4.1.2. Experimental Results 

The RADARSAT-1 is a well-known satellite SAR using LFM waveform, and the raw data were 
collected on 16 June 2002 about Vancouver region. The experimental parameters for the LFM 
waveform are shown in Table 3 [9,12]. 

In the region of English Bay, there are four sparsely distributed vessels, thus the region is a 
typically sparse scene. Then, the proposed method (Algorithm 1) can be applied to reconstruction of 
the scene. First, the chirp scaling algorithm, which is one type of MF-based algorithm, is applied to 
reconstruction of the region of English Bay. Second, approximated observation-based CS-SAR 
imaging method (named as CS-chirp scaling [10]) without phase error correction is applied, where 
the approximated observation operator is acquired from the inverse of chirp scaling algorithm. We 
set the sparsity to  ，0 10 000K . Third, Algorithm 1 is utilized to reconstruct the scene, where the 
same approximated observation operator and the same sparsity are used. 

Table 3. Experimental parameters for the RADARSAT-1. 

Paramater Value 
Sampling Rate 32.317 MHz 
Range FM Rate 0.72135 MHz/μs 
Pulse Duration 41.74 μs 

Radar Center Frequency 5.300 GHz 
Pulse Repetition Frequency 1256.98 Hz 

Effective Radar Velocity 7062 m/s 
Azimuth FM Rate 1733 Hz/s 

Figure 5a,b shows the results of the three methods and the enlarged region, respectively. In the 
top subfigures of Figure 5, the chirp scaling algorithm reconstructs the scene with serious sidelobes. 
In the middle subfigures, it can be seen that CS-chirp scaling can suppress sidelobes and improve 
resolution. In the bottom subfigures, the reconstructed scene can be focused better in the azimuth 
direction. Thus, Algorithm 1 can not only suppress sidelobes, but also achieve phase error 
compensation. 
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(a) (b) 

Figure 5. Results for the LFM waveform. (Top) Results of MF-based algorithm (chirp scaling). 
(Middle) Results of CS-chirp scaling without phase error correction. (Bottom) Results of Algorithm 
1. (a) Application results on RADARSAT-1 (region of English Bay). (b) Detailed comparison on the 
selected area. 

We further use the image entropy [22] as a criterion to quantitatively evaluate the performance 
of the three methods. The entropy of an image is defined as follows: 

   2Entropy logi i
i

p p X  (53)

where ip  is the histogram of the recovered gray level image. 
The entropy values of the reconstructed images by the three methods are shown in Table 4. It 

can be seen that the proposed method (Algorithm 1) has a lower entropy, and thereby exhibits a 
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better performance of image reconstruction. In Table 4, there is no significant difference in entropy 
between CS-chirp scaling method and the proposed method (Algorithm 1), since the estimated phase 
error (shown in Figure 6) is not too large. The trajectory of the satellite is much more stable than that 
of an airplane, and thus the phase error is smaller. If the phase error arising from observation position 
uncertainties is large enough, there will be a significant difference. 

Table 4. Entropy values by different methods. 

 Chirp Scaling CS-Chirp Scaling Algorithm 1 

Entropy 1.94780 8.792 × 10−2 8.717 × 10−2 

 
Figure 6. 1D phase error estimation obtained by the proposed method in each aperture position. 

4.2. Weighted 1D Phase Error Correction for Approximated Observation-Based CS-SAR Imaging 

Furthermore, with narrow bandwidth approximation, the phase error of echo data along range 
time is constant for one observation position, which can be seen in Equation (34). However, considering 
the SAR imaging system using random-frequency waveform without narrow bandwidth 
approximation, the phase error of echo data along range time is different for one observation position, 
which can be seen in Equation (18). The number of unknowns for weighted 1D phase error model is 
also , which is the same as the 1D phase error model. The simulation parameters are the same as 
Table 1. We then set one point scatterer. The position of the target is shown in Table 5. The raw data are 
first generated in the time domain by exact observation. Then, we add the Gaussian noise and the 
weighted 1D phase error to the data. The SNR is 20 dB. Two types of phase error  1

1
M

W Dφ   are 

utilized in simulations. The extent of the error is 1 8  of the wavelength so that the weighted 1D 

quadratic phase error is distributed in 8 , 8π π    , and the weighted 1D random phase error is 

uniformly distributed in 8 , 8π π    . The weight  1 sNw   depends on the selected frequency 

points. 

Table 5. Target positions. 

 Azimuth (m) Range (m) 

Target 0 355.8 

M
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The imaging scene is composed of one point scatterer. Then, the TBR can also be used as a 
criterion to evaluate the performance of the two methods conveniently. 

The images are reconstructed by the two imaging methods with sparsity 0 5K  . TBR values of 
the reconstructed images by the Algorithm 1 and Algorithm 2 are listed in Table 6. It can be seen that 
the Algorithm 2 has a higher TBR than Algorithm 1, and thereby Algorithm 2 has a better 
performance. 

Table 6. TBR values by different methods. 

 Algorithm 1 Algorithm 2 Difference between Two Methods 

Quadratic phase error 1.2936 × 102 1.2947 × 102 0.11 
Random phase error 1.3149 × 102 1.3161 × 102 0.12 

For presenting the effect of the weight  1 sNw  , we change the frequency interval from 0.33 
MHz to 0.66 MHz, and then the bandwidth will be changed to 1024 MHz. Other simulation 
parameters are the same as Table 1. TBR values with larger frequency interval are given in Table 7. 
Comparing Table 6 with Table 7, it can be observed that there will be more significant difference 
under the case of the larger frequency interval. Accordingly, the weighted 1D phase error correction 
for CS-SAR imaging will be more effective in the case of large frequency interval. 

Table 7. TBR values by different methods with larger frequency interval. 

 Algorithm 1 Algorithm 2 Difference between Two Methods
Quadratic phase error 1.1562 × 102 1.1592 × 102 0.30 
Random phase error 1.1596 × 102 1.1628 × 102 0.32 

Further, we increase the extent of phase error and then conduct the simulations. The weighted 
1D quadratic phase error is distributed in    2 , 2π π , and the weighted 1D random phase error 

is uniformly distributed in    2 , 2π π . The simulation parameters are the same as Table 1. TBR 

values with a larger extent of phase error are shown in Table 8. Comparing Table 6 with Table 8, it 
can be observed that there is a more significant difference under the case with a larger extent of phase 
error. 

Table 8. TBR values by different methods with a larger extent of phase error. 

 Algorithm 1 Algorithm 2 Difference between Two Methods 

Quadratic phase error 1.0736 × 102 1.2967 × 102 22.31 
Random phase error 1.2698 × 102 1.3128 × 102 4.30 

5. Conclusions 

In this paper, we proposed a phase error correction method for approximated observation-based 
CS-SAR imaging. The proposed method yields a clear advantage in term of memory cost over 
conventional CS-based autofocus algorithms. The 1D phase error model, which can be conveniently 
utilized in autofocus technique without any a priori knowledge, is based on narrow bandwidth 
approximation. We also analyzed the inherent relationship between the geometric model and the 
phase error model in the case of random-frequency waveform. By incorporating a priori knowledge, 
the weighted 1D phase error model was proposed, which corrects the 2D phase error by estimating 
a 1D problem. The proposed weighted 1D phase error model is more precise than the 1D phase error 
model, thus has a better performance. 

Although the weighted 1D phase error correction method proposed in this work can be applied 
only in the case of random-frequency waveform rather than the LFM one, since different waveforms 
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have different geometry and signal models, it would be possible to apply the weighted 1D phase 
error correction to LFM waveform with appropriate modification, and this will be our future effort. 
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Appendix A 

In this appendix, we will derive Equation (44) from Equation (43). The optimization problem, 
Equation (43), is as follows: 

   
           

1

1

2
1 1

1
2

argmin ID

D

jφ mi i
D εφ m m m

φ m eS G  

For simplifying the notations, let     
1 N

ε m
a S  ,   1Dθ φ m  and      

11I Ni

m
b G  . 

Then, the cost function can be simplified as: 
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Since  arg max Re anglejθ H H
θ e   ab ab , the equation becomes 

 
2

2
arg min anglejθ H

θ e a b ab  

Finally, we can get 
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