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Abstract: Green WLAN is a promising technique for accessing future indoor Internet 

services. It is designed not only for high-speed data communication purposes but also for 

energy efficiency. The basic strategy of green WLAN is that all the access points are not 

always powered on, but rather work on-demand. Though powering off idle access points 

does not affect data communication, a serious asymmetric matching problem will arise in a 

WLAN indoor positioning system due to the fact the received signal strength (RSS) 

readings from the available access points are different in their offline and online phases. This 

asymmetry problem will no doubt invalidate the fingerprint algorithm used to estimate the 

mobile device location. Therefore, in this paper we propose a green WLAN indoor 

positioning system, which can recover RSS readings and achieve good localization 

performance based on singular value thresholding (SVT) theory. By solving the nuclear 

norm minimization problem, SVT recovers not only the radio map, but also online RSS 

readings from a sparse matrix by sensing only a fraction of the RSS readings. We have 

implemented the method in our lab and evaluated its performances. The experimental 

results indicate the proposed system could recover the RSS readings and achieve good 

localization performance. 
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1. Introduction 

Currently, wireless local area networks (WLANs) based on IEEE 802.11 are widely deployed in the 

indoor environment for mobile devices to access the internet. The high bandwidth, mobility and 

reliability provide users with a very convenient and economical data communication solution [1,2]. 

Thousands of access points are being deployed rapidly, not only in the offices and campuses, but also 

in airports and shopping malls throughout the world. In the meanwhile, due to its ubiquitous network 

architecture and no additional hardware requirements, the WLAN indoor positioning system based on 

received signal strength (RSS) has become the most popular option for indoor localization and 

navigation, as it offers the merits of relative measurement simplicity and minimal hardware 

requirements to provide a very beneficial supplement to the WLAN application. 

However, recent researches show that access points deployed in WLANs are seldom used at their 

peak capacity. The majority of the access points are frequently in idle status [3,4]. Therefore, in the 

wake of WLAN developments, the concept of green WLAN is proposed and analyzed to reduce power 

consumption while guaranteeing the overall performance of the network at the same time [3,5,6].  

On the other hand, IEEE has announced its standard to support power saving in WLANs [7]. Many 

world class network equipment companies, such as Cisco, are developing their new green product lines 

to support this work on-demand strategy. These definitely provide strong support for the 

implementation of green WLANs in the real world [8–10]. The basic idea of a green WLAN is a 

working on-demand strategy by centrally controlling the access points’ working status and powering 

off those ones which are in idle [11,12]. This strategy will no doubt contribute a lot for energy 

efficiency but also poses severe challenges for the green WLAN indoor positioning system.  

Generally, there are two types of RSS-based localization methods for WLAN indoor positioning 

systems. One is the radio propagation method, where RSS readings are collected to triangulate the 

mobile device location [13]. The other one is the fingerprint method, where a database pre-built in the 

offline phase called radio map is required to compare with the RSS readings collected in the online 

phase. For the fingerprint method, a popular solution is the use of statistical algorithms. Mobile device 

location is estimated by analyzing the probability of each location’s RSS readings based on Bayesian 

theory [14,15]. In particular [16,17] proposed a new n-gram augmented Bayesian method for room 

localization. The other one used for the fingerprint method is the decisive algorithm. The location of 

the mobile device is decided by comparing the Euclidean distances in RSS space, which is often 

referred as the k nearest neighbor (KNN) algorithm [18]. Though many novel algorithms have been 

proposed recently as candidates to improve the positioning performance, the most widely adopted one 

is the KNN algorithm, when the computational complexity and estimation accuracy are taken into 

consideration [19,20]. 

However, when the access points in a green WLAN are powered off randomly according to the data 

communication demands, the KNN algorithm is seriously challenged in both the offline phase and 

online phase by the working on-demand strategy. The immediate impact is that missing RSS readings 

from unavailable access points lead to the asymmetric matching for the RSS dimensions. Since the 

RSS readings stored in the radio map and collected in the online phase differ in dimensions, all the 

fingerprint algorithms will fail to provide the correct location estimation. Therefore, in this paper we 

propose to implement the singular value thresholding (SVT) theory to recover the missing RSS 
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readings both in the offline phase and online phase, which could help validate the KNN algorithm to 

provide localization estimations in green WLANs. 

SVT theory is derived from the matrix completion problem, which aims to recover an unknown 

matrix when only a fraction of its entries are known. Matrix completion is not ill posed if some 

constraints are satisfied [21]. It has already been applied in sensor networks, emitter tracking,  

etc. [22,23]. In the early stage, matrix completion mainly focused on the Euclidean distance matrix 

completion problem under the premise that the unknown matrix is simple and symmetric [24]. In the 

years that followed, several approaches were proposed to solve these problems by expressing it as a 

non-convex optimization problem, which makes use of the particle positions as variables by a modified 

Newton or quasi-Newton method [25]. Compared with the methods discussed above, the SVT theory is 

a novel technique, which is easy to implement and effective in computational cost and storage 

requirements. It considers the matrix completion as a convex relaxation of a rank minimization problem, 

and approximates the matrix with minimum nuclear norm among all matrices obeying a set of convex 

constraints [21]. The detailed tight analysis of the convex relaxation is analyzed and proved in [26]. 

The SVT theory employs the shrink iteration algorithm by carrying out the singular value 

decomposition on the unknown matrix. In each iteration step, a soft thresholding operation is 

performed to the singular value, and then followed by a projection onto the known entries [27,28]. 

Therefore, in this paper, we propose a green WLAN indoor positioning system using SVT theory.  

In the offline phase, the RSS readings are preprocessed to eliminate the outliers and additive white 

Gaussian noise. The radio map is implemented by a shrink iteration algorithm for recovery. In the 

online phase, we propose to combine the RSS readings with the recovered radio map together for 

recovery. After shrink iteration, RSS readings are then separated out and ready to estimate mobile 

device location based on the fingerprint algorithm. We have implemented the proposed indoor 

positioning system in a typical office environment. The experimental results demonstrate the feasibility 

and good performance of our proposed method. The remainder of this paper is organized as follows: 

Section 2 will analyse the WLAN indoor positioning system based on a fingerprint algorithm. Section 3 

will provide a detailed discussion on how the proposed method recovers the missing RSS readings in 

both the offline and online phases. Section 4 will investigate the performances of the proposed system. 

Finally, the conclusions will be drawn in Section 5. 

2. WLAN Indoor Positioning System 

A typical WLAN indoor positioning system involves an offline phase and an online phase. The 

main task of the offline phase is to build a radio map, which is a template to bridge RSS readings and 

known locations. For the online phase, mobile devices collect RSS reading vectors to estimate their 

locations based on a fingerprint algorithm. 

2.1. Fingerprint Algorithm 

The fingerprint algorithm is one of the RSS-based localization techniques used in WLAN indoor 

positioning systems. In the offline phase, a database called radio map is pre-built. It includes large 

numbers of reference points, whose locations and corresponding RSS readings are known. Usually, 

reference points should be carefully set to describe the indoor electromagnetic environment as 
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precisely as possible. In the online phase, mobile devices hence could estimate their locations by 

comparing the similarity between the online RSS readings and the RSS readings stored in the radio map. 

Supposing there are m access points and n  reference points in the localization area. Let a RSS 
reading stored in radio map be denoted as { : 1,..., ; 1,..., }ij i m j nψ = =  (in dBm scale), and its 

corresponding location is ( , )j jx y . Apparently, the element ( , )j jx y  could be easily expanded into a 3D 

scenario if altitude is included, but for the brevity of discussion, we ignore the altitude and merely 
consider the 2D scenario. In the online phase, a vector of RSS reading 1ˆ m ×ψ∈  is collected, and then 

a comparison is processed for further estimating the mobile device location. According to the KNN 

algorithm, the estimation is based on the RSS Euclidean distance: 

2
ˆ   1, ,j jd j n= ψ − ψ ∀ =   (1)

where 2|| ||⋅  is 2l  norm operator, jd  is the RSS Euclidean distance, and jψ  is the RSS vector in the 

radio map, which we will discuss later. 
Then K (K > 1) reference points with the smallest jd  are chosen to estimate the mobile device 

location ˆ ˆ( , )x y  by averaging the known locations of these reference points ( , )j jx y  as follows: 

( ) ( )
1

1
ˆ ˆ, ,

K

i i
i

x y x y
K =

=   (2)

In conclusion, we could see that radio map plays a key role in the WLAN indoor positioning 

system. It bridges the relation between the locations and RSS readings to assist the mobile device to 

make a proper location estimation. 

2.2. Radio Map Overview 

As discussed above, we could see that radio map generally contains two pieces of information: the 

reference point’s known location and its corresponding RSS readings. Let 1n ×∈L   be the known 

locations denoted as: 

( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y=   L   (3)

Suppose m n×∈Ψ   to be the RSS part of radio map: 
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   


 

(4)

where ijψ  is the average of RSS readings from the i-th access point at the j-th reference point. Actually, 

each column in Equation (4) is a vector representing RSS readings collected at each reference point as 

we discussed in Equation (1). It could be denoted as: 

1 2, , ,   1, ,j j j mj j n ψ = ψ ψ ψ ∀ = 
T

   (5)

where ( )⋅ T  is the matrix transposition operator. Then radio map could be generally expressed as: 
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RadioMap , =  
TT TL Ψ  (6)

Usually, RSS readings stored in the radio map are in terms of average values but not the 

instantaneous values, which means they are a statistical value obtained over a period of time. This is 

because the average value could better represent the indoor electromagnetic environment by reducing 

channel additive white Gaussian noise, and in addition it could provide operation convenience for the 

online phase. However, care should be taken to eliminate the effects of RSS variations when averaging 

the RSS readings. Relative orientation of the mobile device antenna towards access point should also 
be considered due to its significant impact on RSS readings. Suppose ij

θψ  is a sample of RSS reading, 

where θ∈Θ = {0°, 90°, 180°, 270°}, and the average of the vector is ij
θψ . Figure 1 illustrates an example 

of 100 samples of measured RSS readings. 

(a) (b) 

(c) (d) 

Figure 1. An example of RSS readings collection when mobile device is oriented in different 

directions (100 samplings for each figure). (a) 0θ = ° ; (b) 90θ = ° ; (c) 180θ = ° ; (d) 270θ = ° . 

In order to eliminate the orientation problem, [19] proposed to store these vectors in the radio map. 

This is a good method to ensure the orientation diversity but will no doubt enlarge the radio map and 

increase the extra calculation burden according to Equation (1). In order to reduce the computational 

complexity, we average the RSS readings from all the orientations in this paper. 

On the one hand, RSS readings are affected severely by the channel multipath fluctuations, such as 

pedestrians passing, doors opening and closing, which lead to randomly generated outliers, as shown in 

Figure 2a. If these outliers are averaged with the raw RSS readings, they will inevitably introduce extra 

noise into the radio map, and degrade the localization performance in the online phase, so it is 

necessary to preprocess and diagnose the raw RSS reading to remove these measurement errors. An 

example is shown in Figure 2b. 
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There are many algorithms that could filter these outliers out of the raw RSS readings. In this paper 

we utilize a very practical method by removing these outliers whose RSS are greater than three times 

the standard deviation of the raw RSS readings. Suppose the standard deviation of RSS readings is ij
θφ , 

and any sample of RSS reading ij
θψ  will be eliminated if the inequality | | 3ij ij ij

θ θ θψ − ψ > φ  is satisfied. 

Therefore, the average of RSS reading stored in the radio map for the i-th access point at the j-th 

reference point is defined as: 

{ }

4

1

1, , ; 1 ,

s.t. | | 3 0 ,90 ,180 ,270

ij ij
o

ij ij ij

i n j mθ

θ θ θ

ψ ψ

ψ ψ φ θ
=

= = =

− ≤ ∈Θ =


   

 
 (7)

In conclusion, once the radio map is built, we could implement the fingerprint algorithm to estimate 

the localization of the mobile device, but all these processes are under the premise that all access 

points are powered on. In the next section, we will discuss the green WLAN scenario. 

(a) (b) 

Figure 2. Filtering implementation to eliminate outliers from raw RSS readings  

(100 samples in the raw RSS readings and 2 of them are eliminated). (a) Raw RSS 

readings; (b) Filtered RSS readings. 

3. Matrix Completion in a Green WLAN 

The previous section discusses the traditional WLAN indoor positioning system. Now we will 

investigate the green WLAN scenario. As we stated above, we know the known locations of reference 

point could be obtained very easily, so that we would focus on the more complex part of the radio map. 

For the brevity of discussion, we will call the RSS part of the reference points directly as radio map 

here and in the following discussions. 

3.1. Samples of RSS Reading Missing 

It is well known that building a radio map is a very time consuming task. Usually, RSS readings are 

collected in different periods of time. Figure 3 illustrates a desired radio map built or increased in 

different times step by step. Here we utilize the graphical representation method to exhibit the radio 

map, which has the same meaning as the definition in Equation (4). The number of the columns is 

equal to the number of reference points, and so it has the same number of rows as the number of access 

points. Each entry value is expressed in colors, where dark red means the RSS reading is very strong, 

1 10 20 30 40 50 60 70 80 90 100-90

-80

-70

-60

-50

-40

-30

-20

R
SS

(d
B

m
)

Samples

Outliers Max = -28 dBm
Min  = -88 dBm
Average = -36.08 dBm
Variance=  7.696 dBm

1 10 20 30 40 50 60 70 80 90 100-90
-80
-70
-60
-50
-40
-30
-20

R
S

S
(d

B
m

)

Samples

Max = -28 dBm
Min  = -49 dBm
Average = -35.14 dBm
Variance=  3.917 dBm



Sensors 2015, 15 1298 

 

 

and dark blue means just the reverse. The time bar shows that it takes six periods of time to complete 

collecting RSS readings for the entire localization area. 

Due to the fact mobile diversity will introduce noise into the radio map, we assume the offline and 

online RSS reading are recorded by the same mobile device in this paper, not only for the brevity of 

discussion but also for the practice of implementation as what the traditional WLAN indoor 

positioning system does. It is worth noticing that, compared with the online phase RSS recording, the 

radio map built in offline phase will significantly affect the experiments results, which we will discuss later. 

 

Figure 3. The desired radio map in WLAN positioning system. 

Generally, the access point is unavailable for mobile devices when one of the following two cases 

happens. One is when the signal is blocked by walls and doors, and the other is when the access points 

are powered off based on the working on-demand strategy, when either of these cases occurs, the mobile 

device would sense no signal. We show this in Figure 4a, where the grey color means no RSS reading is 

obtained. We call these entries without value the holes. Conventionally, these holes are filled arbitrarily 

with a constant value (such as −100 dBm) in order to enable the fingerprint algorithm, where Figure 4b 

shows the filled radio map. For the online phase, the RSS readings are also implemented in the same way. 

 
(a) 

Figure 4. Cont. 
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(b) 

Figure 4. Radio map in green WLAN positioning system. (a) Radio map with holes due to 

no RSS reading sensed; (b) Holes are filled arbitrarily with −100 dBm. 

Missing RSS readings will directly cause the asymmetric matching problem between the offline 

phase and online phase, and lead to the failure of the fingerprint algorithm. According to Equation (1), 

KNN searches through the radio map to get the Euclidean distance between RSS readings online and 

those stored in the radio map. If any entry is missing, the location of the mobile device will fail to be 

estimated. It is worth pointing out that we could not ignore these access points with RSS missing 

readings and use the rest of the available access points to calculate the Euclidean distance. This is 

because the RSS Euclidean distance comes from different access points, in consideration of the fact 

RSS readings are missing randomly in the radio map and each of the RSS vectors may have different 

dimensions as Figure 4a shows. Furthermore, we should know that filling the missing RSS readings 

with constant values (such as −100 dBm) which happens in the conventional methods will seriously 

reduce the localization performance, which we will discuss in our implementations result in Section 4.2. In 

order to guarantee the feasibility of the fingerprint algorithm in the green WLAN, these missing RSS 

readings should be carefully and properly recovered. 

3.2. Matrix Completion for Offline Phase 

SVT theory is an effective technique for matrix completion. It aims to recover an unknown matrix 

with a very limited number of entries available under two premises, random observation and low rank. 

For the former, the matrix completion could not be tolerated with all the entries missing in one column 

or row. For the latter, the premise of low rank (or approximate low rank) is required so that the matrix 

can be recovered exactly by solving a simple convex optimization problem [29]. In a green WLAN, the 

access point working status changes randomly makes RSS readings be missing randomly. In addition, 

reference points usually outnumber access points in a WLAN indoor positioning system, which makes 

it true that the radio map is a low rank or approximate low rank matrix. We hence could conclude that 

both of the constraints are well satisfied in the scenario of concern. 
Suppose the desired radio map (without any holes) is m n×∈Ψ , with its entry ijψ  defined in  

Equation (7). We sense a fraction of the RSS readings { : ( , ) }ij i jψ ∈Ω  from Ψ  in the green WLAN, 

where sensedΨ  is a subset of Ψ  as shown in Figure 4a. Matrix completion by SVT is able to recover Ψ  

 



Sensors 2015, 15 1300 

 

 

from sensedΨ  as precisely as possible, and we could model this scenario as a convex relaxation of a rank 

minimization problem defined as follows: 

sensed

sensed

min

s.t. ( , )ij ij i j

∗

ψ = ψ ∀ ∈

 Ψ

Ω
 (8)

where || ||∗⋅  is the nuclear norm. And the problem could also be expressed as: 

sensed

sensed

min

s.t. ( )P
∗

=
 Ψ
Ψ Ψ

 (9)

where the projection operator ( )P   vanishes those entries outside of sensedΨ : 

if ( , )
( )

0 if ( , )

ij i j
P

i j

ψ ∈
= 

∉

Ω
Ψ

Ω
 (10)

The SVT theory solves the nuclear norm minimization as stated above in Equation (9) by 

implementing the shrink iteration: 

1
sensed

1
sensed

( , )

( )

k k

k k

shrink

P

−

−

 = τ


= + δ −

Y

Y Y

Ψ

Ψ Ψ
 (11)

where k is the iteration step number. 

The iteration step size δ can be any real number but under the condition 0 < δ < 2 for the 

convergence purpose based on SVT theory. We here set δ = 1.2 m/(m − 1). This means the quantity of 

access points m should be more than 3, which is a reasonable assumption in a real WLAN environment.  
τ is the shrink operator threshold, which is suggested to be set at 1 25( )mn −  in [21] according to the 

iterative Lanczos algorithm. The Lanczos algorithm computes the singular values and singular vectors 

directly by using the Lanczos bidiagonalization algorithm with partial reorthogonalization.  

Y  is a temporary matrix, which always remains sparse in each iteration in Equation (11) due to 

sensed sensed( ) ( ) ( )kP P P− = −Ψ Ψ Ψ Ψ . In other word, the iteration for kY  only updates those sensed RSS 

readings { : ( , ) }ij i jψ ∈Ω , and implements the shrink operation on other unsensed entries 

{ : ( , ) }ij i jψ ∉Ω  for matrix completion by setting a threshold to the singular values: 

1, ,
( , ) diag[max(0, )]i

i r
shrink

= ⋅⋅⋅
τ = σ − τY U V  

(12)

where U  and V  are respectively left and right singular value vectors of Y , 1 2 0rσ ≥ σ ≥ ⋅⋅⋅ ≥ σ >  are 

the ordered singular values, diag[·] is a diagonal matrix with the diagonal entries given in the argument 

of the operator. 

The temporary matrix Y  is initialized by: 
0

0 sensed( )k P= δY Ψ  (13)

where 0k  is defined as: 

0
sensed F

k
 τ=  δ  Ψ

 (14)
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where F|| ||⋅  is the Frobenius norm, and the operator ⋅    rounds the element to the nearest integer 

greater than or equal to it. 
We can obtain the optimal solution sensed

kΨ  as the recovered radio map until the shrink iteration 

stops when the following condition is satisfied: 

sensed F

F

( )

( )

kP

P

−
< ε

Ψ Ψ

Ψ
 (15)

where ɛ is the tolerance error. We set it as 10−4 for shrink iteration stop condition.  
In the end of the operation, if ijψ  is smaller than −100 dBm due to the shrink iteration operation, it 

is necessary to adjust them as: 

if  100dBm

100dBm if  100dBm

ij ij

ij
ij

ψ ψ > −ψ = − ψ ≤ −
 (16)

3.3. Matrix Completion for Online Phase 

The online RSS readings will also suffer access points are unavailable. As we stated in Section 2.1, 

the ideal RSS reading in the online phase jψ  is a vector shown in Figure 5a, when all of the access 

points are powered on and the mobile device could precisely sense their RSS readings. In this case, the 

dimension of jψ  is compatible with the radio map which we obtained in the offline phase. However,  

in a green WLAN scenario, the actual collected online RSS reading is unfortunately the one shown in 

Figure 5b, where some of its entries are unavailable and arbitrarily filled with −100 dBm. Figure 5c 

illustrates the filled online RSS readings. 

(a) (b) (c) 

Figure 5. An example of RSS reading collected in green WLAN, where some RSS reading 

vector missing its entry value in the online phase. (a) Ideal RSS vector; (b) Sensed RSS 

vector; (c) Recorded RSS vector. 

This filling process will no doubt degrade the localization performance. In order to recover the 

online RSS reading, we propose to combine the online vector with the recovered radio map to form  
a new matrix ( 1)

sensed
m n× +′ ∈Ψ . Apparently, the online RSS vector could be inserted between any  
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two columns of the radio map. For the brevity of discussion, we assume that the online RSS reading 

vector is inserted in the last column shown in Figure 6. 

 

Figure 6. An example of recovering the online RSS reading vector. 

Since the new matrix sensed′Ψ  is also satisfied with the two constraints, which are random 

observation and low rank, we could implement the shrink iteration on the new matrix sensed′Ψ  for 

recovery. The calculation flow is the same as we have discussed in Section 3.2. Once the sensed′Ψ  is 

recovered, the last column of sensed′Ψ  is the recovered RSS readings for the online phase. 

4. Implementation and Performance Analysis 

So far, we have discussed the SVT theory to make it possible that RSS readings both in the offline 

phase and online phase are free from the problems caused by the working on-demand strategy in a 

green WLAN. In this section, we will provide a detailed evaluation of the proposed method. 

4.1. Experiment Environment 

The experiment environment we build is located in our lab, which is a typical office environment in 

Building 2A of the Harbin Institute of Technology Science Park. The floor plan for the experiment is 

shown in Figure 7, In order to provide a signal full coverage, 27 access points (Linksys WRT54G) 

with IEEE 802.11b/g mode are deployed on top of each room door. The area of interest for localization 

is the corridor with 49.4 m in length and 14.1 m in width, and it is illustrated with yellow color. 

In our experiment, we divide the corridor into several grids of 0.5 m × 0.5 m, which means the 

interval between any two adjacent reference points is 0.5 m. There are 823 references points in total, 

which are marked in Figure 8 with little red crosses. We use a laptop (Lenovo V450) as the mobile 

device to collect RSS readings both in the offline phase and online phase. At each reference point, we 

collected 100 samples of RSS reading for each orientation at 2 Hz sampling rate, so that 400 samples of 

RSS reading per reference point are collected as the raw RSS readings. 
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Figure 7. Floor plan for indoor localization, where the area colored in yellow is used for testing. 

 

Figure 8. Illustration of reference points distribution in the interesting area for localization. 

We first filtered the raw RSS readings based on the discussion in Section 2.2. Then 10 samples from 

the filtered data in each of the orientation are randomly chosen and averaged as the online RSS 

readings. This means we have also 823 samples of RSS readings for the online phase. The rest of RSS 

readings are averaged based on Equation (7) to build the radio map. The actual radio map we got is 

shown in Figure 9a. The legend bar in colors is in dBm scale. Based on the floor plan, it is easy to tell 

that the RSS readings are collected anticlockwise step by step, starting from the top left corner and 

ending in the top right corner. In order to provide a more general case, we suppose radio map is built and 

increased according to the localization requirements. We assume radio map is built in 20 periods of 

time, and in each period about 40 adjacent reference points are measured. The columns of radio map 

are randomly realigned in group of 40 adjacent columns. Figure 9b shows the realigned radio map. 

From here and in the sequel, all the experiment analysis will base on this assumption. 
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(a) (b) 

Figure 9. The columns of the radio map are randomly realigned to simulate the scenario 

that radio map is increased with more interested area for localization requirement.  

(a) Original radio map; (b) Realigned radio map. 

4.2. Radio Map Recovery 

In order to simulate the working on-demand strategy in green WLAN, we suppose there are five 

access points randomly powered off for power conservation when we built the radio map. Figure 10 

illustrates some of the RSS readings are unavailable and holes appear in the radio map. 

 

Figure 10. Radio map with five access points are powered off randomly. 

According to SVT theory, the sensed radio map is subject to low rank and random observation, so that 

the desired radio map as shown in Figure 9b could be recovered from the one shown in Figure 10 by 

implementing the shrink iteration. And the recovered result is provided in Figure 11. 

 

Figure 11. Recovered radio map by SVT when five access points powered off randomly 
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However, as we stated above, though the SVT theory is able to recover the radio map with holes as 

precisely as possible, it also introduces recovery errors into the recovered radio map, which is shown 

in Figure 12. From this figure, we could see that most of the recovery errors introduced to the sensed 

radio map by SVT theory are around ±5 dBm. For those missing entries, most of the recovery errors are 

around ±10 dBm. 

 

Figure 12. Radio map recovery error between the recovered one and the ideal one. 

In order to test the proposed system, we simulate three scenarios for comparison. We implement the 

KNN algorithm based on Equations (1) and (2), and temporally suppose the online RSS readings are 

free from suffering RSS missing in all these three scenarios. The first scenario is the traditional 

WLAN, which means all the access points are powered on and available as shown in Figure 9b. The 

second scenario is the green WLAN and the radio map is recovered by the SVT theory as shown in 

Figure 11. The third scenario is the missing entries are arbitrarily filled with −100 dBm. Figure 13 

provides the details of simulation results for random powering off 5, 10, 15 and 20 access points, 

respectively, in the green WLAN. 

 

Figure 13. Localization error comparisons for 5, 10, 15 and 20 access points randomly off. 

It is concluded that the proposed system makes a very good recovery from the radio map with holes 

when a small number of the access points are closed, compared with the one filled with a random value.  

In the meanwhile, Figure 13 also shows that with more access points closing randomly, the RSS recovery 

performance of SVT decreases. For the 20 powered off access points scenario, the error is 
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unacceptable for indoor localization applications. The number of access points powered off reflects the 

percentage of the sensed RSS readings from a different perspective. Based on the experimental results, 

we suggest that the sensed RSS readings in the radio map should not be less than 40%. 

In order to overview a much clearer comparisons for radio map recovery by SVT based on Figure 13, 

we illustrate the radio map recovery results and their recovery error in Figure 14. From these figures, 

we could predict that with the low data communication requirements in a green WLAN, more access 

points will be powered off. This will no doubt achieve more energy conservation, however, it will lead 

to worse performance of the radio map. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 14. Radio map recovery error in different cases of access points powered off.  

(a) Sensed radio map (10 access points off); (b) Recovery Error (10 access points off);  

(c) Sensed radio map (15 access points off); (d) Recovery Error (15 access points off);  

(e) Sensed radio map (20 access points off); (f) Recovery Error (20 access points off). 

The recovery error is only one of the factors that will affect the localization performance. Noises are 

also inevitably important factors. These noise are various, which may be generated from mobile device 

diversity, complexity of the environment for RSS reading collection, such as temperature, humidity, 

and signal blocking by humans walking, doors and windows opening, etc. Now we will test how the 

 

 

1 100 200 300 400 500 600 700 800

1

5

10

15

20

25
-130
-110
-90
-70
-50
-30
-10
10
30
50
70

 

 

1 100 200 300 400 500 600 700 800

1

5

10

15

20

25
-130
-110
-90
-70
-50
-30
-10
10
30
50
70

 

 

1 100 200 300 400 500 600 700 800

1

5

10

15

20

25
-130
-110
-90
-70
-50
-30
-10
10
30
50
70



Sensors 2015, 15 1307 

 

 

radio map will affect the localization results. We suppose the desired radio map is m n×∈Ψ , and the 

one with noise is m n×∈Ψ  . Then we have: 

Ψ = Ψ + n  (17)

where n  is the noise matrix with zero means representing those noise we discussed above. Figure 15 

provides the average localization performance for the desired radio map and the radio map with noise. 

We suppose there is no hole in the online RSS readings to explain how the radio map built offline affects 

the results. We could clearly see from this figure that the radio map plays a core role in the localization 

system. If the radio map is not well built or recovered in the offline phase, the localization performance 

will be seriously degraded. 

 

Figure 15. Localization performance affected by radio map. 

4.3. Online RSS Reading Recovery 

As discussed in Section 3.3, the online RSS readings will also suffer from the missing RSS problem 

due to the working on-demand strategy used in a green WLAN. Our proposed algorithm will recover it 

by combining both the online RSS readings and offline RSS readings together, and then recovering it 

based on a shrink iteration algorithm.  
Since we recover the radio map, the combined matrix sensed′Ψ  will have almost all the entries except 

the column where the online RSS reading suffers some entries missing. Figure 16a shows the example 

where 823 RSS readings are collected in the online phase, where we also suppose there are five access 

points powered off randomly. Then each column is combined with the radio map as shown in Figure 11 

and recovered by the SVT theory. After processing 823 times, Figure 16b shows the recovery results. 

In the next step, we will test the localization performance with the recovered online RSS readings. 

The radio map we utilized is the recovered one as shown in Figure 11, which is a more rigorous criterion. 

The localization method is the KNN algorithm as we discussed in Section 2.1. 
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(a) (b) 

Figure 16. Online RSS reading vector recovery (for 5 access points randomly powered 

off). (a) Sensed online RSS reading vectors; (b) Recovered online RSS reading vectors. 

The localization performance is shown in Figure 17, which is quite good as expected comparing 

with the results shown in Figure 13. We could see that the recovered online RSS reading vectors 

outperform those filled with −100 dBm, and its performance is quite close to the ideal one. 

 

Figure 17. Localization performance for online RSS vectors recovery based on SVT theory. 

5. Conclusions 

In this paper, we have proposed an RSS-based indoor positioning system in a green WLAN using 

SVT theory to recover the missing RSS readings for both the offline phase and online phase. A green 

WLAN employs s working on-demand strategy, where access points will be powered off according to the 

data communication demands. This strategy would inevitably invalidate the fingerprint algorithm used 

to estimate the mobile device location due to different RSS readings omission in the offline and online 

phase. We modeled the missing RSS readings as a convex relaxation of a rank minimization problem. 

Based on this assumption, we propose to utilize a SVT shrink iteration to recover the radio map with 

part of the available RSS readings. For the online RSS readings, we propose to combine it together with 

the radio map, and then utilize the SVT theory for recovery. We tested the proposed system in a typical 

office environment, and the experiment results shows this could make the recovered radio map achieve 

an acceptable localization performance, even when 60% (fifteen of twenty seven) access points are 

unavailable. However, if more access points could not be sensed, the proposed system will introduce 

large errors into the recovered radio map, which will seriously degrade the localization performance. 
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For the online phase RSS readings recovery, the feasibility and performance are also tested. The 

proposed system could achieve almost the same performance and outperform the conventional method. 
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