Phenotypic and Genetic Diversity of Chickpea (Cicer arietinum L.) Accessions from Kazakhstan
Abstract
1. Introduction
2. Materials and Methods
2.1. The Collection and Field Experiments
2.2. DNA Extraction and SSR Genotyping
2.3. Statistics, Genetic Diversity, and Population Analysis
3. Results
3.1. Phenotypic Diversity of Chickpea Collection
3.2. Genotyping and Genetic Diversity of the Collection
3.3. Population Structure of Collection
4. Discussion
4.1. Phenotypic Diversity of Germplasm from Kazakhstan
4.2. Genetic Diversity and Population Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CV | Coefficient of variation |
FPH | First pod’s height |
NFN | Number of fertile nodes |
NMSP | Number of main stems per plant |
NSP | Number of seeds per plant |
PH | Plant height |
PIC | Polymorphism information content |
HSW | 100-seed weight |
YP | Seed yield per plant |
References
- Zhang, J.; Wang, J.; Zhu, C.; Singh, R.P.; Chen, W. Chickpea: Its Origin, Distribution, Nutrition, Benefits, Breeding, and Symbiotic Relationship with Mesorhizobium Species. Plants 2024, 13, 429. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef]
- Istanbuli, T.; Alsamman, A.M.; Al-Shamaa, K.; Abu Assar, A.; Adlan, M.; Kumar, T.; Tawkaz, S.; Hamwieh, A. Selection of high nitrogen fixation chickpea genotypes under drought stress conditions using multi-environment analysis. Front. Plant Sci. 2025, 16, 1490080. [Google Scholar] [CrossRef]
- Akchaya, K.; Parasuraman, P.; Pandian, K.; Vijayakumar, S.; Thirukumaran, K.; Mustaffa, M.R.A.F.; Rajpoot, S.K.; Choudhary, A.K. Boosting resource use efficiency, soil fertility, food security, ecosystem services, and climate resilience with legume intercropping: A review. Front. Sustain. Food Syst. 2025, 9, 1527256. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data (accessed on 18 June 2025).
- Bureau of National Statistics of the Agency for Strategic Planning and Reforms of the Republic of Kazakhstan. Available online: https://stat.gov.kz/en/ (accessed on 18 June 2025).
- Almaganbetov, N.; Grigoruk, V. Degradation of soil in Kazakhstan: Problems and challenges. In Soil Chemical Pollution, Risk Assessment, Remediation and Security; Springer: Dordrecht, The Netherlands, 2008; pp. 309–320. [Google Scholar]
- Serekpayev, N.; Popov, V.; Stybayev, G.; Nogayev, A.; Ansabayeva, A. Agroecological aspects of chickpea growing in the dry steppe zone of Akmola region, Northern Kazakhstan. Biosci. Biotechnol. Res. Asia 2016, 13, 1341. [Google Scholar] [CrossRef]
- Subedi, M.; Naiker, M.; du Preez, R.; Adorada, D.L.; Bhattarai, S. Evaluation of Kabuli Chickpea Genotypes for Tropical Adaptation in Northern Australia. Agriculture 2024, 14, 1851. [Google Scholar] [CrossRef]
- Saxena, M.S.; Bajaj, D.; Kujur, A.; Das, S.; Badoni, S.; Kumar, V.; Singh, M.; Bansal, K.C.; Tyagi, A.K.; Parida, S.K. Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 2014, 9, e107484. [Google Scholar] [CrossRef]
- Vishnyakova, M.A.; Burlyaeva, M.O.; Bulyntsev, S.V.; Seferova, I.V.; Plekhanova, E.S.; Nuzhdin, S.V. Chickpea landraces from centers of the crop origin: Diversity and differences. Selskokhozyaistvennaya Biol. 2017, 52, 976–985. [Google Scholar] [CrossRef]
- Toker, C. A note on the evolution of kabuli chickpeas as shown by induced mutations in Cicer reticulatum Ladizinsky. Genet. Resour. Crop Evol. 2009, 56, 7–12. [Google Scholar] [CrossRef]
- Sokolkova, A.; Bulyntsev, S.V.; Chang, P.L.; Carrasquilla-Garcia, N.; Igolkina, A.A.; Noujdina, N.V.; von Wettberg, E.; Vishnyakova, M.A.; Cook, D.R.; Nuzhdin, S.V.; et al. Genomic analysis of Vavilov’s historic chickpea landraces reveals footprints of environmental and human selection. Int. J. Mol. Sci. 2020, 21, 3952. [Google Scholar] [CrossRef]
- Akinlade, O.J.; Voss-Fels, K.; Costilla, R.; Kholova, J.; Choudhary, S.; Varshney, R.K.; Hickey, L.T.; Smith, M.R. Designing chickpea for a hotter drier world. Euphytica 2022, 218, 100. [Google Scholar] [CrossRef]
- Singh, M.; Malhotra, N.; Singh, K. Broadening the genetic base of cultivated chickpea following introgression of wild Cicer species-progress, constraints and prospects. Genet. Resour. Crop Evol. 2021, 68, 2181–2205. [Google Scholar] [CrossRef]
- Harish, D.; Pappula Reddy, S.P.; Kumar, N.; Bharadwaj, C.; Kumar, T.; Parida, S.; Patil, B.S.; Kumar, S.; Jain, P.K.; Kumar, Y.; et al. Integrating multilocus genome-wide association studies in chickpea landraces to discern the genetics of drought tolerance. Front. Sustain. Food Syst. 2024, 8, 1389970. [Google Scholar] [CrossRef]
- Arriagada, O.; Cacciuttolo, F.; Cabeza, R.A.; Carrasco, B.; Schwember, A.R. A comprehensive review on chickpea (Cicer arietinum L.) breeding for abiotic stress tolerance and climate change resilience. Int. J. Mol. Sci. 2022, 23, 6794. [Google Scholar] [CrossRef] [PubMed]
- Jha, U.C. Current advances in chickpea genomics: Applications and future perspectives. Plant Cell Rep. 2018, 37, 947–965. [Google Scholar] [CrossRef]
- Parween, S.; Nawaz, K.; Roy, R.; Pole, A.K.; Venkata Suresh, B.; Misra, G.; Jain, M.; Yadav, G.; Parida, S.K.; Tyagi, A.K.; et al. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci. Rep. 2015, 5, 12806. [Google Scholar] [CrossRef]
- Ruperao, P.; Chan, C.K.K.; Azam, S.; Karafiátová, M.; Hayashi, S.; Čížková, J.; Saxena, R.K.; Šimková, H.; Song, C.; Vrána, J.; et al. A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnol. J. 2014, 12, 778–786. [Google Scholar] [CrossRef]
- Kujur, A.; Bajaj, D.; Upadhyaya, H.D.; Das, S.; Ranjan, R.; Shree, T.; Saxena, M.S.; Badoni, S.; Kumar, V.; Tripathi, S.; et al. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front. Plant Sci. 2015, 6, 162. [Google Scholar] [CrossRef]
- Sari, D.; Sari, H.; Ikten, C.; Toker, C. Genome-wide discovery of di-nucleotide SSR markers based on whole genome re-sequencing data of Cicer arietinum L. and Cicer reticulatum Ladiz. Sci. Rep. 2023, 13, 10351. [Google Scholar] [CrossRef]
- Sefera, T.; Abebie, B.; Gaur, P.M.; Assefa, K.; Varshney, R.K. Characterisation and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop Pasture Sci. 2011, 62, 177–187. [Google Scholar] [CrossRef]
- Hajibarat, Z.; Saidi, A.; Hajibarat, Z.; Talebi, R. Characterization of genetic diversity in chickpea using SSR markers, Start Codon Targeted Polymorphism (SCoT) and Conserved DNA-Derived Polymorphism (CDDP). Physiol. Mol. Biol. Plants 2015, 21, 365–373. [Google Scholar] [CrossRef]
- Afzal, M.; Alghamdi, S.S.; Migdadi, H.M.; Khan, M.A.; Farooq, M. Morphological and molecular genetic diversity analysis of chickpea genotypes. Int. J. Agric. Biol. 2018, 20, 1062–1070. [Google Scholar]
- Upadhyaya, H.D.; Dwivedi, S.L.; Baum, M.; Varshney, R.K.; Udupa, S.M.; Gowda, C.L.; Hoisington, D.; Singh, S. Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol. 2008, 8, 106. [Google Scholar] [CrossRef]
- Jha, U.C.; Jha, R.; Bohra, A.; Parida, S.K.; Kole, P.C.; Thakro, V.; Singh, D.; Singh, N.P. Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 2018, 8, 43. [Google Scholar] [CrossRef]
- Jha, U.C.; Jha, R.; Bohra, A.; Manjunatha, L.; Saabale, P.R.; Parida, S.K.; Chatuverdi, S.K.; Thakro, V.; Singh, N.P. Association mapping of genomic loci linked with Fusarium wilt resistance (Foc2) in chickpea. Plant Genet. Resour. 2021, 19, 195–202. [Google Scholar] [CrossRef]
- Varshney, R.; Song, C.; Saxena, R.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’AN, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013, 31, 240–246. [Google Scholar] [CrossRef]
- Parida, S.K.; Verma, M.; Yadav, S.K.; Ambawat, S.; Das, S.; Garg, R.; Jain, M. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. Front. Plant Sci. 2015, 6, 645. [Google Scholar] [CrossRef]
- Jain, S.K.; Wettberg, E.J.v.; Punia, S.S.; Parihar, A.K.; Lamichaney, A.; Kumar, J.; Gupta, D.S.; Ahmad, S.; Pant, N.C.; Dixit, G.P.; et al. Genomic-Mediated Breeding Strategies for Global Warming in Chickpeas (Cicer arietinum L.). Agriculture 2023, 13, 1721. [Google Scholar] [CrossRef]
- Zatybekov, A.; Yermagambetova, M.; Genievskaya, Y.; Didorenko, S.; Abugalieva, S. Genetic diversity analysis of soybean collection using simple sequence repeat markers. Plants 2023, 12, 3445. [Google Scholar] [CrossRef]
- Mazkirat, S.; Baitarakova, K.; Kudaybergenov, M.; Babissekova, D.; Bastaubayeva, S.; Bulatova, K.; Shavrukov, Y. SSR genotyping and marker–trait association with yield components in a Kazakh germplasm collection of chickpea (Cicer arietinum L.). Biomolecules 2023, 13, 1722. [Google Scholar] [CrossRef]
- Singh, R.K.; Singh, C.; Ambika; Chandana, B.S.; Mahto, R.K.; Patial, R.; Gupta, A.; Gahlaut, V.; Gayacharan; Hamwieh, A.; et al. Exploring chickpea germplasm diversity for broadening the genetic base utilizing genomic resources. Front. Genet. 2022, 13, 905771. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Ogneva, Z.V.; Dubrovina, A.S.; Gabdola, A.Z.; Khassanova, G.Z.; Jatayev, S.A. Study of CaDreb2c and CaDreb2h Gene Sequences and Expression in Chickpea (Cicer arietinum L.) Cultivars Growing in Northern Kazakhstan under Drought. Plants 2024, 13, 2066. [Google Scholar] [CrossRef]
- Kudaibergenov, M.S.; Baitarakova, K.; Saikenova, A.; Kanatkyzy, M.; Abdrakhmanov, K.A.; Saken, G.S. Chickpea Genotype Selection Based on Economically Valuable Traits to Develop High-Yielding Types. SABRAO J. Breed. Genet. 2024, 56, 1. [Google Scholar] [CrossRef]
- Das, S.; Upadhyaya, H.D.; Bajaj, D.; Kujur, A.; Badoni, S.; Laxmi; Kumar, V.; Tripathi, S.; Gowda, C.L.L.; Sharma, S.; et al. Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res. 2015, 22, 193–203. [Google Scholar] [CrossRef]
- Verma, S.; Gupta, S.; Bandhiwal, N.; Kumar, T.; Bharadwaj, C.; Bhatia, S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci. Rep. 2015, 5, 17512. [Google Scholar] [CrossRef]
- Rehman, A.U.; Malhotra, R.S.; Bett, K.; Tar’An, B.; Bueckert, R.; Warkentin, T.D. Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Sci. 2011, 51, 450–463. [Google Scholar] [CrossRef]
- Tar’an, B.; Warkentin, T.D.; Tullu, A.; Vandenberg, A. Genetic mapping of ascochyta blight resistance in chickpea (Cicer arietinum L.) using a simple sequence repeat linkage map. Genome 2007, 50, 26–34. [Google Scholar] [CrossRef]
- IBPGR; ICRISAT; ICARDA. Descriptors for Chickpea (Cicer arietinum L.); International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India, 1993; ISBN 92-9043-137-7. [Google Scholar]
- Yadav, S.; Shah, V.; Mod, B. Genetic Diversity Analysis between Different Varieties of Chickpea. Int. J. Appl. Sci. Biotechnol. 2019, 7, 236–242. [Google Scholar] [CrossRef]
- Hüttel, B.; Winter, P.; Weising, K.; Choumane, W.; Weigand, F.; Kahl, G. Sequence-tagged microsatellite site markers for chickpea (Cicer arietinum L.). Genome 1999, 42, 210–217. [Google Scholar] [CrossRef]
- Varshney, R.K.; Mir, R.R.; Bhatia, S.; Thudi, M.; Hu, Y.; Azam, S.; Zhang, Y.; Jaganathan, D.; You, F.M.; Gao, J.; et al. Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Funct. Integr. Genom. 2014, 14, 59–73. [Google Scholar] [CrossRef]
- Sethy, N.K.; Shokeen, B.; Edwards, K.J.; Bhatia, S. Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 2006, 112, 1416–1428. [Google Scholar] [CrossRef]
- Winter, P.; Pfaff, T.; Udupa, S.M.; Hüttel, B.; Sharma, P.C.; Sahi, S.; Arreguin-Espinoza, R.; Weigand, F.; Muehlbauer, F.J.; Kahl, G. Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Gen. Genet. MGG 1999, 262, 90–101. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Peakall, R.O.D.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Wen, X.; Falush, D. Documentation for Structure Software: Version 2.3; University of Chicago: Chicago, IL, USA, 2010; p. 37. [Google Scholar]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Amina, B.; Rida, M.M.; Abdelkader, A.A.; Sripada, U.; Semir, G.S.B. Genetic Diversity Analysis in Chickpea (Cicer arietinum L.) Genotypes Grown in Northwestern Algeria using Microsatellite Markers (SSR). Indian J. Agric. Res. 2020, 54, 129–138. [Google Scholar] [CrossRef]
- De Giovanni, C.; Pavan, S.; Taranto, F.; Di Rienzo, V.; Miazzi, M.M.; Marcotrigiano, A.R.; Mangini, G.; Montemurro, C.; Ricciardi, L.; Lotti, C. Genetic variation of a global germplasm collection of chickpea (Cicer arietinum L.) including Italian accessions at risk of genetic erosion. Physiol. Mol. Biol. Plants 2017, 23, 197–205. [Google Scholar] [CrossRef]
- Singh, M.K.; Roorkiwal, M.; Rathore, A.; Soren, K.R.; Pithia, M.S.; Yasin, M.; Barpete, S.; Singh, S.; Barmukh, R.; Das, R.R.; et al. Evaluation of Global Composite Collection Reveals Agronomically Superior Germplasm Accessions for Chickpea Improvement. Agronomy 2022, 12, 2013. [Google Scholar] [CrossRef]
- Choi, Y.-M.; Yoon, H.; Shin, M.-J.; Lee, S.; Yi, J.; Wang, X.; Desta, K.T. Diversity of Major Yield Traits and Nutritional Components Among Greenhouse Grown Chickpea (Cicer arietinum L.) Breeding Lines, Landraces, and Cultivars of Different Origins. Plants 2024, 13, 3078. [Google Scholar] [CrossRef]
- Archak, S.; Tyagi, R.K.; Harer, P.N.; Mahase, L.B.; Singh, N.; Dahiya, O.P.; Nizar, M.A.; Singh, M.; Tilekar, V.; Kumar, V.; et al. Characterization of chickpea germplasm conserved in the Indian National Genebank and development of a core set using qualitative and quantitative trait data. Crop J. 2016, 4, 417–424. [Google Scholar] [CrossRef]
- Toker, C.; Yadav, S.S. Legumes cultivars for stress environments. In Climate Change and Management of Cool Season Grain Legume Crops; Springer: Dordrecht, The Netherlands, 2010; pp. 351–376. [Google Scholar]
- Ghaffari, P.; Talebi, R.; Keshavarzi, F. Genetic diversity and geographical differentiation of Iranian landrace, cultivars, and exotic chickpea lines as revealed by morphological and microsatellite markers. Physiol. Mol. Biol. Plants 2014, 20, 225–233. [Google Scholar] [CrossRef]
- Getahun, T.; Tesfaye, K.; Fikre, A.; Haileslassie, T.; Chitikineni, A.; Thudi, M.; Varshney, R.K. Molecular genetic diversity and population structure in Ethiopian chickpea germplasm accessions. Diversity 2021, 13, 247. [Google Scholar] [CrossRef]
- Admas, S.; Tesfaye, K.; Haileselassie, T.; Shiferaw, E.; Flynn, K.C. Genetic variability and population structure of Ethiopian chickpea (Cicer arietinum L.) germplasm. PLoS ONE 2021, 16, e0260651. [Google Scholar] [CrossRef]
- Roorkiwal, M.; Bharadwaj, C.; Barmukh, R.; Dixit, G.P.; Thudi, M.; Gaur, P.M.; Chaturvedi, S.K.; Fikre, A.; Hamwieh, A.; Kumar, S.; et al. Integrating genomics for chickpea improvement: Achievements and opportunities. Theor. Appl. Genet. 2020, 133, 1703–1720. [Google Scholar] [CrossRef]
Accession ID | Accession Name | Type |
---|---|---|
CPKZ-03 | 13-B | kabuli |
CPKZ-18 | 1-liniya | kabuli |
CPKZ-09 | 28-B | desi |
CPKZ-19 | 2-liniya | desi |
CPKZ-10 | 32-B | kabuli |
CPKZ-20 | 3-liniya | desi |
CPKZ-21 | 7-liniya | kabuli |
CPKZ-22 | 8-liniya | desi |
CPKZ-04 | F00-21 | kabuli |
CPKZ-01 | F92-52 | kabuli |
CPKZ-05 | F97-121 | kabuli |
CPKZ-32 | F97-25/1 | kabuli |
CPKZ-12 | F97-60 | kabuli |
CPKZ-06 | F98-108c | kabuli |
CPKZ-16 | Icarda | kabuli |
CPKZ-15 | Kamila (check cultivar) | kabuli |
CPKZ-26 | Karabalykskaya-1 | desi |
CPKZ-17 | Luch | kabuli |
CPKZ-07 | Miras07 | kabuli |
CPKZ-13 | Nurly80 | kabuli |
CPKZ-27 | Rozana | kabuli |
CPKZ-14 | Satti | kabuli |
CPKZ-08 | Sen-sen | kabuli |
CPKZ-02 | TH45-1-01 | kabuli |
CPKZ-25 | Vektor | kabuli |
CPKZ-24 | Volzhanin | kabuli |
CPKZ-23 | Zavolzhski | kabuli |
SSR Marker | Associated Trait(s) | Reference |
---|---|---|
CaGM00495 | Number of main stems per plant, number of seeds per plant | [42] |
CaM0803 | Plant height, seed yield per plant, 100-seed weight | [42] |
CaSTMS2 | Plant height, seed yield per plant | [43] |
CaSTMS21 | Seed yield per plant | [43] |
ICCM0019b | Seed yield per plant | [44] |
ICCM0034 | First pod’s height, number of main stems per plant | [44] |
ICCM0043 | Plant height, height of lower pod | [44] |
ICCM0089a | 100-seed weight | [44] |
ICCM0105 | Plant height | [42] |
ICCM0120b | Number of seeds per plant, 100-seed weight | [44] |
ICCM0127 | First pod’s height, number of main stems per plant | [44] |
ICCM0190a | Seed yield per plant | [44] |
ICCM0191 | Seed yield per plant | [44] |
ICCM0192a | First pod’s height, number of main stems per plant | [44] |
ICCM0202b | 100-seed weight | [44] |
ICCM0243c | First pod’s height, number of main stems per plant | [44] |
ICCM0249 | First pod’s height, number of main stems per plant | [42] |
NCPGR19 | Number of seeds per plant, seed yield per plant | [45] |
NCPGR223 | 100-seed weight | [42] |
NCPGR7 | Seed yield per plant | [45] |
STMS11 | Seed yield per plant | [42] |
TA130 | 100-seed weight | [46] |
TA200 | First pod’s height, number of main stems per plant | [46] |
TA22 | Plant height, number of seeds per plant, seed yield per plant, 100-seed weight | [46] |
TA46 | Seed yield per plant | [46] |
TA71 | First pod’s height, number of main stems per plant | [46] |
TA72 | Seed yield per plant | [46] |
TAA170 | Seed yield per plant | [42] |
Desi (n = 5) | |||||
Trait | Min | Max | Mean | SD | CV (%) |
Plant height (PH, cm) | 50 | 75 | 62 | 10.5 | 17.0 |
First pod’s height (FPH, cm) | 30 | 36 | 33 | 2.6 | 8.0 |
Number of main stems per plant (NMSP, count) | 1.5 | 3.5 | 2.7 | 0.9 | 32.1 |
Number of fertile nodes (NFN, count) | 10 | 57 | 33 | 18.9 | 58.0 |
Number of seeds per plant (NSP, count) | 12 | 57 | 33 | 18.4 | 55.9 |
Seed yield per plant (YP, g) | 5.8 | 18.7 | 10.9 | 5.9 | 54.0 |
100-seed weight (HSW, g) | 24 | 38 | 31 | 5.6 | 1.8 |
Kabuli (n = 22) | |||||
Trait | Min | Max | Mean | SD | CV (%) |
Plant height (PH, cm) | 37 | 70 | 52 | 7.3 | 14.2 |
First pod’s height (FPH, cm) | 11 | 36 | 25 | 5.4 | 21.9 |
Number of main stems per plant (NMSP, count) | 1.3 | 3.9 | 2.5 | 0.7 | 28.0 |
Number of fertile nodes (NFN, count) | 16 | 81 | 37 | 14.6 | 39.1 |
Number of seeds per plant (NSP, count) | 17 | 81 | 37 | 14.6 | 39.0 |
Seed yield per plant (YP, g) | 5.4 | 22.8 | 11.2 | 4.2 | 37.6 |
100-seed weight (HSW, g) | 21 | 42 | 29 | 5.5 | 1.9 |
Whole collection (n = 27) | |||||
Trait | Min | Max | Mean | SD | CV (%) |
Plant height (PH, cm) | 37 | 75 | 53 | 8.7 | 16.3 |
First pod’s height (FPH, cm) | 11 | 36 | 26 | 5.9 | 22.3 |
Number of main stems per plant (NMSP, count) | 1.3 | 3.9 | 2.6 | 0.7 | 28.4 |
Number of fertile nodes (NFN, count) | 10 | 81 | 37 | 15.2 | 41.6 |
Number of seeds per plant (NSP, count) | 12 | 81 | 37 | 15.1 | 41.2 |
Seed yield per plant (YP, g) | 5.4 | 22.8 | 11.2 | 4.4 | 39.8 |
100-seed weight (HSW, g) | 21 | 42 | 29 | 5.5 | 1.9 |
SSR | Variation in Product Size (bp) | Na | Ne | I | h | uh | PIC |
---|---|---|---|---|---|---|---|
CaGM00495 | 276–375 | 8 | 6.031 | 1.927 | 0.834 | 0.865 | 0.842 |
ICCM0105 | 300–317 | 2 | 1.990 | 0.691 | 0.497 | 0.516 | 0.499 |
TAA170 | 200–300 | 7 | 3.015 | 1.467 | 0.668 | 0.693 | 0.683 |
STMS11 | 229 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
NCPGR223 | 254–277 | 3 | 1.931 | 0.768 | 0.482 | 0.500 | 0.491 |
ICCM0249 | 139–155 | 2 | 1.849 | 0.652 | 0.459 | 0.476 | 0.444 |
TA130 | 185–250 | 6 | 4.000 | 1.552 | 0.750 | 0.778 | 0.743 |
ICCM0019b | 100–130 | 2 | 1.324 | 0.410 | 0.245 | 0.254 | 0.252 |
ICCM0120b | 158–194 | 7 | 4.667 | 1.694 | 0.786 | 0.815 | 0.787 |
ICCM0192a | 275–327 | 6 | 3.698 | 1.470 | 0.730 | 0.757 | 0.724 |
TA200 | 246–274 | 2 | 1.960 | 0.683 | 0.490 | 0.508 | 0.483 |
NCPGR7 | 200–213 | 2 | 1.324 | 0.410 | 0.245 | 0.254 | 0.252 |
NCPGR19 | 300–311 | 2 | 1.690 | 0.598 | 0.408 | 0.423 | 0.417 |
CaSTMS2 | 245–300 | 5 | 4.404 | 1.542 | 0.773 | 0.802 | 0.779 |
CaSTMS21 | 169–188 | 2 | 1.774 | 0.628 | 0.436 | 0.452 | 0.417 |
TA22 | 188–262 | 7 | 5.026 | 1.759 | 0.801 | 0.831 | 0.790 |
TA46 | 136–177 | 6 | 3.960 | 1.529 | 0.747 | 0.775 | 0.733 |
TA71 | 194–257 | 8 | 5.158 | 1.816 | 0.806 | 0.836 | 0.804 |
ICCM0127 | 300–376 | 7 | 4.612 | 1.711 | 0.783 | 0.812 | 0.793 |
ICCM0191 | 129–147 | 2 | 1.324 | 0.410 | 0.245 | 0.254 | 0.252 |
ICCM0243c | 217–243 | 4 | 3.350 | 1.295 | 0.702 | 0.728 | 0.691 |
TA72 | 244–287 | 5 | 3.063 | 1.332 | 0.673 | 0.698 | 0.664 |
ICCM0202b | 200–250 | 6 | 3.564 | 1.420 | 0.719 | 0.746 | 0.713 |
ICCM0190a | 185–209 | 4 | 2.190 | 0.968 | 0.543 | 0.563 | 0.554 |
CaM0803 | 139 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ICCM0034 | 270 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ICCM0043 | 298 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
ICCM0089a | 205 | 1 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Mean | - | 3.929 | 2.747 | 0.955 | 0.494 | 0.512 | 0.493 |
SE | - | 0.466 | 0.289 | 0.123 | 0.055 | 0.057 | 0.089 |
Accession | Na | Ne | I | h | uh | %P |
---|---|---|---|---|---|---|
1liniya | 1.107 | 1.086 | 0.068 | 0.048 | 0.071 | 10.71% |
2liniya | 1.036 | 1.029 | 0.023 | 0.016 | 0.024 | 3.57% |
28-B | 1.107 | 1.086 | 0.068 | 0.048 | 0.071 | 10.71% |
32-B | 1.429 | 1.386 | 0.254 | 0.167 | 0.250 | 32.14% |
3liniya | 1.179 | 1.143 | 0.114 | 0.079 | 0.119 | 17.86% |
7liniya | 1.214 | 1.171 | 0.136 | 0.095 | 0.143 | 21.43% |
8liniya | 1.393 | 1.343 | 0.238 | 0.159 | 0.238 | 32.14% |
F92-52 | 1.107 | 1.086 | 0.068 | 0.048 | 0.071 | 10.71% |
F97-121 | 1.393 | 1.314 | 0.250 | 0.175 | 0.262 | 39.29% |
F97-25/1 | 1.500 | 1.400 | 0.318 | 0.222 | 0.333 | 50.00% |
F97-60 | 1.393 | 1.314 | 0.250 | 0.175 | 0.262 | 39.29% |
F98-108c | 1.214 | 1.171 | 0.136 | 0.095 | 0.143 | 21.43% |
F00-21 | 1.214 | 1.171 | 0.136 | 0.095 | 0.143 | 21.43% |
Sen-sen | 1.464 | 1.414 | 0.277 | 0.183 | 0.274 | 35.71% |
TH45-1-01 | 1.500 | 1.414 | 0.312 | 0.214 | 0.321 | 46.43% |
Volzhanin | 1.107 | 1.086 | 0.068 | 0.048 | 0.071 | 10.71% |
Kamila | 1.500 | 1.429 | 0.306 | 0.206 | 0.310 | 42.86% |
Karabakykskaya-1 | 1.179 | 1.143 | 0.114 | 0.079 | 0.119 | 17.86% |
Miras07 | 1.464 | 1.400 | 0.283 | 0.190 | 0.286 | 39.29% |
Nurly80 | 1.429 | 1.343 | 0.273 | 0.190 | 0.286 | 42.86% |
Rozana | 1.321 | 1.286 | 0.192 | 0.127 | 0.190 | 25.00% |
Satti | 1.393 | 1.329 | 0.244 | 0.167 | 0.250 | 35.71% |
Icarda | 1.179 | 1.143 | 0.114 | 0.079 | 0.119 | 17.86% |
Vektor | 1.143 | 1.129 | 0.085 | 0.056 | 0.083 | 10.71% |
Zavolzhski | 1.071 | 1.057 | 0.045 | 0.032 | 0.048 | 7.14% |
13-B | 1.500 | 1.414 | 0.312 | 0.214 | 0.321 | 46.43% |
Luch | 1.571 | 1.500 | 0.345 | 0.230 | 0.345 | 46.43% |
Mean | 1.301 | 1.252 | 0.187 | 0.128 | 0.192 | 27.42% |
SE | 0.018 | 0.016 | 0.011 | 0.008 | 0.011 | 2.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zatybekov, A.; Genievskaya, Y.; Anuarbek, S.; Kudaibergenov, M.; Turuspekov, Y.; Abugalieva, S. Phenotypic and Genetic Diversity of Chickpea (Cicer arietinum L.) Accessions from Kazakhstan. Diversity 2025, 17, 664. https://doi.org/10.3390/d17090664
Zatybekov A, Genievskaya Y, Anuarbek S, Kudaibergenov M, Turuspekov Y, Abugalieva S. Phenotypic and Genetic Diversity of Chickpea (Cicer arietinum L.) Accessions from Kazakhstan. Diversity. 2025; 17(9):664. https://doi.org/10.3390/d17090664
Chicago/Turabian StyleZatybekov, Alibek, Yuliya Genievskaya, Shynar Anuarbek, Mukhtar Kudaibergenov, Yerlan Turuspekov, and Saule Abugalieva. 2025. "Phenotypic and Genetic Diversity of Chickpea (Cicer arietinum L.) Accessions from Kazakhstan" Diversity 17, no. 9: 664. https://doi.org/10.3390/d17090664
APA StyleZatybekov, A., Genievskaya, Y., Anuarbek, S., Kudaibergenov, M., Turuspekov, Y., & Abugalieva, S. (2025). Phenotypic and Genetic Diversity of Chickpea (Cicer arietinum L.) Accessions from Kazakhstan. Diversity, 17(9), 664. https://doi.org/10.3390/d17090664