Mechanisms and Impact of Acacia mearnsii Invasion
Abstract
1. Introduction
2. Invasive Mechanism
2.1. Growth
2.2. Reproduction
2.3. Adaptative Ability
2.4. The Significance of Herbivores and Pathogens
2.5. Allelopathy
3. Impact on Abiotic Environment
4. Impact on Biotic Environment
5. Control
6. Invasive Potential and Risk
Funding
Data Availability Statement
Conflicts of Interest
References
- Royal Botanic Garden Kew, Acacia mearnsii De Wild. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:470860-1 (accessed on 17 June 2025).
- CABI Compendium, Acacia mearnsii De Wild. Available online: https://www.cabidigitallibrary.org/doi/full/10.1079/cabicompendium.2326 (accessed on 17 June 2025).
- Global Invasive Species Database (GISD) 2025. Species Profile Acacia mearnsii. Available online: https://www.iucngisd.org/gisd/species.php?sc=51 (accessed on 17 June 2025).
- Raymond, C.A. Flowering biology, genetics and breeding. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 18–27. [Google Scholar]
- Botella, C.; Marchante, H.; Celesti-Grapow, L.; Brundu, G.; Geerts, S.; Ramirez-Albores, J.E.; González-Moreno, P.; Ritter, M.; Richardson, D.M. The global distribution of Acacia. In Wattles: Australian Acacia Species Around the World; Richardson, D.M., Le Roux, J.J., Eds.; CAB International: Oxfordshire, UK, 2023; pp. 131–147. [Google Scholar]
- Fang, Y.; Gao, C.; Zheng, F.; Ren, H.; Li, J.; Liu, S.; Zhang, Q. Field evaluation and selection of Acacia mearnsii provenances. In Australian Tree Species Research in China; Brown, A.D., Ed.; Australian Centre for International Agricultural Research: Canberra, Australia, 1994; pp. 149–157. [Google Scholar]
- Stiehl-Alves, E.M.; Martins-Corder, M.P. Acacia mearnsii De Wild. (Fabaceae) reproductive biology II: Flowering and fructification phenology. Crop Breed. Appl. Biotechnol. 2006, 6, 144–150. [Google Scholar] [CrossRef]
- Pedro, S.I.; Rosado, T.; Barroca, C.; Neiva, D.; Alonso-Herranz, V.; Gradillas, A.; García, A.; Gominho, J.; Gallardo, E.; Anjos, O. Characterization of the phenolic profile of Acacia retinodes and Acacia mearnsii flowers’ extracts. Plants 2022, 11, 1442. [Google Scholar] [CrossRef] [PubMed]
- de Neergaard, A.; Saarnak, C.; Hill, T.; Khanyile, M.; Berzosa, A.M.; Birch-Thomsen, T. Australian wattle species in the Drakensberg region of South Africa-An invasive alien or a natural resource? Agric. Syst. 2005, 85, 216–233. [Google Scholar] [CrossRef]
- Griffin, A.R.; Midgley, S.J.; Bush, D.; Cunningham, P.J.; Rinaudo, A.T. Global uses of Australian acacias-recent trends and future prospects. Divers. Distrib. 2011, 17, 837–847. [Google Scholar] [CrossRef]
- Chan, J.M.; Day, P.; Feely, J.; Thompson, R.; Little, K.M.; Norris, C.H. Acacia mearnsii industry overview: Current status, key research and development issues. South. For. 2015, 77, 19–30. [Google Scholar] [CrossRef]
- Moyo, H.P.M.; Fatunbi, A.O. Utilitarian perspective of the invasion of some South African biomes by Acacia mearnsii. Glob. J. Environ. Res. 2010, 4, 6–17. [Google Scholar]
- Yang, J.S. Community structures and erosion control ability of plantations in Xiaojiang Drainage Basin, China. Adv. Mater. Res. 2012, 518, 4587–4591. [Google Scholar] [CrossRef]
- Yazaki, Y. Utilization of flavonoid compounds from bark and wood: A review. Nat. Prod. Commun. 2015, 10, 513–520. [Google Scholar] [CrossRef] [PubMed]
- WorldWide Wattle. Acacia mearnsii DeWild. Available online: http://worldwidewattle.com/speciesgallery/species-intro.php?id=17958 (accessed on 17 June 2025).
- Wiersum, K.F. Acacia mearnsii De Wild. In Plant Resources of South-East Asia No. 3. Dye and Tannin-Producing Plants; Lemmens, R.H.M.J., Wulijarni-Soetjipto, N., Eds.; Pudoc: Wageningen, The Netherlands, 1991; pp. 41–45. [Google Scholar]
- Turnbull, J.W.; Midgley, S.J.; Cossaltar, C. Tropical acacias planted in Asia: An overview. In Recent Developments in Acacia Planting, Proceedings of the Third International Acacia Workshop, Hanoi, Vietnam, 27–31 October 1997; Turnbull, J.W., Compton, H.R., Pinyopusarerk, K., Eds.; Forest Science Institute of Vietnam: Hanoi, Vietnam, 1998; pp. 14–28. [Google Scholar]
- Searle, S.D. Acacia mearnsii De Wild. (black wattle) in Australia. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 1–12. [Google Scholar]
- Rebelo, A.J.; le Maitre, D.; Esler, K.J.; Cowling, R.M. Are we destroying our insurance policy? The effects of alien invasion and subsequent restoration: A case study of the Kromme River System, South Africa. In Landscape Ecology for Sustainable Environment and Culture; Fu, B., Jones, K.B., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 335–364. [Google Scholar]
- Seburanga, J.L. Black wattle (Acacia mearnsii De Wild.) in Rwanda’s forestry: Implications for nature conservation. J. Sustain. For. 2015, 34, 276–299. [Google Scholar] [CrossRef]
- Seburanga, J.L. Self-established black wattle populations in Rwanda: Implications for Nature Conservation. Small-Scale For. 2016, 15, 127–134. [Google Scholar] [CrossRef]
- Piiroinen, R.; Fassnacht, F.E.; Heiskanen, J.; Maeda, E.; Mack, B.; Pellikka, P. Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens. Environ. 2018, 218, 119–131. [Google Scholar] [CrossRef]
- Nyoka, B.I. Biosecurity in Forestry: A Case Study on the Status of Invasive Forest Trees Species in Southern Africa. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/4474f26b-b0de-424a-9b50-2fc010ee7239/content/ac846e.htm (accessed on 17 June 2025).
- Yapi, T.S.; O’Farrell, P.J.; Dziba, L.E.; Esler, K.J. Alien tree invasion into a South African montane grassland ecosystem: Impact of Acacia species on rangeland condition and livestock carrying capacity. Ecosyst. Serv. Manag. 2018, 14, 105–116. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Rodríguez, J.; González, L.; Lorenzo, P. Here to stay. Recent advances and perspectives about Acacia invasion in Mediterranean areas. Ann. For. Sci. 2017, 74, 55. [Google Scholar] [CrossRef]
- IUCN. 100 of the World’s Worst Invasive Alien Species. Available online: https://portals.iucn.org/library/sites/library/files/documents/2000-126.pdf (accessed on 17 June 2025).
- Poudel, A.; Adhikari, P.; Adhikari, P.; Choi, S.H.; Yun, J.Y.; Lee, Y.H.; Hong, S.H. Predicting the invasion risk of the highly invasive Acacia mearnsii in Asia under global climate change. Plants 2024, 13, 2846. [Google Scholar] [CrossRef] [PubMed]
- Atkin, O.K.; Schortemeyer, M.; McFarlane, N.; Evans, J.R. Variation in the components of relative growth rate in 10 Acacia species from contrasting environments. Plant Cell Environ. 1998, 21, 1007–1017. [Google Scholar] [CrossRef]
- Atkin, O.K.; Schortemeyer, M.; McFarlane, N.; Evans, J.R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: An analysis of the underlying components of relative growth rate. Oecologia 1999, 120, 544–554. [Google Scholar] [CrossRef]
- Caldeira, M.V.W.; Schumacher, M.V.; Spathelf, P. Quantification of nutrient content in above-ground biomass of young Acacia mearnsii De Wild., provenance Bodalla. Ann. For. Sci. 2002, 59, 833–838. [Google Scholar] [CrossRef]
- Caldeira, M.V.W.; Saidelles, F.L.F.; Schumacher, M.V.; Godinho, T.D.O. Biomass in Acacia mearnsii De Wild stand, Rio Grande do Sul, Brazil. Sci. For. 2011, 39, 133–141. [Google Scholar]
- Forrester, D.I.; Bauhus, J.; Khanna, P.K. Growth dynamics in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For. Ecol. Manag. 2004, 193, 81–95. [Google Scholar] [CrossRef]
- Forrester, D.I.; Bauhus, J.; Cowie, A.L. Carbon allocation in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. For. Ecol. Manag. 2006, 233, 275–284. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Song, M. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. For. Ecol. Manag. 2012, 277, 90–97. [Google Scholar] [CrossRef]
- Costa, J.S.; Silva, D.D.; Sanquetta, C.R.; Behling, A.; Simon, A.A.; Trautenmuller, J.W.; Ferraz, F.A. Quantification of biomass stocks of Acacia mearnsii de Wild. at different ages and places of cultivation. Sci. For. 2018, 120, 614–625. [Google Scholar]
- Tye, D.R.; Drake, D.C. An exotic Australian Acacia fixes more N than a coexisting indigenous Acacia in a South African riparian zone. Plant Ecol. 2012, 213, 251–257. [Google Scholar] [CrossRef]
- Pieterse, P.J. Biological Studies on Woody Leguminous Invaders with Special Reference to Acacia mearnsii, A. melanoxylon and Paraserianthes lophantha. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 1997. [Google Scholar]
- Weber, E. Invasive Plant Species of the World: A Reference Guide to Environmental Weeds; CAB International: Wallingford, UK, 2003; pp. 1–548. [Google Scholar]
- Goets, S.A.; Kraaij, T.; Little, K.M. Seed bank and growth comparisons of native (Virgilia divaricata) and invasive alien (Acacia mearnsii and A. melanoxylon) plants: Implications for conservation. PeerJ 2018, 6, e5466. [Google Scholar] [CrossRef] [PubMed]
- Strydom, M.; Veldtman, R.; Ngwenya, M.Z.; Esler, K.J. Seed survival of Australian Acacia in the Western Cape of South Africa in the presence of biological control agents and given environmental variation. PeerJ 2019, 7, e6816. [Google Scholar] [CrossRef]
- Dean, S.J.; Holmes, P.M.; Weiss, P.W. Seed biology of invasive alien plants in South Africa and South West Africa/Namibia. In The Ecology and Management of Biological Invasions in Southern Africa; Macdonald, I.A.W., Kruger, F.J., Ferrar, A.A., Eds.; Oxford University Press: Cape Town, South Africa, 1986; pp. 157–170. [Google Scholar]
- Goets, S.A. Seed Ecology and Growth Comparisons of Native (Virgilia divaricata) and Invasive Alien (Acacia mearnsii and A. melanoxylon) Plants: Implications for Conservation. Ph.D. Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2017. [Google Scholar]
- Riveiro, S.F.; Cruz, Ó.; Casal, M.; Reyes, O. Fire and seed maturity drive the viability, dormancy, and germination of two invasive species: Acacia longifolia (Andrews) Willd. and Acacia mearnsii De Wild. Ann. For. Sci. 2020, 77, 60. [Google Scholar] [CrossRef]
- Dessì, L.; Podda, L.; Brundu, G.; Lozano, V.; Carrouée, A.; Marchante, E.; Marchante, H.; Petit, Y.; Porceddu, M.; Bacchetta, G. Seed germination Eecophysiology of Acacia dealbata Link and Acacia mearnsii De Wild.: Two invasive species in the Mediterranean Basin. Sustainability 2021, 13, 11588. [Google Scholar] [CrossRef]
- Pieterse, P.J.; Boucher, C. Is burning a standing population of invasive legumes a viable control method? Effects of a wildfire on an Acacia mearnsii population. S. Afr. For. J. 1997, 180, 15–21. [Google Scholar]
- Sriramamurthy, R.T.; Bhalla, R.S.; Sankaran, M. Fire differentially affects mortality and seedling regeneration of three woody invaders in forest-grassland mosaics of the southern Western Ghats, India. Biol. Invasions 2020, 22, 1623–1634. [Google Scholar] [CrossRef]
- Wright, B.R.; Clarke, P.J. Resprouting responses of Acacia shrubs in the western desert of Australia-fire severity, interval and season influence survival. Int. J. Wildland Fire 2007, 16, 317–323. [Google Scholar] [CrossRef]
- de Sá, L.F.; Lohmann, G.T.; Peres, B.F.S.; Tambarussi, E.V. Genetic variability for clonal propagation of Acacia mearnsii. For. Sci. 2024, 70, 365–375. [Google Scholar] [CrossRef]
- Oliveira, J.M.S.D.; Bisognin, D.A.; Muniz, M.F.B.; Gazzana, D.; Santos, M.M.D. Histological study of adventitious rooting in Acacia mearnsii and Ilex paraguariensis mini-cuttings: Insights into the so-called anatomical barrier. Rodriguésia 2024, 75, e01402023. [Google Scholar] [CrossRef]
- Beck, S.L.; Fossey, A.; Mathura, S. Ploidy determination of black wattle (Acacia mearnsii) using stomatal chloroplast counts: Research note. S. Afr. For. J. 2003, 198, 79–82. [Google Scholar] [CrossRef]
- Beck, S.L.; Dunlop, R.W.; Fossey, A. Evaluation of induced polyploidy in Acacia mearnsii through stomatal counts and guard cell measurements. S. Afr. J. Bot. 2003, 69, 563–567. [Google Scholar] [CrossRef]
- Mathura, S.; Fossey, A.; Beck, S.L. Comparative study of chlorophyll content in diploid and tetraploid black wattle (Acacia mearnsii). Forestry 2006, 79, 381–388. [Google Scholar] [CrossRef]
- Searle, S.D.; Bell, J.C.; Moran, G.F. Genetic diversity in natural populations of Acacia mearnsii. Aust. J. Bot. 2000, 48, 279–286. [Google Scholar] [CrossRef]
- Bairu, M.W.; Amelework, A.B.; Coetzer, W.G. Genetic diversity and population structure of six South African Acacia mearnsii breeding populations based on SSR markers. J. Plant Res. 2021, 134, 1243–1252. [Google Scholar] [CrossRef]
- Li, J.Y. Black wattle plantations in South Africa: Genetics and breeding. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 53–64. [Google Scholar]
- Yazaki, Y.; Zheng, G.C.; Searle, S.D. Extractives yields and polyflavanoid contents of Acacia mearnsii barks in Australia. Aust. For. 1990, 53, 148–153. [Google Scholar] [CrossRef]
- Searle, S.D.; Owen, J.V.; Williams, E.R.; Raymond, C.A. Variation in frost tolerance within two provenances of Acacia mearnsii De Wild. Aust. For. 1998, 61, 1–6. [Google Scholar] [CrossRef]
- Doran, J.C.; Turnbull, J.W. Australian Trees and Shrubs: Species for Land Rehabilitation and Farm Planting in the Tropics; ACIAR: Canberra, Australis, 1997; pp. 1–384.
- Booth, T.H.; Jovanovic, T. Climatology of Acacia mearnsii. 1. Characteristics of natural sites and exotic plantations. New For. 1988, 2, 17–30. [Google Scholar] [CrossRef]
- Webb, D.B.; Wood, P.J.; Smith, J. A Guide to Species Selection for Tropical and Sub-Tropical Plantations; Commonwealth Forestry Institute, University of Oxford: Oxford, UK, 1980; pp. 1–342. [Google Scholar]
- Schonau, A.P.G.; Schulze, R.E. Climatic and altitudinal criteria for commercial afforestation with special reference to Natal. S. Afr. For. J. 1984, 130, 10–18. [Google Scholar] [CrossRef]
- Searle, S.D.; Owen, J.V.; Snowdon, P. Frost tolerance variation amongst 25 provenances of Acacia mearnsii. In Australian Tree Species Research in China; Brown, A.D., Ed.; Australian Centre for International Agricultural Research: Canberra, Australia, 1994; pp. 140–148. [Google Scholar]
- Chan, M.J. Frost tolerance of six seed orchards of Acacia mearnsii (black wattle) and the effect of developmental stage and tree size on frost hardiness. Aust. For. 2019, 82, 35–47. [Google Scholar] [CrossRef]
- Chan, M.J.; Isik, F. Genetic variation in frost tolerance, Uromycladium acaciae rust resistance, and growth in an Acacia mearnsii population. For. Sci. 2021, 67, 574–586. [Google Scholar] [CrossRef]
- Jugmohan, M.; Chan, M.J.; Morris, C.; Bairu, M.W.; Burgdorf, R.; Laing, M.D. Changes in protein expression in Acacia mearnsii De Wild (black wattle) as a result of exposure to frost-inducing temperatures. South. For. 2024, 86, 176–185. [Google Scholar] [CrossRef]
- Crous, C.J.; Jacobs, S.M.; Esler, K.J. Drought-tolerance of an invasive alien tree, Acacia mearnsii and two native competitors in fynbos riparian ecotones. Biol. Invasions 2012, 14, 619–631. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.G. Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 2010, 18, 309–319. [Google Scholar] [CrossRef]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic adjustment and plant adaptation to drought stress. In Drought Stress Tolerance in Plants, Vol. 1: Physiology and Biochemistry; Hossain, M., Wani, S., Bhattacharjee, S., Burritt, D., Tran, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 105–143. [Google Scholar]
- Ali, O.; Cheddadi, I.; Landrein, B.; Long, Y. Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 2023, 238, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.T. Australian trees for the rehabilitation of waterlogged and salinity-damaged landscapes. Aust. J. Bot. 1999, 47, 697–716. [Google Scholar] [CrossRef]
- Pryor, R.J.; Davidson, N.J.; Close, D.C. Waterlogging duration: Interspecific comparison of Leptospermum scoparium (Forst et Forst. f.), Acacia melanoxylon (R. Br.), Nothofagus cunninghamii (Hook.) and Eucalyptus obliqua (L’Herit). Aust. Ecol. 2006, 31, 408–416. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Pyruvate metabolism in rice coleoptiles under anaerobiosis. Plant Growth Regul. 2006, 50, 41–46. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Submergence tolerance and ethanolic fermentation in rice coleoptiles. Plant Prod. Sci. 2001, 4, 62–65. [Google Scholar] [CrossRef]
- Armstrong, W.; Beckett, P.M.; Colmer, T.D.; Setter, T.L.; Greenway, H. Tolerance of roots to low oxygen: ‘Anoxic’ cores, the phytoglobin nitric oxide cycle and energy or oxygen sensing. J. Plant Physiol. 2019, 239, 92–108. [Google Scholar] [CrossRef] [PubMed]
- Banti, V.; Giuntoli, B.; Gonzali, S.; Loreti, E.; Magneschi, L.; Novi, G.; Paparelli, E.; Parlanti, S.; Pucciariello, C.; Santaniello, A.; et al. Low oxygen response mechanisms in green organisms. Int. J. Mol. Sci. 2013, 14, 4734–4761. [Google Scholar] [CrossRef]
- Evans, D.E. Aerenchyma formation. New Phytol. 2004, 161, 35–49. [Google Scholar] [CrossRef]
- Yamauchi, T.; Shimamura, S.; Nakazono, M.; Mochizuki, T. Aerenchyma formation in crop species: A review. Field Crops Res. 2013, 152, 8–16. [Google Scholar] [CrossRef]
- Karban, R.; Myers, J.H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 1989, 20, 331–348. [Google Scholar] [CrossRef]
- Maron, J.L.; Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 2006, 273, 2575–2584. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, G. Interactions between plants and herbivores: A review of plant defense. Acta Ecol. Sin. 2014, 34, 325–336. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Evolution of the secondary metabolites in invasive plant species Chromolaena odorata for the defense and allelopathic functions. Plants 2023, 12, 521. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Defensive compounds Involved in the invasiveness of Tithonia diversifolia. Molecules 2025, 30, 1946. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive characteristics of Robinia pseudoacacia and its impacts on the species diversity. Diversity 2024, 16, 773. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. The invasive mechanism and impact of Arundo donax, one of the world’s 100 worst invasive alien species. Plants 2025, 14, 2175. [Google Scholar] [CrossRef]
- Mitchell, C.E.; Power, A.G. Release of invasive plants from fungal and viral pathogens. Nature 2003, 421, 625–627. [Google Scholar] [CrossRef]
- Searle, S.D. The Rise and Demise of the Black Wattle Bark Industry in Australia; Division of Forestry: North Ringwood, Australia, 1991; pp. 1–42.
- Wang, H. Black wattle plantations in South Africa: Protection. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 39–52. [Google Scholar]
- Boland, D.J. Plantation practices in Zimbabwe, Kenya and Tanzania. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 67–80. [Google Scholar]
- Stein, P.P.; Tonietto, L. Black Wattle Silviculture in Brazil. In Black Wattle and Its Utilizations; Brown, A.G., Ko, H.C., Eds.; RIRDC Publication: Barton, Australia, 1997; pp. 81–85. [Google Scholar]
- Roux, J.; Kemp, G.H.J.; Wingfield, M.J. Diseases of black wattle in South Africa-a review. S. Afr. For. J. 1995, 174, 35–40. [Google Scholar] [CrossRef]
- McTaggart, A.R.; Doungsa-ard, C.; Wingfield, M.J.; Roux, J. Uromycladium acaciae, the cause of a sudden, severe disease epidemic on Acacia mearnsii in South Africa. Aust. Plant Pathol. 2015, 44, 637–645. [Google Scholar] [CrossRef]
- Little, K.M.; Payn, R.G. Screening of fungicides for the management of wattle rust (Uromycladium acaciae) in Acacia mearnsii plantations, South Africa. South. For. 2016, 78, 151–158. [Google Scholar] [CrossRef]
- Fraser, S.; McTaggart, A.R.; Roux, J.; Nel, J.; Potgieter, J.; Shuey, L.S.; Somchit, C.; Wingfield, M.J. The life cycle and field epidemiology of Uromycladium acaciae (Pucciniales) on Acacia mearnsii in South Africa. Ann. Appl. Biol. 2021, 179, 21–33. [Google Scholar] [CrossRef]
- Ogawa, S.; Yazaki, Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin determination and biological activities. Molecules 2018, 23, 837. [Google Scholar] [CrossRef]
- Ohara, S.; Suzuki, K.; Ohira, T. Condensed tannins from Acacia mearnsii and their biological activities. J. Jpn. Wood Res. Soc. 1994, 40, 1363–1374. [Google Scholar]
- Zhou, L.; Bi, Y.; Jiang, L.; Wang, Z.; Chen, W. Effect of black wattle (Acacia mearnsii) extract on blue-green algal bloom control and plankton structure optimization: A field mesocosm experiment. Water Environ. Res. 2012, 84, 2133–2142. [Google Scholar] [CrossRef]
- Wilson, A.E.; Sarnelle, O.; Neilan, B.A.; Salmon, T.P.; Gehringer, M.M.; Hay, M.E. Genetic variation of the bloom-forming cyanobacterium Microcystis aeruginosa within and among lakes: Implications for harmful algal blooms. Appl. Environ. Microbiol. 2005, 71, 6126–6133. [Google Scholar] [CrossRef]
- Kaneko, T.; Nakajima, N.; Okamoto, S.; Suzuki, I.; Tanabe, Y.; Tamaoki, M.; Nakamura, Y.; Kasai, F.; Watanabe, A.; Kawashima, K.; et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res. 2007, 14, 247–256. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, L.; Liu, D.; Zhu, Q.; Chen, W. Inhibitory mechanisms of Acacia mearnsii extracts on the growth of Microcystis aeruginosa. Water Sci. Technol. 2015, 71, 856–861. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Defense molecules of the invasive plant species Ageratum conyzoides. Molecules 2024, 29, 4673. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Defensive molecules momilactones A and B: Function, biosynthesis, induction and occurrence. Toxins 2023, 15, 241. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Invasive Characteristics and Impacts of Ambrosia trifida. Agronomy 2024, 14, 2868. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. The impact and invasive mechanisms of Pueraria montana var. lobata, one of the world’s worst alien species. Plants 2023, 12, 3066. [Google Scholar]
- Clements, D.R.; Kato-Noguchi, H. Defensive mechanisms of Mikania micrantha likely enhance its invasiveness as one of the world’s worst alien species. Plants 2025, 14, 269. [Google Scholar] [CrossRef]
- Muller-Scharer, H.; Schaffner, U.; Steinger, T. Evolution in invasive plants: Implications for biological control. Trends Ecol. Evol. 2004, 19, 417–422. [Google Scholar] [CrossRef]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; pp. 1–422. [Google Scholar]
- Belz, R.G. Allelopathy in crop/weed interactions-an update. Pest Manag. Sci. 2007, 63, 308–326. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Fushimi, Y.; Shigemori, H. An allelopathic substance in red pine needles (Pinus densiflora). J. Plant Physiol. 2009, 166, 442–446. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Ota, K.; Ino, T. Release of momilactone A and B from rice plants into the rhizosphere and its bioactivities. Allelopathy J. 2008, 22, 321–328. [Google Scholar]
- Kato-Noguchi, H.; Nakamura, K.; Ohno, O.; Suenaga, K.; Okuda, N. Asparagus decline: Autotoxicity and autotoxic compounds in asparagus rhizomes. Plant Physiol. 2017, 213, 23–29. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Suzuki, M.; Noguchi, K.; Suenaga, K.; Laosinwattana, C. A potent phytotoxic substance in Aglaia odorata Lour. Chem. Biodivers. 2016, 13, 549–554. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Convergent or parallel molecular evolution of momilactone A and B: Potent allelochemicals, momilactones have been found only in rice and the moss Hypnum plumaeforme. J. Plant Physiol. 2011, 168, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.J.; Wu, Y.Y.; Zheng, S.S.; Zheng, Q.Q.; Li, Q.; Ding, B.Y. Allelopathic effect of Acacia mearnsii on the seed germination of several plants. Bull. Bot. Res. 2011, 31, 235–240. [Google Scholar] [CrossRef]
- Fatunbi, A.O.; Dube, S.; Yakubu, M.T.; Tshabalala, T. Allelopathic potential of Acacia mearnsii De wild. World Appl. Sci. J. 2009, 7, 1488–1493. [Google Scholar]
- Saayman, H.M.; Roux, D.G. The origins of tannins and flavonoids in black-wattle barks and heartwoods, and their associated ‘non-tannin’ components. Biochem. J. 1965, 97, 794–801. [Google Scholar] [CrossRef]
- MacKenzie, A.M. The flavonoids of the leaves of Acacia mearnsii. Phytochemistry 1969, 8, 1813–1815. [Google Scholar] [CrossRef]
- Roux, D.G. Recent advances in the chemistry and chemical utilization of the natural condensed tannins. Phytochemistry 1972, 11, 1219–1230. [Google Scholar] [CrossRef]
- Xiong, J.; Grace, M.H.; Esposito, D.; Wang, F.; Lila, M.A. Phytochemical characterization and anti-inflammatory properties of Acacia mearnsii leaves. Nat. Prod. Commun. 2016, 11, 649–653. [Google Scholar] [CrossRef]
- Wu, C.; He, L.; Zhang, Y.; You, C.; Li, X.; Jiang, P.; Wang, F. Separation of flavonoids with significant biological activity from Acacia mearnsii leaves. RSC Adv. 2023, 13, 9119–9127. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H.; Kato, M. Evolution of the defense compounds against biotic stressors in the invasive plant species Leucaena leucocephala. Molecules 2025, 30, 2453. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kato, M. Compounds involved in the invasive characteristics of Lantana camara. Molecules 2025, 30, 411. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Kurniadie, D. The invasive mechanisms of the noxious alien plant species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef]
- Kato-Noguchi, H. Allelopathy of knotweeds as invasive plants. Plants 2022, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Kato-Noguchi, H. Invasive mechanisms of one of the world’s worst alien plant species Mimosa pigra and its management. Plants 2023, 12, 1960. [Google Scholar] [CrossRef] [PubMed]
- Dye, P.; Jarmain, C. Water use by black wattle (Acacia mearnsii): Implications for the link between removal of invading trees and catchment streamflow response: Working for water. S. Afr. J. Sci. 2004, 100, 40–44. [Google Scholar]
- Galatowitsch, S.; Richardson, D.M. Riparian scrub recovery after clearing of invasive alien trees in headwater streams of the Western Cape, South Africa. Biol. Conserv. 2004, 122, 509–521. [Google Scholar] [CrossRef]
- Moyo, H.P.M.; Dube, S.; Fatunbi, A.O. Impact of the removal of black wattle (Acacia mearnsii) in the Tsomo Valley in Eastern Cape: Consequences on the water recharge and soil dynamics (an ongoing study). Grassroots 2009, 9, 38–41. [Google Scholar]
- Le Maitre, D.C.; Forsyth, G.G.; Dzikiti, S.; Gush, M.B. Estimates of the impacts of invasive alien plants on water flows in South Africa. Water SA 2016, 42, 659–672. [Google Scholar] [CrossRef]
- Rowntree, K.M.; Beyers, G.J. An Experimental Study of the Effect of Acacia mearnsii (Black Wattle Trees) on Stream Flow in the Sand River, Zwartkops River Catchment, Eastern Cape; Water Research Commission: Pretoria, South Africa, 1999; pp. 1–99. [Google Scholar]
- Nayak, R.R.; Krishnaswamy, J.; Vaidyanathan, S.; Chappell, N.A.; Bhalla, R.S. Invasion of natural grasslands by exotic trees increases flood risks in mountainous landscapes in South India. J. Hydrol. 2023, 617, 128944. [Google Scholar] [CrossRef]
- Rangan, H.; Kull, C.A.; Alexander, L. Forest plantations, water availability, and regional climate change: Controversies surrounding Acacia mearnsii plantations in the upper Palnis Hills, southern India. Reg. Environ. Change 2010, 10, 103–117. [Google Scholar] [CrossRef]
- Henderson, L.; Wells, M.J. Alien plant invasions in grassland and savanna biomes. In The Ecology and Management of Biological Invasions in Southern Africa. Cape Town, South Africa; Macdonald, I.A.W., Kruger, F.J., Ferrar, A.A., Eds.; Oxford University Press: Oxford, UK, 1986; pp. 109–117. [Google Scholar]
- Macdonald, I.A.W.; Richardson, D.M. Alien species in terrestrial ecosystems of the fynbos biome. In The Ecology and Management of Biological Invasions in Southern Africa. Cape Town, South Africa; Macdonald, I.A.W., Kruger, F.J., Ferrar, A.A., Eds.; Oxford University Press: Oxford, UK, 1986; pp. 77–91. [Google Scholar]
- van der Waal, B.W.; Rowntree, K.M.; Radloff, S.E. The effect of Acacia mearnsii invasion and clearing on soil loss in the Kouga Mountains, Eastern Cape, South Africa. Land Degrad. Dev. 2012, 23, 577–585. [Google Scholar] [CrossRef]
- Stock, W.D.; Wienand, K.T.; Baker, A.C. Impacts of invading N2-fixing Acacia species on patterns of nutrient cycling in two Cape ecosystems: Evidence from soil incubation studies and 15N natural abundance values. Oecologia 1995, 101, 375–382. [Google Scholar] [CrossRef]
- Richardson, D.M.; Macdonald, I.A.W.; Forsyth, G.G. Reductions in plant species richness under stands of alien trees and shrubs in the fynbos biome. S. Afr. For. J. 1989, 149, 1–8. [Google Scholar] [CrossRef]
- Verboom, G.A.; Moore, T.E.; Hoffmann, V.; Cramer, M.D. The roles of climate and soil nutrients in shaping the life histories of grasses native to the Cape Floristic Region. Plant Soil 2012, 355, 323–340. [Google Scholar] [CrossRef]
- Maistry, P.M.; Cramer, M.D.; Chimphango, S.B. N and P colimitation of N2-fixing and N-supplied fynbos legumes from the Cape Floristic Region. Plant Soil 2013, 373, 217–228. [Google Scholar] [CrossRef]
- Railoun, M.Z.; Simaika, J.P.; Jacobs, S.M. Leaf litter production and litter nutrient dynamics of invasive Acacia mearnsii and native tree species in riparian forests of the Fynbos biome, South Africa. For. Ecol. Manag. 2021, 498, 119515. [Google Scholar] [CrossRef]
- Crous, C.J.; Drake, D.C.; Jacobsen, A.L.; Pratt, R.B.; Jacobs, S.M.; Esler, K.J. Foliar nitrogen dynamics of an invasive legume compared to native non-legumes in fynbos riparian zones varying in water availability. Water SA 2019, 45, 103–109. [Google Scholar] [CrossRef]
- Wiener, K.D.; Simaika, J.P.; Grenfell, S.E.; Jacobs, S.M. Effects of invasive N2-fixing Acacia mearnsii on sediment nutrient concentrations in mountain streams: Implications of sediment geochemistry for ecosystem recovery. Catena 2020, 195, 104786. [Google Scholar] [CrossRef]
- Lusizi, Z.; Motsi, H.; Nyambo, P.; Elephant, D.E. Black (Acacia mearnsii) and silver wattle (Acacia dealbata) invasive tree species impact on soil physicochemical properties in South Africa: A systematic literature review. Heliyon 2024, 10, e241102. [Google Scholar] [CrossRef]
- Ruwanza, S. Invasion of abandoned agricultural fields by Acacia mearnsii affect soil properties in Eastern Cape, South Africa. Appl. Ecol. Environ. Res. 2017, 15, 127–139. [Google Scholar] [CrossRef]
- Oelofse, M.; Birch-Thomsen, T.; Magid, J.; de Neergaard, A.; van Deventer, R.; Bruun, S.; Hill, T. The impact of black wattle encroachment of indigenous grasslands on soil carbon, Eastern Cape, South Africa. Biol. Invasions 2016, 18, 445–456. [Google Scholar] [CrossRef]
- Netto, S.P.; Sanquetta, C.R.; Caron, B.O.; Behling, A.; Simon, A.A.; Corte, A.P.D.; Bamberg, R. Ground level photosynthetically active radiation dynamics in stands of Acacia mearnsii De Wild. An. Acad. Bras. Ciênc. 2015, 87, 1833–1845. [Google Scholar] [CrossRef]
- Gwate, O.; Mantel, S.K.; Finca, A.; Gibson, L.A.; Munch, Z.; Palmer, A.R. Exploring the invasion of rangelands by Acacia mearnsii (black wattle): Biophysical characteristics and management implications. Afr. J. Range Forage Sci. 2016, 33, 265–273. [Google Scholar] [CrossRef]
- Tassin, J.; Medoc, J.M.; Kull, C.A.; Rivière, J.N.; Balent, G. Can invasion patches of Acacia mearnsii serve as colonizing sites for native plant species on Runion (Mascarene archipelago)? Afr. J. Ecol. 2009, 47, 422–432. [Google Scholar] [CrossRef]
- Murugan, R.; Beggi, F.; Prabakaran, N.; Maqsood, S.; Joergensen, R.G. Changes in plant community and soil ecological indicators in response to Prosopis juliflora and Acacia mearnsii invasion and removal in two biodiversity hotspots in Southern India. Soil Ecol. Lett. 2020, 2, 61–72. [Google Scholar] [CrossRef]
- Boudiaf, I.; Baudoin, E.; Sanguin, H.; Beddiar, A.; Thioulouse, J.; Galiana, A.; Le Roux, C.; Duponnois, R. The exotic legume tree species, Acacia mearnsii, alters microbial soil functionalities and the early development of a native tree species, Quercus suber, in North Africa. Soil Biol. Biochem. 2013, 65, 172–179. [Google Scholar] [CrossRef]
- Slabbert, E.; Jacobs, S.M.; Jacobs, K. The soil bacterial communities of South African fynbos riparian ecosystems invaded by Australian Acacia species. PLoS ONE 2014, 9, e86560. [Google Scholar] [CrossRef] [PubMed]
- Gwate, O.; Mantel, S.K.; Gibson, L.A.; Munch, Z.; Gusha, B.; Palmer, A.R. The effects of Acacia mearnsii (black wattle) on soil chemistry and grass biomass production in a South African semi-arid rangeland: Implications for rangeland rehabilitation. Afr. J. Range Forage Sci. 2021, 38, 270–280. [Google Scholar] [CrossRef]
- van der Colff, D.; Dreyer, L.L.; Valentine, A.; Roets, F. Invasive plant species may serve as a biological corridor for the invertebrate fauna of naturally isolated hosts. J. Insect Conserv. 2015, 19, 863–875. [Google Scholar] [CrossRef]
- Maoela, M.A.; Roets, F.; Jacobs, S.M.; Esler, K.J. Restoration of invaded Cape Floristic Region riparian systems leads to a recovery in foliage-active arthropod alpha-and beta-diversity. J. Insect Conserv. 2016, 20, 85–97. [Google Scholar] [CrossRef]
- Samways, M.J.; Taylor, S. Impacts of invasive alien plants on Red-listed South African dragonflies (Odonata): Working for water. S. Afr. J. Sci. 2004, 100, 78–80. [Google Scholar]
- Prins, N.; Holmes, P.M.; Richardson, D.M.; Musil, C.F. A reference framework for the restoration of riparian vegetation in the Western Cape, South Africa, degraded by invasive Australian Acacias. S. Afr. J. Bot. 2004, 70, 767–776. [Google Scholar] [CrossRef]
- Maoela, M.A.; Jacobs, S.M.; Roets, F.; Esler, K.J. Invasion, alien control and restoration: Legacy effects linked to folivorous insects and phylopathogenic fungi. Aust. Ecol. 2016, 41, 906–917. [Google Scholar] [CrossRef]
- Vieites-Blanco, C.; González-Prieto, S.J. Invasiveness, ecological impacts and control of acacias in southwestern Europe–a review. Web Ecol. 2020, 20, 33–51. [Google Scholar] [CrossRef]
- Perrando, E.R.; Corder, M.P.M. Resprouting of Acacia mearnsii stumps under different ages, seasons and cut heights. Pesq. Agropec. Bras. 2006, 41, 555–562. [Google Scholar] [CrossRef]
- PIER. Pacific Islands Ecosystems at Risk; Institute of Pacific Islands Forestry: USA, 2007. Available online: http://www.hear.org/pier/species/acacia_mearnsii.htm (accessed on 17 June 2025).
- Morris, M.J.; Wood, A.R.; den Breeÿen, A. Plant pathogens and biological control of weeds in South Africa: A review of projects and progress during the last decade. Afr. Entomol. Memoir 1999, 1, 129–137. [Google Scholar]
- Impson, F.A.C.; Kleinjan, C.A.; Hoffmann, J.H.; Mudavanhu, P. A review of research and developments with insect agents used for biological control of Australian Acacia species (Caesalpinioideae) in South Africa. Afr. Entomol. 2021, 29, 693–712. [Google Scholar] [CrossRef]
- Impson, F.A.; Hoffmann, J.H. The efficacy of three seed-destroying Melanterius weevil species (Curculionidae) as biological control agents of invasive Australian Acacia trees (Fabaceae) in South Africa. Biol. Control. 2019, 132, 1–7. [Google Scholar] [CrossRef]
- Impson, F.A.; Post, J.A.; Hoffmann, J.H. Impact of the flower-galling midge, Dasineura rubiformis Kolesik, on the growth of its host plant, Acacia mearnsii De Wild, in South Africa. S. Afr. J. Bot. 2013, 87, 118–121. [Google Scholar] [CrossRef]
- Impson, F.A.C.; Kleinjan, C.A.; Hoffmann, J.H.; Post, J.A. Dasineura rubiformis (Diptera: Cecidomyiidae), a new biological control agent for Acacia mearnsii in South Africa. S. Afr. J. Sci. 2008, 104, 247–249. [Google Scholar]
- Strydom, M.; Veldtman, R.; Ngwenya, M.Z.; Esler, K.J. Invasive Australian Acacia seed banks: Size and relationship with stem diameter in the presence of gall-forming biological control agents. PLoS ONE 2017, 12, e0181763. [Google Scholar] [CrossRef]
- Wilson, J.R.; Gairifo, C.; Gibson, M.R.; Arianoutsou, M.; Bakar, B.B.; Baret, S.; Celesti-Grapow, L.; DiTomaso, J.M.; Dufour-Dror, J.M.; Kueffer, C.; et al. Risk assessment, eradication, and biological control: Global efforts to limit Australian Acacia invasions. Divers. Distrib. 2011, 17, 1030–1046. [Google Scholar] [CrossRef]
- Mukwada, G.; Chingombe, W.; Taru, P. Critical considerations in Acacia mearnsii eradication: A case from South Africa. Geogr. Pol. 2016, 89, 271–286. [Google Scholar] [CrossRef]
- Impson, F.A.C.; Kleinjan, C.A.; Hoffmann, J.H. Suppression of seed production as a long-term strategy in weed biological control: The combined impact of two biocontrol agents on Acacia mearnsii in South Africa. Biol. Control 2021, 154, 104503. [Google Scholar] [CrossRef]
- Richardson, D.M.; Le Roux, J.J.; Wilson, J.R. Australian acacias as invasive species: Lessons to be learnt from regions with long planting histories. South. For. 2015, 77, 31–39. [Google Scholar] [CrossRef]
Invasive Mechanism | References |
---|---|
| [4,16,31,32,33,34,35,36,37,38] |
| [4,38,39,40] |
| [45,46,47] |
| [2,57,60,61,62,63,64,65,66] |
| Unclear |
| [113,114] |
Impact on the abiotic environment | |
| [125,126,127,128,129] |
| [127,130,131,132,133,134] |
| [135,136,137,138,139,140,141,142,143] |
| [145,146] |
Impact on the abiotic environment | |
| [136,137,138,139,140,141,142,143,144,145,146,147,148,149,151] |
| [152,153,154] |
| [149,150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato-Noguchi, H.; Kato, M. Mechanisms and Impact of Acacia mearnsii Invasion. Diversity 2025, 17, 553. https://doi.org/10.3390/d17080553
Kato-Noguchi H, Kato M. Mechanisms and Impact of Acacia mearnsii Invasion. Diversity. 2025; 17(8):553. https://doi.org/10.3390/d17080553
Chicago/Turabian StyleKato-Noguchi, Hisashi, and Midori Kato. 2025. "Mechanisms and Impact of Acacia mearnsii Invasion" Diversity 17, no. 8: 553. https://doi.org/10.3390/d17080553
APA StyleKato-Noguchi, H., & Kato, M. (2025). Mechanisms and Impact of Acacia mearnsii Invasion. Diversity, 17(8), 553. https://doi.org/10.3390/d17080553