Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land
Abstract
1. Introduction
2. Methodology and Data Source
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Measurement of Land-Use Change
- (1)
- Changes in land categories were analyzed through the land-use momentum, attitude, and land-use transfer matrix. Land-use momentum (K) can compare land transformation differences in different periods and is an important indicator for analyzing land-use change [12].
- (2)
- The degree of integrated land-use dynamics can characterize the rate of land-use change throughout the study area.
- (3)
- With the support of ArcGIS tools, the land-use transfer matrix was obtained through interactive overlay calculation to analyze the dynamic transformation process of each land-use type in the Mu Us Sandy Land.
2.3.2. Measurement of Ecosystem Service Values
- (1)
- The equivalent factor of ecosystem service value was revised by using the grain yield per unit area of cultivated land and the grain purchase price of Mu Us Sandy Land in 2020 as the baseline. Xie et al. (2003) and Pan et al. (2021) argue that the economic value corresponding to the per-unit-area equivalent factor for ecosystem service valuation should be set at one-seventh of the product derived from the average unit grain yield multiplied by the grain purchase price [10,38]. The assessment formula is as follows:
- (2)
- The formula for the value of ecosystem services per unit area (VC) of an ecosystem is provided as follows:
- (3)
- The formula for calculating ESV per unit area for different land-use types in the Mu Us Sandy Land is as follows (Table 1):
2.3.3. Measurement of Ecosystem Service Value Sensitivity Index
2.3.4. Spatial Autocorrelation Analysis of ESV
2.3.5. Analysis of Driving Factors in ESV Spatial Heterogeneity
- (1)
- Spatial and temporal variations in ESV are the result of a combination of factors [42]. The factor detector detects the spatial heterogeneity of the dependent variable (ESV in this study) and analyzes the effect of each driver on the spatial distribution of ESV by comparing the q-values:
- (2)
- Interaction detection is used to identify interaction between every two drivers, whether drivers X1 and X2 acting together increase or decrease their influence on ESV or whether the effects of these drivers on ESV are independent of each other. The interactions are categorized into five groups (Table 2).
3. Results
3.1. Variation Characteristics of the LULC
3.2. Dynamics of the ESV
3.3. Spatial Characteristics of the ESV
3.4. Driving Factors of Spatial Heterogeneity in ESV
4. Discussion
4.1. Changes in LULC and ESV
4.2. Spatial Characterization and Driving Mechanisms of ESV
4.3. Limitations and Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural Capital and Ecosystem Services Informing Decisions: From Promise to Practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef]
- Dai, L.; Li, S.; Zhou, W.; Qi, L.; Zhou, L.; Wei, Y.; Li, J.; Shao, G.; Yu, D. Opportunities and Challenges for the Protection and Ecological Functions Promotion of Natural Forests in China. For. Ecol. Manag. 2018, 410, 187–192. [Google Scholar] [CrossRef]
- Reid, W.; Mooney, H.; Cropper, A.; Capistrano, D.; Carpenter, S.; Chopra, K. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Gordon, J.E.; Barron, H.F. The Role of Geodiversity in Delivering Ecosystem Services and Benefits in Scotland. Scott. J. Geol. 2013, 49, 41–58. [Google Scholar] [CrossRef]
- Fox, N.; Graham, L.J.; Eigenbrod, F.; Bullock, J.M.; Parks, K.E. Incorporating Geodiversity in Ecosystem Service Decisions. Ecosyst. People 2020, 16, 151–159. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Zhang, H. An Ecosystem Service Valuation of Land Use Change in Taiyuan City, China. Ecol. Modell. 2012, 225, 127–132. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of Ecosystem Service Values in Response to Land Use/Land Cover Dynamics in Munessa-Shashemene Landscape of the Ethiopian Highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Morshed, S.R.; Fattah, M.A.; Haque, M.N.; Morshed, S.Y. Future Ecosystem Service Value Modeling with Land Cover Dynamics by Using Machine Learning Based Artificial Neural Network Model for Jashore City, Bangladesh. Phys. Chem. Earth. 2022, 126, 103021. [Google Scholar] [CrossRef]
- Pan, N.; Guan, Q.; Wang, Q.; Sun, Y.; Li, H.; Ma, Y. Spatial Differentiation and Driving Mechanisms in Ecosystem Service Value of Arid Region:A Case Study in the Middle and Lower Reaches of Shule River Basin, NW China. J. Clean. Prod. 2021, 319, 128718. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F. Managing Stand Structure as Part of Ecologically Sustainable Forest Management in Australian Mountain Ash Forests. Conserv. Biol. 1997, 11, 1053–1068. [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.-T.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-Temporal Patterns of Land Use/Cover Changes over the Past 20 Years in the Middle Reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Huang, X.; Wei, Y.H.D. Effect of Land-Use Change and Optimization on the Ecosystem Service Values of Jiangsu Province, China. Ecol. Indic. 2020, 117, 106507. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Gan, T.Y. Impact of Anthropogenic Climate Change and Human Activities on Environment and Ecosystem Services in Arid Regions. Sci. Total Environ. 2018, 633, 1329–1344. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Shahfahad; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of Ecosystem Services (ESs) in Response to Land Use Land Cover (LU/LC) Changes in the Lower Gangetic Plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Cabral, P.; Feger, C.; Levrel, H.; Chambolle, M.; Basque, D. Assessing the Impact of Land-Cover Changes on Ecosystem Services: A First Step toward Integrative Planning in Bordeaux, France. Ecosyst. Serv. 2016, 22, 318–327. [Google Scholar] [CrossRef]
- Niquisse, S.; Cabral, P. Assessment of Changes in Ecosystem Service Monetary Values in Mozambique. Environ. Dev. 2018, 25, 12–22. [Google Scholar] [CrossRef]
- Gang, C.; Zhang, J.; Li, J. The Advances in the Carbon Source/Sink Researches of Typical Grassland Ecosystem in China. Procedia Environ. Sci. 2011, 10, 1646–1653. [Google Scholar] [CrossRef]
- Maestre, F.T.; Escolar, C.; Ladron De Guevara, M.; Quero, J.L.; Lazaro, R.; Delgado-Baquerizo, M.; Ochoa, V.; Berdugo, M.; Gozalo, B.; Gallardo, A. Changes in Biocrust Cover Drive Carbon Cycle Responses to Climate Change in Drylands. Glob. Change Biol. 2013, 19, 3835–3847. [Google Scholar] [CrossRef]
- Li, W.; Ciais, P.; Wang, Y.; Peng, S.; Broquet, G.; Ballantyne, A.P.; Canadell, J.G.; Cooper, L.; Friedlingstein, P.; Le Quere, C.; et al. Reducing Uncertainties in Decadal Variability of the Global Carbon Budget with Multiple Datasets. Proc. Natl. Acad. Sci. USA 2016, 113, 13104–13108. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Stafford Smith, D.M.; Lambin, E.F.; Turner, B.L.; Mortimore, M.; Batterbury, S.P.J.; Downing, T.E.; Dowlatabadi, H.; Fernandez, R.J.; Herrick, J.E.; et al. Global Desertification: Building a Science for Dryland Development. Science 2007, 316, 847–851. [Google Scholar] [CrossRef]
- Guan, X.; Ma, J.; Huang, J.; Huang, R.; Zhang, L.; Ma, Z. Impact of Oceans on Climate Change in Drylands. Sci. China Earth Sci. 2019, 62, 891–908. [Google Scholar] [CrossRef]
- Li, J.; Liu, Z.; He, C.; Tu, W.; Sun, Z. Are the Drylands in Northern China Sustainable? A Perspective from Ecological Footprint Dynamics from 1990 to 2010. Sci. Total Environ. 2016, 553, 223–231. [Google Scholar] [CrossRef]
- Gao, W.; Zheng, C.; Liu, X.; Lu, Y.; Chen, Y.; Wei, Y.; Ma, Y. NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China. Ecol. Indic. 2022, 137, 108745. [Google Scholar] [CrossRef]
- Yang, L.; Sun, Z.; Li, J.; Shi, L.; Kong, H.; Yang, Y.; Li, T. Spatiotemporal Patterns and Driving Forces of Land-Use and Land-Cover Change in the Mu Us Sandy Land, China from 1980 to 2018. Arid Land Res. Manag. 2022, 36, 109–124. [Google Scholar] [CrossRef]
- Zhang, D.; Deng, H. Historical Human Activities Accelerated Climate-Driven Desertification in China’s Mu Us Desert. Sci. Total Environ. 2020, 708, 134771. [Google Scholar] [CrossRef]
- Mason, J.A.; Swinehart, J.B.; Lu, H.; Miao, X.; Cha, P.; Zhou, Y. Limited Change in Dune Mobility in Response to a Large Decrease in Wind Power in Semi-Arid Northern China since the 1970s. Geomorphology 2008, 102, 351–363. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Xu, X.; Chen, Y.; Pei, F. A New Global Land-Use and Land-Cover Change Product at a 1-Km Resolution for 2010 to 2100 Based on Human–Environment Interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1–20. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic Analysis of Ecological Environment Combined with Land Cover and NDVI Changes and Implications for Sustainable Urban-Rural Development: The Case of Mu Us Sandy Land, China. J. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- Xie, S.; Mo, X.; Hu, S.; Liu, S. Contributions of Climate Change, Elevated Atmospheric CO2 and Human Activities to ET and GPP Trends in the Three-North Region of China. Agric. For. Meteorol. 2020, 295, 108183. [Google Scholar] [CrossRef]
- Hu, Y.; Li, H.; Wu, D.; Chen, W.; Zhao, X.; Hou, M.; Li, A.; Zhu, Y. LAI-Indicated Vegetation Dynamic in Ecologically Fragile Region: A Case Study in the Three-North Shelter Forest Program Region of China. Ecol. Indic. 2021, 120, 106932. [Google Scholar] [CrossRef]
- Li, N.; Yan, C.Z.; Xie, J.L. Remote Sensing Monitoring Recent Rapid Increase of Coal Mining Activity of an Important Energy Base in Northern China, a Case Study of Mu Us Sandy Land. Resour. Conserv. Recycl. 2015, 94, 129–135. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.; Zhou, J.; Yue, P.; Wang, R.; Wang, S. East Asian Summer Monsoon Substantially Affects the Inter-Annual Variation of Carbon Dioxide Exchange in Semi-Arid Grassland Ecosystem in Loess Plateau. Agric. Ecosyst. Environ. 2019, 272, 218–229. [Google Scholar] [CrossRef]
- Zhuang, D.; Liu, J. Study on the Model of Regional Differentiation of Land Use Degree in China. J. Nat. Resour. 1997, 12, 10–16. (In Chinese) [Google Scholar]
- Xu, Y.; Xu, X.; Tang, Q. Human activity intensity of land surface: Concept, methods and application in China. J. Geogr. Sci. 2016, 26, 1349–1361. (In Chinese) [Google Scholar] [CrossRef]
- Redo, D.J.; Aide, T.M.; Clark, M.L.; Andrade-Nunez, M.J. Impacts of Internal and External Policies on Land Change in Uruguay, 2001-2009. Environ. Conserv. 2012, 39, 122–131. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. (In Chinese) [Google Scholar]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in Ecosystem Service Values in the San Antonio Area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Good, I.J. The Philosophy of Exploratory Data Analysis. Philos. Sci. 1983, 50, 283–295. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and Prospective-All Databases. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- He, C.; Li, J.; Zhang, X.; Liu, Z.; Zhang, D. Will Rapid Urban Expansion in the Drylands of Northern China Continue: A Scenario Analysis Based on the Land Use Scenario Dynamics-Urban Model and the Shared Socioeconomic Pathways. J. Clean. Prod. 2017, 165, 57–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal Characteristics in Ecosystem Service Value and Its Interaction with Human Activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Wang, J.; Qiu, J. Value Assessment of Ecosystem Services in Nature Reserves in Ningxia, China: A Response to Ecological Restoration. PLoS ONE 2014, 9, e89174. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable Land Use Management for Improving Land Eco-Efficiency: A Case Study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-Use/Land-Cover Change and Ecosystem Service Provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing Changes in the Value of Ecosystem Services in Response to Land-Use/Land-Cover Dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Hu, X.; Hong, W.; Qiu, R.; Hong, T.; Chen, C.; Wu, C. Geographic Variations of Ecosystem Service Intensity in Fuzhou City, China. Sci. Total Environ. 2015, 512, 215–226. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Hao, S.; Xu, W.; Lv, L.; Yu, S. Spatial—Temporal Variation and Tradeoffs/Synergies Analysis on Multiple Ecosystem Services: A Case Study in the Three—River Headwaters Region of China. Ecol. Indic. 2020, 116, 106494. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change Hum. Policy Dimens. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial Differences of Ecosystem Services and Their Driving Factors: A Comparation Analysis among Three Urban Agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Q.; Hu, Y. Regional Differences of China’s Urban Expansion from Late 20th to Early 21st Century Based on Remote Sensing Information. Chin. Geogr. Sci. 2012, 22, 1–14. [Google Scholar] [CrossRef]
- Rukundo, E.; Liu, S.; Dong, Y.; Rutebuka, E.; Asamoah, E.F.; Xu, J.; Wu, X. Spatio-Temporal Dynamics of Critical Ecosystem Services in Response to Agricultural Expansion in Rwanda, East Africa. Ecol. Indic. 2018, 89, 696–705. [Google Scholar] [CrossRef]
- Fox, N.; Graham, L.J.; Eigenbrod, F.; Bullock, J.M.; Parks, K.E. Geodiversity Supports Cultural Ecosystem Services: An Assessment Using Social Media. Geoheritage 2022, 14, 27. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing Landscape Fragmentation’s Effects on Ecosystem Services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef]
- Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying Landscape Pattern and Ecosystem Service Value Changes: A Case Study at the County Level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e01110. [Google Scholar] [CrossRef]
Service Type Categories | Service Type Categories | Farmland | Woodland | Grassland | Water | Built-Up Area | Unused Land | Total |
---|---|---|---|---|---|---|---|---|
Provision services | Food production | 1495.79 | 360.75 | 410.61 | 1152.64 | 0.00 | 17.60 | 3437.38 |
Raw material production | 703.90 | 835.88 | 604.18 | 642.31 | 0.00 | 52.79 | 2839.06 | |
Water resources supply | 35.19 | 431.14 | 334.35 | 9573.04 | 0.00 | 35.19 | 10,408.92 | |
Regulatory services | Gas regulation | 1179.03 | 2736.41 | 2123.43 | 2349.27 | 0.00 | 193.57 | 8581.71 |
Climate regulation | 633.51 | 8182.84 | 5613.60 | 5182.46 | 0.00 | 175.97 | 19,788.39 | |
Environmental purification | 175.97 | 2437.25 | 1853.60 | 8050.86 | 0.00 | 545.52 | 13,063.21 | |
Hydrological Regulation | 475.13 | 5886.36 | 4111.95 | 111,277.77 | 0.00 | 369.55 | 122,120.77 | |
Support services | Soil conservation | 1812.54 | 3325.93 | 2586.83 | 2850.79 | 0.00 | 228.77 | 10,804.86 |
Nutrient cycling maintenance | 211.17 | 255.16 | 199.44 | 219.97 | 0.00 | 17.60 | 903.34 | |
Biodiversity protection | 228.77 | 3035.57 | 2352.20 | 9168.30 | 0.00 | 211.17 | 14,996.00 | |
Cultural services | Aesthetic landscape | 105.58 | 1328.61 | 1038.25 | 5824.77 | 0.00 | 87.99 | 8385.21 |
Total | 7056.60 | 28,815.90 | 21,228.45 | 156,292.17 | 0.00 | 1935.72 | 215,328.84 |
Interaction Type | q Value Relationship |
---|---|
Non-linear reduction | q(X1∩X2) < min(q(X1), q(X2)) |
Single-factor non-linear reduction | min(q(X1), q(X2)) < q(X1∩X2) < max(q(X1), q(X2)) |
Bi-factor enhancement | q(X1∩X2) > max(q(X1), q(X2)) |
Independent | q(X1∩X2) = q(X1) + q(X2) |
Non-linear enhancement | q(X1∩X2) > q(X1) + q(X2) |
LULC Classes | Area(km2) | K(%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1980 | 1990 | 2000 | 2010 | 2020 | 1980–1990 | 1990–2000 | 2000–2010 | 2010–2020 | 1980–2020 | |
Farmland | 13,462 | 13,472 | 13,946 | 13,443 | 13,246 | 0.01 | 0.35 | −0.36 | −0.15 | −0.04 |
Woodland | 2321 | 2322 | 2369 | 2784 | 2880 | 0.00 | 0.20 | 1.75 | 0.34 | 0.60 |
Grassland | 52,450 | 52,414 | 52,781 | 53,514 | 52,065 | −0.01 | 0.07 | 0.14 | −0.27 | −0.02 |
Water | 1263 | 1219 | 1186 | 1055 | 1167 | −0.35 | −0.27 | −1.10 | 1.06 | −0.19 |
Built-up area | 463 | 468 | 503 | 954 | 1863 | 0.11 | 0.75 | 8.97 | 9.53 | 7.56 |
Unused land | 21,184 | 21,248 | 20,358 | 19,393 | 19,922 | 0.03 | −0.42 | −0.47 | 0.27 | −0.15 |
Year | Land-Use Type | 2020 | |||||
---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Water | Built-Up Area | Unused Land | ||
1980 | Farmland | 11,649.0366 | 296.4366 | 1211.5458 | 31.7052 | 206.1954 | 66.7917 |
Woodland | 63.0819 | 1896.7761 | 207.0783 | 11.3427 | 67.2561 | 75.8079 | |
Grassland | 1171.2042 | 526.8645 | 48,008.5488 | 96.8832 | 781.7463 | 1864.4283 | |
Water | 42.7203 | 6.9903 | 91.53 | 966.6189 | 36.5607 | 118.9107 | |
Built-up area | 15.0012 | 0.7371 | 13.923 | 0.8541 | 430.2234 | 1.9377 | |
Unused land | 304.7229 | 152.325 | 2532.852 | 59.7609 | 340.6158 | 17,794.0881 |
Year | Farmland | Woodland | Grassland | Water | Built-Up Area | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|
Ecosystem services value | 1980 | 9499.59 | 6688.17 | 111,343.21 | 19,739.70 | 0.00 | 4100.64 | 151,371.31 |
1990 | 9506.65 | 6691.05 | 111,266.79 | 19,052.02 | 0.00 | 4113.03 | 150,629.53 | |
2000 | 9841.13 | 6826.49 | 112,045.87 | 18,536.25 | 0.00 | 3940.75 | 151,190.49 | |
2010 | 9486.18 | 8022.35 | 113,601.91 | 16,488.82 | 0.00 | 3753.95 | 151,353.22 | |
2020 | 9347.17 | 8298.98 | 110,525.91 | 18,239.30 | 0.00 | 3856.35 | 150,267.71 | |
Change (%) | 1980–1990 | 0.07 | 0.04 | −0.07 | −3.48 | 0.00 | 0.30 | −0.49 |
1990–2000 | 3.40 | 1.98 | 0.70 | −2.78 | 0.00 | −4.37 | 0.37 | |
2000–2010 | −3.61 | 17.52 | 1.39 | −11.05 | 0.00 | −4.74 | 0.11 | |
2010–2020 | −1.47 | 3.45 | −2.71 | 10.62 | 0.00 | 2.73 | −0.72 | |
1980–2020 | −1.60 | 24.08 | −0.73 | −7.60 | 0.00 | −5.96 | −0.73 |
1980 | 1990 | 2000 | 2010 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Service type categories | Service type categories | % | % | % | % | % | |||||
Provision services | Food production | 4433.86 | 2.93 | 4428.95 | 2.94 | 4511.25 | 2.98 | 4464.28 | 2.95 | 4392.62 | 2.92 |
Raw material production | 4503.49 | 2.98 | 4499.61 | 2.99 | 4552.26 | 3.01 | 4582.32 | 3.03 | 4498.92 | 2.99 | |
Water resources supply | 3184.76 | 2.10 | 3141.74 | 2.09 | 3122.98 | 2.07 | 3034.80 | 2.01 | 3098.88 | 2.06 | |
Regulatory services | Gas regulation | 14,066.51 | 9.29 | 14,051.22 | 9.33 | 14,172.91 | 9.37 | 14,333.36 | 9.47 | 14,065.27 | 9.36 |
Climate regulation | 33,222.74 | 21.95 | 33,182.30 | 22.03 | 33,424.05 | 22.11 | 34,058.37 | 22.50 | 33,378.39 | 22.21 | |
Environmental purification | 12,697.19 | 8.39 | 12,659.00 | 8.40 | 12,671.71 | 8.38 | 12,741.76 | 8.42 | 12,612.13 | 8.39 | |
Hydrological regulation | 38,410.25 | 25.37 | 37,909.25 | 25.17 | 37,710.24 | 24.94 | 36,738.63 | 24.27 | 37,455.82 | 24.93 | |
Support services | Soil conservation | 17,624.60 | 11.64 | 17,606.36 | 11.69 | 17,773.07 | 11.76 | 17,950.12 | 11.86 | 17,615.54 | 11.72 |
Nutrient cycling maintenance | 1454.61 | 0.96 | 1453.28 | 0.96 | 1469.51 | 0.97 | 1479.52 | 0.98 | 1452.31 | 0.97 | |
Biodiversity protection | 14,955.10 | 9.88 | 14,908.18 | 9.90 | 14,970.57 | 9.90 | 15,116.97 | 9.99 | 14,914.63 | 9.93 | |
Cultural services | Aesthetic landscape | 6818.20 | 4.50 | 6789.64 | 4.51 | 6811.94 | 4.51 | 6853.07 | 4.53 | 6783.20 | 4.51 |
Total | 151,371.31 | 100.00 | 150,629.53 | 100.00 | 151,190.49 | 100.00 | 151,353.22 | 100.00 | 150,267.71 | 100.00 |
Change in Valuation Coefficient | 1980 | 1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
% | CS | % | CS | % | CS | % | CS | % | CS | |
Farmland VC ± 50% | 3.14 | 0.0628 | 3.16 | 0.0631 | 3.25 | 0.0651 | 3.13 | 0.0627 | 3.11 | 0.0622 |
Woodland VC ± 50% | 2.21 | 0.0442 | 2.22 | 0.0444 | 2.26 | 0.0452 | 2.65 | 0.0530 | 2.76 | 0.0552 |
Grassland VC ± 50% | 36.78 | 0.7356 | 36.93 | 0.7387 | 37.06 | 0.7411 | 37.53 | 0.7506 | 36.78 | 0.7355 |
Water VC ± 50% | 6.52 | 0.1304 | 6.32 | 0.1265 | 6.13 | 0.1226 | 5.45 | 0.1089 | 6.07 | 0.1214 |
Built-up area VC ± 50% | 0.00 | 0.0000 | 0.00 | 0.0000 | 0.00 | 0.0000 | 0.00 | 0.0000 | 0.00 | 0.0000 |
Unused land VC ± 50% | 1.35 | 0.0271 | 1.37 | 0.0273 | 1.3 | 0.0261 | 1.24 | 0.0248 | 1.28 | 0.0257 |
Year | 1980 | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|---|
Moran’s I | 0.46 | 0.47 | 0.46 | 0.42 | 0.45 |
Z (I) | 91.64 | 93.51 | 92.37 | 84.75 | 89.70 |
p-value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Variables | Code | q Statistic | p Value | |
---|---|---|---|---|
X11 | Land-use intensity | LA | 0.1483 | 0.000 |
X10 | Human activity intensity | HAI | 0.0764 | 0.000 |
X14 | Shannon’s Diversity Index | SHDI | 0.0632 | 0.000 |
X13 | Landscape Division Index | DIVISION | 0.0557 | 0.000 |
TEM | PRE | PE | ELEV | SLP | NDVI | NPP | POP | GDP | HAI | LA | MSI | DIVISION | SHDI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TEM | 0.0191 | |||||||||||||
PRE | 0.0758 | 0.0269 | ||||||||||||
PE | 0.0489 | 0.0605 | 0.0149 | |||||||||||
ELEV | 0.0664 | 0.0524 | 0.0581 | 0.0131 | ||||||||||
SLP | 0.0375 | 0.0409 | 0.0416 | 0.0337 | 0.0075 | |||||||||
NDVI | 0.0450 | 0.0799 | 0.0475 | 0.0470 | 0.0305 | 0.0109 | ||||||||
NPP | 0.0427 | 0.0682 | 0.0367 | 0.0395 | 0.0224 | 0.0445 | 0.0056 | |||||||
POP | 0.0354 | 0.0514 | 0.0397 | 0.0358 | 0.0257 | 0.0354 | 0.0267 | 0.0088 | ||||||
GDP | 0.0506 | 0.0704 | 0.0502 | 0.0462 | 0.0458 | 0.0578 | 0.0499 | 0.0393 | 0.0232 | |||||
HAI | 0.1368 | 0.1427 | 0.1123 | 0.1136 | 0.0920 | 0.1156 | 0.1083 | 0.1110 | 0.1174 | 0.0764 | ||||
LA | 0.1680 | 0.1790 | 0.1678 | 0.1733 | 0.1639 | 0.1732 | 0.1727 | 0.1708 | 0.1731 | 0.2904 | 0.1483 | |||
MSI | 0.0420 | 0.0495 | 0.0369 | 0.0352 | 0.0297 | 0.0365 | 0.0314 | 0.0355 | 0.0483 | 0.1015 | 0.1681 | 0.0194 | ||
DIVISION | 0.0836 | 0.0811 | 0.0733 | 0.0782 | 0.0719 | 0.0869 | 0.0756 | 0.0693 | 0.0849 | 0.1530 | 0.1974 | 0.0613 | 0.0557 | |
SHDI | 0.0963 | 0.0953 | 0.0889 | 0.0886 | 0.0803 | 0.0998 | 0.0876 | 0.0783 | 0.0957 | 0.1494 | 0.2001 | 0.0732 | 0.0741 | 0.0632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Yao, Y.; Gao, Y.; Guo, J. Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land. Diversity 2025, 17, 516. https://doi.org/10.3390/d17080516
Shi C, Yao Y, Gao Y, Guo J. Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land. Diversity. 2025; 17(8):516. https://doi.org/10.3390/d17080516
Chicago/Turabian StyleShi, Chunjun, Yao Yao, Yuyi Gao, and Jingpeng Guo. 2025. "Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land" Diversity 17, no. 8: 516. https://doi.org/10.3390/d17080516
APA StyleShi, C., Yao, Y., Gao, Y., & Guo, J. (2025). Evaluation of Multiple Ecosystem Service Values and Identification of Driving Factors for Sustainable Development in the Mu Us Sandy Land. Diversity, 17(8), 516. https://doi.org/10.3390/d17080516