Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera)
Abstract
1. Introduction
2. Materials and Methods
2.1. Shore Bug Species Used in This Study
- Saldula pallipes Fabricius, 1794 (Hemiptera, Saldidae) (Figure 1A): Takao, Tokyo, Japan, 22 May 2018, by TAY (ID: yA4, aTK10, and aTK14). Suwa, Nagano, Japan, 8 September 2018, and 12 May 2020, by JY/KT (ID: aSW03).
- Teloleuca kusnezowi Lindberg, 1934 (Hemiptera, Saldidae) (Figure 2B): Hamamasu, Hokkaido, Japan, 10 June 2018; 24 June 2021; and 21 June 2022, by TAY/AK/RH (for nymphs) (ID: aH54, aH56, aH85, and aH2051). Hamamasu, Hokkaido, Japan, 14 July 2020, by RN/KT (for adults) (ID: tX0).
- Macrosaldula violacea Cobben, 1985 (Hemiptera, Saldidae) (Figure 2C): Sapporo, Hokkaido, Japan, 16 July 2020, by RNR/KT (ID: tH05 and aH2012).
- Salduncula decempunctata Miyamoto, 1963 (Hemiptera, Saldidae) (Figure 2D): Ishigaki, Okinawa, Japan, 23 June 2019, by JY (ID: y1–2, y1–3, and aIG11).
- Corallocoris satoi Miyamoto, 1963 (Hemiptera, Omaniidae) (Figure 2E): Nago, Okinawa, Japan, 30 June 2019, by MO/NI/KT (ID: t1.10 and aOK2501).
2.2. Husbandry of T. kusnezowi Nymphs and Adults
2.3. Dissection, Optical Microscopy, and Fixation of MAGs
2.4. Immunofluorescence of MAG
2.5. Laser Confocal Microscopy
2.6. Transmission Electron Microscopy (TEM)
2.7. Nucleotide Sequencing of mtCOI and Phylogenetic Analysis
3. Results
3.1. Discovery of Syncytial Epithelium in the MAG of Saldula pallipes
3.2. Diversity of MAG Epithelial Multinucleation Across Various Taxa in Leptopodomorpha
3.3. Expansion of MAG Luminal Volume During Adult Maturation
3.4. Mechanism of Multinucleation in Teloleuca MAG Epithelia
4. Discussion
4.1. Evolutionary Diversity of MAG Syncytia in Hemiptera
4.2. Possible Function of Syncytial MAGs
4.3. Mechanism of Syncytium Formation
4.4. Development and Characteristics of Outer Muscles
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAG | Male Accessory Gland |
PBS | Phosphate-Buffered Saline |
PCR | Polymerase Chain Reaction |
mtCOI | Mitochondrial cytochrome oxidase subunit I |
TEM | Transmission Electron Microscopy |
References
- Rios, A.C.; Fu, N.Y.; Jamieson, P.R.; Pal, B.; Whitehead, L.; Nicholas, K.R.; Lindeman, G.J.; Visvader, J.E. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat. Commun. 2016, 7, 11400. [Google Scholar] [CrossRef]
- Borella Marfil Anhê, A.C.; Maia Godoy, R.S.; Nacif-Pimenta, R.; Barbosa, W.F.; Lacerda, M.V.; Monteiro, W.M.; Costa Secundino, N.F.; Paolucci Pimenta, P.F. Microanatomical and secretory characterization of the salivary gland of the Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), a main vector of Chagas disease. Open Biol. 2021, 11, 210028. [Google Scholar] [CrossRef] [PubMed]
- Bertram, M.J.; Akerkar, G.A.; Ard, R.L.; Gonzalez, C.; Wolfner, M.F. Cell type-specific gene expression in the Drosophila melanogaster male accessory gland. Mech. Dev. 1992, 38, 33–40. [Google Scholar] [CrossRef]
- Taniguchi, K.; Kokuryo, A.; Imano, T.; Minami, R.; Nakagoshi, H.; Adachi-Yamada, T. Binucleation of Drosophila Adult Male Accessory Gland Cells Increases Plasticity of Organ Size for Effective Reproduction. Biol. Syst. 2012, 1, e101. [Google Scholar] [CrossRef]
- Taniguchi, K.; Kokuryo, A.; Imano, T.; Nakagoshi, H.; Adachi-Yamada, T. Binucleation of Accessory Gland Lobe Contributes to Effective Ejection of Seminal Fluid in Drosophila melanogaster. Zool. Sci. 2018, 35, 446–458. [Google Scholar] [CrossRef]
- Kaulenas, M. Insect Accessory Reproductive Structures: Function, Structure, and Development; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 31. [Google Scholar]
- Hopkins, B.R.; Allen, S.E.; Avila, F.W.; Wolfner, M.F. Male Reproductive Glands and Their Secretions in Insects, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Chen, P.S.; Stumm-Zollinger, E.; Aigaki, T.; Balmer, J.; Bienz, M.; Bohlen, P. A male accessory gland peptide that regulates reproductive behavior of female D. Melanogaster. Cell 1988, 54, 291–298. [Google Scholar] [CrossRef]
- Aigaki, T.; Fleischmann, I.; Chen, P.-S.; Kubli, E. Ectopic expression of sex peptide alters reproductive behavior of female D. Melanogaster. Neuron 1991, 7, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Chapman, T. Seminal fluid-mediated fitness traits in Drosophila. Heredity 2001, 87, 511–521. [Google Scholar] [CrossRef]
- Gwynne, G.T. Katydids and Bush-Crickets: Reproductive Behavior and Evolution of the Tettigoniidae; Cornell University Press: Ithaca, NA, USA, 2001. [Google Scholar]
- Lewis, S.M.; Cratsley, C.K.; Rooney, J.A. Nuptial gifts and sexual selection in photinus fireflies. Integr. Comp. Biol. 2004, 44, 234–237. [Google Scholar] [CrossRef]
- Carvalho, G.B.; Kapahi, P.; Anderson, D.J.; Benzer, S. Allocrine modulation of feeding behavior by the sex peptide of Drosophila. Curr. Biol. 2006, 16, 692–696. [Google Scholar] [CrossRef]
- Ravi Ram, K.; Wolfner, M.F. Seminal influences: Drosophila Acps and the molecular interplay between males and females during reproduction. Integr. Comp. Biol. 2007, 47, 427–445. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hayashi, F.; Lavine, L.C.; Yang, D. Is diversification in male reproductive traits driven by evolutionary trade-offs between weapons and nuptial gifts? Proc. Biol. Sci. 2015, 282, 20150247. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2003, 100, 9929–9933. [Google Scholar] [CrossRef] [PubMed]
- Naccarati, C.; Audsley, N.; Keen, J.N.; Kim, J.-H.; Howell, G.J.; Kim, Y.-J.; Isaac, R.E. The host-seeking inhibitory peptide, Aea-HP-1, is made in the male accessory gland and transferred to the female during copulation. Peptides 2012, 34, 150–157. [Google Scholar] [CrossRef]
- Duvall, L.B.; Basrur, N.S.; Molina, H.; McMeniman, C.J.; Vosshall, L.B. A peptide signaling system that rapidly enforces paternity in the Aedes aegypti mosquito. Curr. Biol. 2017, 27, 3734–3742. e3735. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Zhang, N.; Bu, R.-T.; Nässel, D.R.; Gao, C.-F.; Wu, S.-F. A novel male accessory gland peptide reduces female post-mating receptivity in the brown planthopper. PLoS Genet. 2025, 21, e1011699. [Google Scholar] [CrossRef]
- Bangham, J.; Chapman, T.; Partridge, L. Effects of body size, accessory gland and testis size on pre-and postcopulatory success in Drosophila melanogaster. Anim. Behav. 2002, 64, 915–921. [Google Scholar] [CrossRef]
- Wigby, S.; Sirot, L.K.; Linklater, J.R.; Buehner, N.; Calboli, F.C.; Bretman, A.; Wolfner, M.F.; Chapman, T. Seminal fluid protein allocation and male reproductive success. Curr. Biol. 2009, 19, 751–757. [Google Scholar] [CrossRef]
- Takeda, K.; Yamauchi, J.; Miki, A.; Kim, D.; Leong, X.Y.; Doggett, S.L.; Lee, C.Y.; Adachi-Yamada, T. Binucleation of male accessory gland cells in the common bed bug Cimex lectularius. Sci. Rep. 2019, 9, 6500. [Google Scholar] [CrossRef]
- Takeda, K.; Yamauchi, J.; Adachi-Yamada, T. Morphological and developmental traits of the binucleation of male accessory gland cells in the benthic water bug, Aphelocheirus vittatus (Hemiptera: Aphelochiridae). J. Insect Sci. 2020, 20, 18. [Google Scholar] [CrossRef]
- Awiti, L.R.S. A strange multinuclear condition in the epithelial cells of the mesadenial accessory reproductive gland of Dysdercus fascjatus SIGNORET. Insect Sci. Appl. 1981, 2, 167–173. [Google Scholar]
- Takeda, K.; Okumura, T.; Taniguchi, K.; Adachi-Yamada, T. Adult Intestine Aging Model. Adv. Exp. Med. Biol. 2018, 1076, 11–23. [Google Scholar] [CrossRef]
- Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Matzen da Silva, J.; Creer, S.; Dos Santos, A.; Costa, A.C.; Cunha, M.R.; Costa, F.O.; Carvalho, G.R. Systematic and evolutionary insights derived from mtDNA COI barcode diversity in the Decapoda (Crustacea: Malacostraca). PLoS ONE 2011, 6, e19449. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef]
- Park, D.-S.; Suh, S.-J.; Oh, H.-W.; Hebert, P.D. Recovery of the mitochondrial COI barcode region in diverse Hexapoda through tRNA-based primers. BMC Genom. 2010, 11, 1–7. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.; Ren, D. New shore bug (Hemiptera, Heteroptera, Saldidae) from the Early Cretaceous of China with phylogenetic analyses. ZooKeys 2011, 130, 185–198. [Google Scholar]
- Wu, Y.-F.; Liu, X.; Zhang, F.; Wang, J.-J. Complete mitochondrial genome of Saldoida armata Horváth, 1911 (Heteroptera: Saldidae) and phylogenetic analysis. Mitochondrial DNA Part B 2024, 9, 1341–1344. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Dey, S.K. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Rep. 2015, 11, 358–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takeda, K.; Yamauchi, J.; Naoi, R.; Ishikawa, T.; Adachi-Yamada, T. Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera). Diversity 2025, 17, 481. https://doi.org/10.3390/d17070481
Takeda K, Yamauchi J, Naoi R, Ishikawa T, Adachi-Yamada T. Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera). Diversity. 2025; 17(7):481. https://doi.org/10.3390/d17070481
Chicago/Turabian StyleTakeda, Koji, Jun Yamauchi, Riku Naoi, Tadashi Ishikawa, and Takashi Adachi-Yamada. 2025. "Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera)" Diversity 17, no. 7: 481. https://doi.org/10.3390/d17070481
APA StyleTakeda, K., Yamauchi, J., Naoi, R., Ishikawa, T., & Adachi-Yamada, T. (2025). Unusual Occurrence of Syncytial Epithelia in the Male Accessory Glands of Shore Bugs (Leptopodomorpha in Hemiptera). Diversity, 17(7), 481. https://doi.org/10.3390/d17070481