Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Recommendations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Renner, S.S. Rewardless Flowers in the Angiosperms and the Role of Insect Cognition in Their Evolution. Plant-Pollinator Interactions: From specialization to Generalization; University of Chicago Press: Chicago, IL, USA, 2007; pp. 123–244. [Google Scholar]
- Ackerman, J. Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1986, 1, 108–113. [Google Scholar]
- Nilsson, L.A. Deep flowers for long tongues. Trends Ecol. Evol. 1998, 13, 259–260. [Google Scholar] [CrossRef]
- Jersáková, J.; Johnson, S.D.; Kindlmann, P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. Camb. Philos. Soc. 2006, 81, 219–235. [Google Scholar] [CrossRef] [PubMed]
- Kunze, J.; Gumbert, A. The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav. Ecol. 2001, 12, 447–456. [Google Scholar] [CrossRef]
- Galizia, C.G.; Kunze, J.; Gumbert, A.; Borg-Karlson, A.K.; Sachse, S.; Markl, C.; Menzel, R. Relationship of visual and olfactory signal parameters in a food-deceptive flower mimicry system. Behav. Ecol. 2005, 16, 159–168. [Google Scholar] [CrossRef]
- Jersáková, J.; Jürgens, A.; Šmilauer, P.; Johnson, S.D. The evolution of floral mimicry: Identifying traits that visually attract pollinators. Funct. Ecol. 2012, 26, 1381–1389. [Google Scholar] [CrossRef]
- Van der Cingel, N.A. An Atlas of Orchid Pollination; Balkema Publishers: Rotterdam, The Netherlands, 2001. [Google Scholar]
- Gill, D.E. Fruiting failure, pollination inefficiency, and speciation in orchids. In Speciation and Its Consequences; Otte, D., Endler, J.A., Eds.; Academy of Natural Sciences Publications: Philadelphia, PA, USA, 1989; pp. 458–481. [Google Scholar]
- Neiland, M.R.M.; Wilcock, C.C. Fruit set, nectar reward, and rarity in the Orchidaceae. Am. J. Bot. 1998, 85, 1657–1671. [Google Scholar] [CrossRef]
- Tremblay, R.L.; Ackerman, J.D.; Zimmerman, J.K.; Calvo, R.N. Variation in sexual reproduction in orchids and its evolutionary consequences: A spasmodic journey to diversification. Biol. J. Linn. Soc. 2005, 84, 1–54. [Google Scholar] [CrossRef]
- Scopece, G.; Juillet, N.; MÜller, A.; Schiestl, F.P.; Cozzolino, S. Pollinator attraction in Anacamptis papilionacea (Orchidaceae): A food or a sex promise? Plant Species Biol. 2009, 24, 109–114. [Google Scholar] [CrossRef]
- Brundrett, M.C. A comprehensive study of Orchid seed production relative to pollination traits, plant density and climate in an urban reserve in Western Australia. Diversity 2019, 11, 123. [Google Scholar] [CrossRef]
- Gumbert, A. Color choices by bumble bees (Bombus terrestris): Innate preferences and generalization after learning. Behav. Ecol. Sociobiol. 2000, 48, 36–43. [Google Scholar] [CrossRef]
- Internicola, A.I.; Juillet, N.; Smithson, A.; Gigord, L.D.B. Experimental investigation of the effect of spatial aggregation on reproductive success in a rewardless orchid. Oecologia 2006, 150, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Stoutamire, W.P. Australian terrestrial orchids, thynnid wasps, and pseudocopulation. Am. Orchid Soc. Bull. 1974, 4, 13–18. [Google Scholar]
- Peakall, R. Responses of male Zaspilothynnus trilobatus to females and the orchid it pollinates. Funct. Ecol. 1990, 4, 159–167. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Lofstedt, C.; Hansson, B.S.; Ibarra, F.; Francke, W. Orchid pollination by sexual swindle. Nature 1999, 399, 421–422. [Google Scholar] [CrossRef]
- Ayasse, M.; Schiestl, F.P.; Paulus, H.F.; Ibarra, F.; Francke, W. Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc. R. Soc. B Biol. Sci. 2003, 270, 517–522. [Google Scholar] [CrossRef]
- Gaskett, A.C.; Winnick, C.G.; Herberstein, M.E. Orchid sexual deceit provokes ejaculation. Am. Nat. 2008, 171, E206–E212. [Google Scholar] [CrossRef]
- Phillips, R.D.; Scaccabarozzi, D.; Retter, B.A.; Hayes, C.; Brown, G.R.; Dixon, K.W.; Peakall, R. Caught in the act: Pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae). Ann. Bot. 2014, 113, 629–641. [Google Scholar] [CrossRef]
- Whitehead, M.R.; Peakall, R. Short-term but not long-term patch avoidance in an orchid-pollinating solitary wasp. Behav. Ecol. 2013, 24, 162–168. [Google Scholar] [CrossRef][Green Version]
- Cuervo, M.; Rakosy, D.; Martel, C.; Schulz, S.; Ayasse, M. Sexual Deception in the Eucera-Pollinated Ophrys leochroma: A Chemical Intermediate between Wasp- and Andrena-Pollinated Species. J. Chem. Ecol. 2017, 43, 469–479. [Google Scholar] [CrossRef]
- Thomson, J.D. Effects of variation in inflorescence size and floral rewards on the visitation rates of traplining pollinators of Aralia hispida. Evol. Ecol. 1988, 2, 65–76. [Google Scholar] [CrossRef]
- Johnson, S.D.; Nilsson, L.A. Pollen carryover, geitonogamy, and the evolution of deceptive pollination systems in orchids. Ecology 1999, 80, 2607–2619. [Google Scholar] [CrossRef]
- Johnson, S.D. Batesian mimicry in the non-rewarding orchid Disa pulchra, and its consequences for pollinator behaviour. Biol. J. Linn. Soc. 2000, 71, 119–132. [Google Scholar] [CrossRef]
- Johnson, S.D.; Peter, C.I.; Nilsson, L.A.; Ågren, J. Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 2003, 84, 2919–2927. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Cozzolino, S.; Guzzetti, L.; Galimberti, A.; Milne, L.; Dixon, K.W.; Phillips, R.D. Masquerading as pea plants: Behavioural and morphological evidence for mimicry of multiple models in an Australian orchid. Ann. Bot. 2018, 122, 1061–1073. [Google Scholar] [CrossRef]
- Western Australian Herbarium. FloraBase—The Western Australian Flora. Department of Biodiversity, Conservation and Attractions. 1998. Available online: https://florabase.dpaw.wa.gov.au/ (accessed on 12 May 2020).
- Dixon, K.W.; Buirchell, B.J.; Collins, M.T. Orchids of Western Australia: Cultivation and Natural History, 2nd ed.; Western Australian Native Orchid Study and Conservation Group: Victoria Park, Perth, Australia, 1989. [Google Scholar]
- Scaccabarozzi, D.; Dixon, K.W.; Tomlinson, S.; Milne, L.; Bohman, B.; Phillips, R.D.; Cozzolino, S. Pronounced differences in visitation by potential pollinators to co-occurring species of Fabaceae in the Southwest Australian biodiversity hotspot. Bot. J. Linn. Soc. in press. [CrossRef]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Bower, C.C. Specific pollinators reveal a cryptic taxon in the bird orchid, Chiloglottis valida sensu lato (Orchidaceae) in south-eastern Australia. Aust. J. Bot. 2006, 54, 53–64. [Google Scholar] [CrossRef]
- Wong, B.B.; Salzmann, C.; Schiestl, F.P. Pollinator attractiveness increases with distance from flowering orchids. Proc. R. Soc. B 2004, 271, S212–S214. [Google Scholar] [CrossRef]
- Batra, S.W. Solitary bees. Sci. Am. 1984, 250, 120–127. [Google Scholar] [CrossRef]
- Johnson, S.D.; Schiestl, F.P. Floral mimicry; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Dyer, F.C. Spatial memory and navigation by honeybees on the scale of the foraging range. J. Exp. Biol. 1996, 199, 147–154. [Google Scholar] [PubMed]
- Goulson, D.; Hawson, S.A.; Stout, J.C. Foraging bumblebees avoid owers already visited by conspecifics or by other bumblebee species. Anim. Behav. 1998, 55, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Johnson, S.D. The effects of floral mimics and models on each others’ fitness. Proc. R. Soc. B 2006, 273, 969–974. [Google Scholar] [CrossRef]
- Scaccabarozzi, D.; Guzzetti, L.; Phillips, R.D.; Milne, L.; Tommasi, N.; Cozzolino, S.; Dixon, K.D. Ecological factors affecting pollination success in an orchid that mimics multiple species of pea plants (Faboideae). Bot. J. Linn. Soc. submitted. [CrossRef]
- Reiter, N.; Bohman, B.; Flematti, G.R.; Phillips, R.D. Pollination by nectar-foraging thynnine wasps: Evidence of a new specialized pollination system for Australian orchids. Bot. J. Linn. Soc. 2018, 188, 327–337. [Google Scholar] [CrossRef]
- Reiter, N.; Bohman, B.; Batley, M.; Phillips, R.D. Pollination of an endangered Caladenia species (Orchidaceae) by nectar-foraging behaviour of a widespread species of colletid bee. Bot. J. Linn. Soc. 2019, 189, 83–98. [Google Scholar] [CrossRef]
- Reiter, N.; Bohman, B.; Freestone, M.; Brown, G.R.; Phillips, R.D. Pollination by nectar-foraging thynnine wasps in the endangered Caladenia arenaria and Caladenia concolor (Orchidaceae). Aust. J. Bot. 2019, 67, 490–500. [Google Scholar] [CrossRef]
- Phillips, R.D.; Bohman, B.; Brown, G.R.; Tomlinson, S.; Peakall, R. A specialised pollination system using nectar-seeking thynnine wasps in Caladenia nobilis (Orchidaceae). Plant Biol. 2020, 22, 157–166. [Google Scholar] [CrossRef]
- Kunin, W.E. Sex and the single mustard: Population density and pollinator behavior effects on seed-set. Ecology 1993, 74, 2145–2160. [Google Scholar] [CrossRef]
- Schiestl, F.P.; Ayasse, M.; Paulus, H.F.; Erdmann, D.; Francke, W. Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J. Chem. Ecol. 1997, 12, 2881–2895. [Google Scholar] [CrossRef]
Methods for Orchid Pollination Studies | Description | First Application | Study Orchid Species | Orchid Fruit Set (Average) | Aim | Pollination Strategy | Limitations |
---|---|---|---|---|---|---|---|
Baiting Stations | picked inflorescences or potted plants presented randomly in the landscape; from 2 to 15 min trials | SD: Stoutamire, 1974; Peakall, 1990 GFDF: Reiter et al., 2018; 2019 | Drakaea glyptodon Caladenia versicolor Caladenia concolor | 20% 50% 30.5% | attract pollinators | SD GFDF | SD: absence of males influences the effectiveness GFD: proximity to nest sites influences the effectiveness |
Choice Experiment or Bee Interview Technique | a bifurcated stick presenting two inflorescences (one of the mimic species and another one of the model species, or two orchid inflorescences depending on the strategy) | Thomson, 1988; Johnson & Nilsson, 1999; Johnson, 2000 | Disa pulchra Orchis morio Platanthera chlorantha | 15% 51% 29% | test for food mimicry or test for nectar effect on visitation rate | BFM GFD NR | when the pollination success is low, sufficient replicas are not warranted; presence of nest sites influences the effectiveness |
Rotating Arrays | systematic rotation of arrays of orchid flowers (picked inflorescences) relative to the position of various model plants; 15 min trials | Scaccabarozzi et al., 2018; 2020 | Diuris brumalis, Diuris magnifica | 3% | increase the visitation rate by insects | BFM | presence and abundance of rewarding model plants determines the effectiveness |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scaccabarozzi, D.; Galimberti, A.; Dixon, K.W.; Cozzolino, S. Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants. Diversity 2020, 12, 286. https://doi.org/10.3390/d12080286
Scaccabarozzi D, Galimberti A, Dixon KW, Cozzolino S. Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants. Diversity. 2020; 12(8):286. https://doi.org/10.3390/d12080286
Chicago/Turabian StyleScaccabarozzi, Daniela, Andrea Galimberti, Kingsley W. Dixon, and Salvatore Cozzolino. 2020. "Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants" Diversity 12, no. 8: 286. https://doi.org/10.3390/d12080286
APA StyleScaccabarozzi, D., Galimberti, A., Dixon, K. W., & Cozzolino, S. (2020). Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants. Diversity, 12(8), 286. https://doi.org/10.3390/d12080286