Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes
Abstract
1. Introduction
2. Results
2.1. Characterization for Mn3O4 Nanoparticles
2.2. Mn3O4 Nanoparticles Induce Hemolysis Only at High Concentrations and Do Not Affect Osmotic Fragility
2.3. Mn3O4 Nanoparticles Induce Eryptosis-Associated Phosphatidylserine Externalization at Lower Concentrations than Hemolysis
2.4. Mn3O4 Nanoparticles Induce Ca2+ Overload in Mature Erythrocytes
2.5. ROS and RNS Contribute to Mn3O4 Nanoparticle-Induced Eryptosis
2.6. Mn3O4 Nanoparticle-Induced Eryptosis Is Associated with an Altered Lipid Order of Cell Membranes
2.7. Mn3O4 Nanoparticles Trigger Calpain Activation in Mature Erythrocytes
2.8. The Extrinsic Pathway at Least Partly Contributes to Mn3O4 Nanoparticle-Induced Eryptosis
2.9. Regulated Cell Death Triggered by Mn3O4 Nanoparticles Is Aggravated by Ascorbic Acid and Is Not Associated with RIPK1 Recruitment
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Synthetic Route for Mn3O4 Nanoparticles
4.3. Characterization of the Synthesized Mn3O4 Nanoparticles
4.4. Detection of Hemolysis and the Osmotic Fragility of Erythrocytes
4.5. Detection of Eryptosis by Analyzing Phosphatidylserine Externalization
4.6. Confocal Microscopy-Based Detection of Intraerythrocytic Ca2+ Levels
4.7. Detection of ROS and RNS in Erythrocytes
4.8. NR12S Probe-Based Detection of the Lipid Order in Cell Membranes of Erythrocytes
4.9. Confocal Microscopy-Based Evaluation of Extrinsic Eryptosis by Detecting the Activity of Caspase-3 and Caspase-8
4.10. Confocal Microscopy
4.11. Detection of Calpain Activity
4.12. Detection of the Mechanisms of Mn3O4 Nanoparticle-Induced Eryptosis
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de la Harpe, K.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.D.N.; Akther, F.; Xu, Z.P.; Ta, H.T. Chapter 6—Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood coagulation system). In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A., Nguyen, T.A., Rajan, M., Alam, M.F., Rahman, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 113–140. [Google Scholar]
- Hofer, S.; Hofstätter, N.; Punz, B.; Hasenkopf, I.; Johnson, L.; Himly, M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1804. [Google Scholar]
- Baskurt, O.K.; Meiselman, H.J. Erythrocyte aggregation: Basic aspects and clinical importance. Clin. Hemorheol. Microcirc. 2013, 53, 23–37. [Google Scholar] [CrossRef]
- Yedgar, S.; Barshtein, G.; Gural, A. Hemolytic Activity of Nanoparticles as a Marker of Their Hemocompatibility. Micromachines 2022, 13, 2091. [Google Scholar] [CrossRef]
- Van Avondt, K.; Nur, E.; Zeerleder, S. Mechanisms of haemolysis-induced kidney injury. Nat. Rev. Nephrol. 2019, 15, 671–692. [Google Scholar]
- Bozza, M.T.; Jeney, V. Pro-inflammatory Actions of Heme and Other Hemoglobin-Derived DAMPs. Front. Immunol. 2020, 11, 1323. [Google Scholar]
- Tkachenko, A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol. Vitr. 2024, 98, 105814. [Google Scholar]
- Lang, K.S.; Lang, P.A.; Bauer, C.; Duranton, C.; Wieder, T.; Huber, S.M.; Lang, F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005, 15, 195–202. [Google Scholar]
- Dreischer, P.; Duszenko, M.; Stein, J.; Wieder, T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells 2022, 11, 503. [Google Scholar] [CrossRef]
- Tkachenko, A.; Onishchenko, A. Casein kinase 1α mediates eryptosis: A review. Apoptosis 2023, 28, 1–19. [Google Scholar] [PubMed]
- Tkachenko, A. Apoptosis and eryptosis: Similarities and differences. Apoptosis 2024, 29, 482–502. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Q.; Zhao, H.; Zhang, L.; Su, Y.; Lv, Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst 2012, 137, 4552–4558. [Google Scholar] [PubMed]
- Huang, Y.; Liu, Z.; Liu, C.; Ju, E.; Zhang, Y.; Ren, J.; Qu, X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew. Chem. Int. Ed. Engl. 2016, 55, 6646–6650. [Google Scholar] [PubMed]
- Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Redox Modulatory Mn3O4 Nanozyme with Multi-Enzyme Activity Provides Efficient Cytoprotection to Human Cells in a Parkinson’s Disease Model. Angew. Chem. Int. Ed. Engl. 2017, 56, 14267–14271. [Google Scholar] [CrossRef]
- Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S.; Wang, X.; Wu, J.; Li, S.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. 2018, 9, 2927–2933. [Google Scholar]
- Shan, X.; Li, J.; Liu, J.; Feng, B.; Zhang, T.; Liu, Q.; Ma, H.; Wu, H.; Wu, H. Targeting ferroptosis by poly(acrylic) acid coated Mn3O4 nanoparticles alleviates acute liver injury. Nat. Commun. 2023, 14, 7598. [Google Scholar]
- Rónavári, A.; Ochirkhuyag, A.; Igaz, N.; Szerencsés, B.; Ballai, G.; Huliák, I.; Bocz, C.; Kovács, Á.; Pfeiffer, I.; Kiricsi, M.; et al. Preparation, characterization and in vitro evaluation of the antimicrobial and antitumor activity of MnOx nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133528. [Google Scholar]
- Chen, X.; Wu, G.; Zhang, Z.; Ma, X.; Liu, L. Neurotoxicity of Mn3O4 nanoparticles: Apoptosis and dopaminergic neurons damage pathway. Ecotoxicol. Environ. Saf. 2020, 188, 109909. [Google Scholar]
- Fernández-Pampín, N.; González Plaza, J.J.; García-Gómez, A.; Peña, E.; Rumbo, C.; Barros, R.; Martel-Martín, S.; Aparicio, S.; Tamayo-Ramos, J.A. Toxicology assessment of manganese oxide nanomaterials with enhanced electrochemical properties using human in vitro models representing different exposure routes. Sci. Rep. 2022, 12, 20991. [Google Scholar]
- Tkachenko, A.; Havranek, O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025, 30, 652–673. [Google Scholar]
- Shaik, M.R.; Syed, R.; Adil, S.F.; Kuniyil, M.; Khan, M.; Alqahtani, M.S.; Shaik, J.P.; Siddiqui, M.R.H.; Al-Warthan, A.; Sharaf, M.A.F.; et al. Mn3O4 nanoparticles: Synthesis, characterization and their antimicrobial and anticancer activity against A549 and MCF-7 cell lines. Saudi J. Biol. Sci. 2021, 28, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, R.; Bhuyan, A.A.M.; Qadri, S.M.; Lang, F. Oxidative stress, eryptosis and anemia: A pivotal mechanistic nexus in systemic diseases. FEBS J. 2019, 286, 826–854. [Google Scholar] [PubMed]
- Tkachenko, A.; Havránek, O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023, 69, 116–126. [Google Scholar]
- Matarrese, P.; Straface, E.; Pietraforte, D.; Gambardella, L.; Vona, R.; Maccaglia, A.; Minetti, M.; Malorni, W. Peroxynitrite induces senescence and apoptosis of red blood cells through the activation of aspartyl and cysteinyl proteases. FASEB J. 2005, 19, 416–418. [Google Scholar]
- Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 2016, 7, 489–498. [Google Scholar]
- Zangeneh, A.R.; Takhshid, M.A.; Ranjbaran, R.; Maleknia, M.; Meshkibaf, M.H. Diverse Effect of Vitamin C and N-Acetylcysteine on Aluminum-Induced Eryptosis. Biochem. Res. Int. 2021, 2021, 6670656. [Google Scholar] [CrossRef]
- Tkachenko, M.; Onishchenko, A.; Tryfonyuk, L.; Butov, D.; Kot, K.; Novikova, V.; Fan, L.; Prokopiuk, V.; Kot, Y.; Tkachenko, A. Human chemerin induces eryptosis at concentrations exceeding circulating levels. Biocell 2024, 48, 1197–1208. [Google Scholar] [CrossRef]
- Föller, M.; Lang, F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020, 8, 597. [Google Scholar]
- Berg, C.P.; Engels, I.H.; Rothbart, A.; Lauber, K.; Renz, A.; Schlosser, S.F.; Schulze-Osthoff, K.; Wesselborg, S. Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death Differ. 2001, 8, 1197–1206. [Google Scholar]
- Bratosin, D.; Estaquier, J.; Petit, F.; Arnoult, D.; Quatannens, B.; Tissier, J.P.; Slomianny, C.; Sartiaux, C.; Alonso, C.; Huart, J.J.; et al. Programmed cell death in mature erythrocytes: A model for investigating death effector pathways operating in the absence of mitochondria. Cell Death Differ. 2001, 8, 1143–1156. [Google Scholar]
- Mandal, D.; Mazumder, A.; Das, P.; Kundu, M.; Basu, J. Fas-, Caspase 8-, and Caspase 3-dependent Signaling Regulates the Activity of the Aminophospholipid Translocase and Phosphatidylserine Externalization in Human Erythrocytes. J. Biol. Chem. 2005, 280, 39460–39467. [Google Scholar] [CrossRef]
- Restivo, I.; Attanzio, A.; Giardina, I.C.; Di Gaudio, F.; Tesoriere, L.; Allegra, M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022, 23, 14730. [Google Scholar] [CrossRef] [PubMed]
- Restivo, I.; Attanzio, A.; Tesoriere, L.; Allegra, M.; Garcia-Llatas, G.; Cilla, A. A Mixture of Dietary Plant Sterols at Nutritional Relevant Serum Concentration Inhibits Extrinsic Pathway of Eryptosis Induced by Cigarette Smoke Extract. Int. J. Mol. Sci. 2023, 24, 1264. [Google Scholar] [CrossRef]
- Tkachenko, A.; Havranek, O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024, 479, 3273–3291. [Google Scholar]
- Dias, G.F.; Grobe, N.; Rogg, S.; Jörg, D.J.; Pecoits-Filho, R.; Moreno-Amaral, A.N.; Kotanko, P. The Role of Eryptosis in the Pathogenesis of Renal Anemia: Insights from Basic Research and Mathematical Modeling. Front. Cell Dev. Biol. 2020, 8, 598148. [Google Scholar] [CrossRef] [PubMed]
- Borst, O.; Abed, M.; Alesutan, I.; Towhid, S.T.; Qadri, S.M.; Föller, M.; Gawaz, M.; Lang, F. Dynamic adhesion of eryptotic erythrocytes to endothelial cells via CXCL16/SR-PSOX. Am. J. Physiol. Cell Physiol. 2012, 302, C644–C651. [Google Scholar] [CrossRef]
- Tkachenko, A.S.; Kot, Y.G.; Kapustnik, V.A.; Myasoedov, V.V.; Makieieva, N.I.; Chumachenko, T.O.; Onishchenko, A.I.; Lukyanova, Y.M.; Nakonechna, O.A. Semi-refined carrageenan promotes generation of reactive oxygen species in leukocytes of rats upon oral exposure but not in vitro. Wien. Med. Wochenschr. 2021, 171, 68–78. [Google Scholar] [CrossRef]
- Brands, J.; Bravo, S.; Jürgenliemke, L.; Grätz, L.; Schihada, H.; Frechen, F.; Alenfelder, J.; Pfeil, C.; Ohse, P.G.; Hiratsuka, S.; et al. A molecular mechanism to diversify Ca2+ signaling downstream of Gs protein-coupled receptors. Nat. Commun. 2024, 15, 7684. [Google Scholar] [CrossRef]
- Klymchenko, A.S. Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles. Acc. Chem. Res. 2023, 56, 1–12. [Google Scholar]
- Pyrshev, K.A.; Yesylevskyy, S.O.; Mély, Y.; Demchenko, A.P.; Klymchenko, A.S. Caspase-3 activation decreases lipid order in the outer plasma membrane leaflet during apoptosis: A fluorescent probe study. Biochim. Biophys. Acta Biomembr. 2017, 1859, 2123–2132. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kot, Y.; Prokopiuk, V.; Klochkov, V.; Tryfonyuk, L.; Maksimchuk, P.; Aslanov, A.; Kot, K.; Avrunin, O.; Demchenko, L.; Kurmangaliyeva, S.; et al. Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. Int. J. Mol. Sci. 2025, 26, 3284. https://doi.org/10.3390/ijms26073284
Kot Y, Prokopiuk V, Klochkov V, Tryfonyuk L, Maksimchuk P, Aslanov A, Kot K, Avrunin O, Demchenko L, Kurmangaliyeva S, et al. Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. International Journal of Molecular Sciences. 2025; 26(7):3284. https://doi.org/10.3390/ijms26073284
Chicago/Turabian StyleKot, Yuriy, Volodymyr Prokopiuk, Vladimir Klochkov, Liliya Tryfonyuk, Pavel Maksimchuk, Andrey Aslanov, Kateryna Kot, Oleg Avrunin, Lesya Demchenko, Saulesh Kurmangaliyeva, and et al. 2025. "Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes" International Journal of Molecular Sciences 26, no. 7: 3284. https://doi.org/10.3390/ijms26073284
APA StyleKot, Y., Prokopiuk, V., Klochkov, V., Tryfonyuk, L., Maksimchuk, P., Aslanov, A., Kot, K., Avrunin, O., Demchenko, L., Kurmangaliyeva, S., Onishchenko, A., Yefimova, S., Havranek, O., & Tkachenko, A. (2025). Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. International Journal of Molecular Sciences, 26(7), 3284. https://doi.org/10.3390/ijms26073284