Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II
Abstract
:1. Introduction
2. Results
2.1. Clinical and Genetic Characteristics
2.2. Biochemical Characteristics: GAG and Enzymatic Activity Profile, Plasma Proteomic Analysis
2.3. Quantitative Proteomic Analysis by SWATH
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Methods
4.2.1. Molecular Diagnosis
4.2.2. Biochemical and Enzymatic Profile
4.2.3. GAG Analysis
4.2.4. Enzymatic Analysis
4.2.5. Proteomic Studies
4.3. Experimental Design and Statistical Analysis
- Proteomic Analysis by TripleTOF 6600 using liquid chromatography–tandem mass spectrometry (LC-MS/MS): (see Supplementary Materials for further information).
- Protein extraction: Protein from Dried Blood Samples was extracted by incubating the paper in 100 μL of 100 mM ammonium bicarbonate at room temperature for 1 h. The sample was centrifuged for 20 min at 13,000× g, and the supernatant was transferred to a new tube. Then the protein was precipitated by the MeOH/CHCl3 method, and the protein concentration was measured using an RC DC™ Protein Assay (reducing agent and detergent compatible) (BioRad, Hercules, CA, USA).
- Protein Digestion: For protein identification, equal amounts of protein from each sample (n = 3 per group and 4 healthy controls) were loaded onto a 10% SDS-PAGE gel. The resulting condensed protein bands [36,37] underwent gel digestion using Trypsin and were processed, as previously described in the Supplementary Materials by our group [28].
- Protein Quantification by SWATH-MS Analysis [28,38,39,40]: To build the MSMS spectral libraries, peptide solutions were analyzed by shotgun data-dependent acquisition (DDA) using micro-liquid chromatography–tandem mass spectrometry (LC-MS/MS), as described in the Supplementary Materials and previously by our group. The MSMS spectra of the identified peptides were then used to generate the spectral library for SWATH peak extraction using the add-in for PeakView Software (version 2.2, Sciex), MSMSALL with SWATH Acquisition MicroApp (version 2.0, Sciex). Peptides with a confidence score >99% (obtained from the ProteinPilot database search) were included in the spectral library. For relative quantification by SWATHMS analysis, SWATH-MS acquisition was performed on a Triple TOF 6600 LC–MS–MS system (Sciex) using SWATH mode. The acquisition mode consisted of a 250 ms survey MS scan from 400 to 1250 m/z, followed by an MSMS scan from 100 to 1500 m/z (25 ms acquisition time) of the top 65 precursor ions from the survey scan, for a total cycle time of 2.8 s. The fragmented precursors were then added to a dynamic exclusion list for 15 s. Any singly charged ions were excluded from the MSMS analysis. Targeted data extraction from the SWATH MS runs was performed by PeakView v.2.2 (Sciex, Redwood City, CA, USA) using the SWATH-MS Acquisition MicroApp v.2.0 (Sciex, USA). Data were processed using the spectral library created from DDA. SWATH-MS quantization was attempted for all proteins in the ion library that were identified by ProteinPilotTM 5.0.1 with a false discovery rate (FDR) < 1%. PeakView computed an FDR and a score for each assigned peptide based on the chromatographic and spectra components: only peptides with an FDR < 1%, 10 peptides, and 7 transitions per peptide were used for protein quantization. The integrated peak areas were processed by MarkerView software version 1.3.1 (Sciex, USA) for a data-independent method for relative quantitative analysis. A most likely ratio normalization was performed to control for possible uneven sample loss across the different samples during the sample preparation process [41,42]. Unsupervised multivariate statistical analysis using PCA was performed to compare data across samples.
4.4. Functional and Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ML II | Mucolipidosis type II |
EC | Enzyme Commission number |
M6P | mannose 6-phosphate |
DBS | Dry Blood Spot |
WES | whole-exome sequencing |
HS | Heparan sulfate |
DS | Dermatan sulfate |
LC-MS/MS | Liquid Chromatography-Mass Spectrometry |
PTH | Parathyroid Hormone |
DUS | Dried urine Spot |
ASMD | Acid sphingomyelinase |
IDUA | α-Iduronidase |
IDS | Iduronate-2-sulfatase |
NAGLU | α-N-acetylglucosaminidase |
ARSB | Arylsulfatase B |
GUSB | β-Glucuronidase |
GALC | Galactocerebrosidase |
GAA | α-Glucosidase |
GLA | α-Galactosidase |
GBA | β-Glucosidase |
GALNS | Galactose-6-sulfatase |
GLB1 | β-Galactosidase |
HN | Healthy Neonates |
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
References
- Khan, S.A.; Tomatsu, S.C. Mucolipidoses Overview: Past, Present, and Future. Int. J. Mol. Sci. 2020, 21, 6812. [Google Scholar] [CrossRef] [PubMed]
- Idol, R.A.; Wozniak, D.F.; Fujiwara, H.; Yuede, C.M.; Ory, D.S.; Kornfeld, S.; Vogel, P. Neurologic Abnormalities in Mouse Models of the Lysosomal Storage Disorders Mucolipidosis II and Mucolipidosis III γ. PLoS ONE 2014, 9, e109768. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, M.F.; Prata, M.J.; Alves, S. A Shortcut to the Lysosome: The Mannose-6-Phosphate-Independent Pathway. Mol. Genet. Metab. 2012, 107, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Paton, L.; Bitoun, E.; Kenyon, J.; Priestman, D.A.; Oliver, P.L.; Edwards, B.; Platt, F.M.; Davies, K.E. A Novel Mouse Model of a Patient Mucolipidosis II Mutation Recapitulates Disease Pathology. J. Biol. Chem. 2014, 289, 26709–26721. [Google Scholar] [CrossRef]
- Chin, S.J.; Fuller, M. Prevalence of Lysosomal Storage Disorders in Australia from 2009 to 2020. Lancet Reg. Health—West. Pac. 2022, 19, 100344. [Google Scholar] [CrossRef]
- Kingma, S.D.K.; Bodamer, O.A.; Wijburg, F.A. Epidemiology and Diagnosis of Lysosomal Storage Disorders; Challenges of Screening. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 145–157. [Google Scholar] [CrossRef]
- Plante, M.; Claveau, S.; Lepage, P.; Lavoie, È.; Brunet, S.; Roquis, D.; Morin, C.; Vézina, H.; Laprise, C. Mucolipidosis II: A Single Causal Mutation in the N -acetylglucosamine-1-phosphotransferase Gene (GNPTAB) in a French Canadian Founder Population. Clin. Genet. 2008, 73, 236–244. [Google Scholar] [CrossRef]
- Dogterom, E.J.; Wagenmakers, M.A.E.M.; Wilke, M.; Demirdas, S.; Muschol, N.M.; Pohl, S.; Meijden, J.C.V.D.; Rizopoulos, D.; Ploeg, A.T.V.D.; Oussoren, E. Mucolipidosis Type II and Type III: A Systematic Review of 843 Published Cases. Genet. Med. 2021, 23, 2047–2056. [Google Scholar] [CrossRef]
- Cathey, S.S.; Leroy, J.G.; Wood, T.; Eaves, K.; Simensen, R.J.; Kudo, M.; Stevenson, R.E.; Friez, M.J. Phenotype and Genotype in Mucolipidoses II and III Alpha/Beta: A Study of 61 Probands. J. Med. Genet. 2010, 47, 38–48. [Google Scholar] [CrossRef]
- Unger, S.; Paul, D.A.; Nino, M.C.; McKay, C.P.; Miller, S.; Sochett, E.; Braverman, N.; Clarke, J.T.R.; Cole, D.E.C.; Superti-Furga, A. Mucolipidosis II Presenting as Severe Neonatal Hyperparathyroidism. Eur. J. Pediatr. 2005, 164, 236–243. [Google Scholar] [CrossRef]
- Boruah, R.; Monavari, A.A.; Conlon, T.; Murphy, N.; Stroiescu, A.; Ryan, S.; Hughes, J.; Knerr, I.; McDonnell, C.; Crushell, E. Secondary Hyperparathyroidism in Children with Mucolipidosis Type II (I-Cell Disease): Irish Experience. J. Clin. Med. 2022, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Coutinho, M.F.; Dalal, A.B.; Mohamed Nurul Jain, S.J.; Prata, M.J.; Alves, S. Prenatal Skeletal Dysplasia Phenotype in Severe MLII Alpha/Beta with Novel GNPTAB Mutation. Gene 2014, 542, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Capobres, T.; Sabharwal, G.; Griffith, B. A Case of I-Cell Disease (Mucolipidosis II) Presenting with Short Femurs on Prenatal Ultrasound and Profound Diaphyseal Cloaking. BJR|Case Rep. 2016, 2, 20150420. [Google Scholar] [CrossRef] [PubMed]
- Burgac, E.; Kaplan, İ.; Köseci, B.; Kara, E.; Kor, D.; Bulut, F.D.; Atmış, A.; Pişkin, F.; Tuğ Bozdoğan, S.; Urel Demir, G.; et al. Early Diagnostic Clues of Mucolipidosis Type II: Significance of Radiological Findings. Am. J. Med. Genet. Pt. A 2024, 194, e63545. [Google Scholar] [CrossRef]
- Arunkumar, N.; Vu, D.C.; Khan, S.; Kobayashi, H.; Ngoc Can, T.B.; Oguni, T.; Watanabe, J.; Tanaka, M.; Yamaguchi, S.; Taketani, T.; et al. Diagnosis of Mucopolysaccharidoses and Mucolipidosis by Assaying Multiplex Enzymes and Glycosaminoglycans. Diagnostics 2021, 11, 1347. [Google Scholar] [CrossRef]
- Kubaski, F.; Suzuki, Y.; Orii, K.; Giugliani, R.; Church, H.J.; Mason, R.W.; Dũng, V.C.; Ngoc, C.T.B.; Yamaguchi, S.; Kobayashi, H.; et al. Glycosaminoglycan Levels in Dried Blood Spots of Patients with Mucopolysaccharidoses and Mucolipidoses. Mol. Genet. Metab. 2017, 120, 247–254. [Google Scholar] [CrossRef]
- Velho, R.V.; Harms, F.L.; Danyukova, T.; Ludwig, N.F.; Friez, M.J.; Cathey, S.S.; Filocamo, M.; Tappino, B.; Güneş, N.; Tüysüz, B.; et al. The Lysosomal Storage Disorders Mucolipidosis Type II, Type III Alpha/Beta, and Type III Gamma: Update on GNPTAB and GNPTG Mutations. Hum. Mutat. 2019, 40, 842–864. [Google Scholar] [CrossRef]
- Alegra, T.; Sperb-Ludwig, F.; Guarany, N.R.; Ribeiro, E.M.; Lourenço, C.M.; Kim, C.A.; Valadares, E.R.; Galera, M.F.; Acosta, A.X.; Horovitz, D.D.G.; et al. Clinical Characterization of Mucolipidoses II and III: A Multicenter Study. J. Pediatr. Genet. 2019, 8, 198–204. [Google Scholar] [CrossRef]
- Edmiston, R.; Wilkinson, S.; Jones, S.; Tylee, K.; Broomfield, A.; Bruce, I.A. I-Cell Disease (Mucolipidosis II): A Case Series from a Tertiary Paediatric Centre Reviewing the Airway and Respiratory Consequences of the Disease. In JIMD Reports, Volume 45; Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V., Eds.; JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2018; Volume 45, pp. 1–8. ISBN 978-3-662-58646-4. [Google Scholar]
- Poore, T.S.; Prager, J.; Weinman, J.P.; Larson, A.; Houin, P. Tracheal and Lower Airway Changes in a Patient with Mucolipidosis Type II. Pediatr. Pulmonol. 2020, 55, 1843–1845. [Google Scholar] [CrossRef]
- Ammer, L.S.; Täuber, K.; Perez, A.; Dohrmann, T.; Denecke, J.; Santer, R.; Blümlein, U.; Ozga, A.-K.; Pohl, S.; Muschol, N.M. CNS Manifestations in Mucolipidosis Type II—A Retrospective Analysis of Longitudinal Data on Neurocognitive Development and Neuroimaging in Eleven Patients. J. Clin. Med. 2023, 12, 4114. [Google Scholar] [CrossRef]
- Kollmann, K.; Damme, M.; Markmann, S.; Morelle, W.; Schweizer, M.; Hermans-Borgmeyer, I.; Röchert, A.K.; Pohl, S.; Lübke, T.; Michalski, J.-C.; et al. Lysosomal Dysfunction Causes Neurodegeneration in Mucolipidosis II ‘Knock-in’ Mice. Brain 2012, 135, 2661–2675. [Google Scholar] [CrossRef] [PubMed]
- Otomo, T.; Schweizer, M.; Kollmann, K.; Schumacher, V.; Muschol, N.; Tolosa, E.; Mittrücker, H.-W.; Braulke, T. Mannose 6 Phosphorylation of Lysosomal Enzymes Controls B Cell Functions. J. Cell Biol. 2015, 208, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Essawi, M.L.; Fateen, E.M.; Atia, H.A.; Eissa, N.R.; Aboul-Ezz, E.H.; Ibrahim, M.M.; Hassan, H.A.; Temtamy, S.A. Quaternary Diagnostics Scheme for Mucolipidosis II and Detection of Novel Mutation in GNPTAB Gene. J. Genet. Eng. Biotechnol. 2021, 19, 111. [Google Scholar] [CrossRef]
- Vanlint, P.; Libert, C. Matrix Metalloproteinase-8: Cleavage Can Be Decisive. Cytokine Growth Factor Rev. 2006, 17, 217–223. [Google Scholar] [CrossRef]
- Dadsena, S.; Bockelmann, S.; Mina, J.G.M.; Hassan, D.G.; Korneev, S.; Razzera, G.; Jahn, H.; Niekamp, P.; Müller, D.; Schneider, M.; et al. Ceramides Bind VDAC2 to Trigger Mitochondrial Apoptosis. Nat. Commun. 2019, 10, 1832. [Google Scholar] [CrossRef]
- Morton, R.E.; Izem, L. Cholesteryl Ester Transfer Proteins from Different Species Do Not Have Equivalent Activities. J. Lipid Res. 2014, 55, 258–265. [Google Scholar] [CrossRef]
- Álvarez, J.V.; Bravo, S.B.; Chantada-Vázquez, M.P.; Pena, C.; Colón, C.; Tomatsu, S.; Otero-Espinar, F.J.; Couce, M.L. Morquio A Syndrome: Identification of Differential Patterns of Molecular Pathway Interactions in Bone Lesions. Int. J. Mol. Sci. 2024, 25, 3232. [Google Scholar] [CrossRef]
- Dong, J.; Cui, Y.; Qu, X. Metabolism Mechanism of Glycosaminoglycans by the Gut Microbiota: Bacteroides and Lactic Acid Bacteria: A Review. Carbohydr. Polym. 2024, 332, 121905. [Google Scholar] [CrossRef]
- Qiu, X.; Mistry, A.; Ammirati, M.J.; Chrunyk, B.A.; Clark, R.W.; Cong, Y.; Culp, J.S.; Danley, D.E.; Freeman, T.B.; Geoghegan, K.F.; et al. Crystal Structure of Cholesteryl Ester Transfer Protein Reveals a Long Tunnel and Four Bound Lipid Molecules. Nat. Struct. Mol. Biol. 2007, 14, 106–113. [Google Scholar] [CrossRef]
- Qiao, L.; Hu, J.; Qiu, X.; Wang, C.; Peng, J.; Zhang, C.; Zhang, M.; Lu, H.; Chen, W. LAMP2A, LAMP2B and LAMP2C: Similar Structures, Divergent Roles. Autophagy 2023, 19, 2837–2852. [Google Scholar] [CrossRef]
- Otomo, T.; Higaki, K.; Nanba, E.; Ozono, K.; Sakai, N. Lysosomal Storage Causes Cellular Dysfunction in Mucolipidosis II Skin Fibroblasts. J. Biol. Chem. 2011, 286, 35283–35290. [Google Scholar] [CrossRef] [PubMed]
- Whelan, D.T.; Chang, P.L.; Cockshott, P.W. Mucolipidosis II. The Clinical, Radiological and Biochemical Features in Three Cases. Clin. Genet. 2008, 24, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Auray-Blais, C.; Lavoie, P.; Tomatsu, S.; Valayannopoulos, V.; Mitchell, J.J.; Raiman, J.; Beaudoin, M.; Maranda, B.; Clarke, J.T.R. UPLC-MS/MS Detection of Disaccharides Derived from Glycosaminoglycans as Biomarkers of Mucopolysaccharidoses. Anal. Chim. Acta 2016, 936, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Sadilek, M.; Gelb, M.H. A Highly Multiplexed Biochemical Assay for Analytes in Dried Blood Spots: Application to Newborn Screening and Diagnosis of Lysosomal Storage Disorders and Other Inborn Errors of Metabolism. Genet. Med. 2020, 22, 1262–1268. [Google Scholar] [CrossRef]
- Bonzon-Kulichenko, E.; Martínez-Acedo, P.; Navarro, P.; Trevisan-Herraz, M. A Robust Method for Quantitative High-Throughput Analysis of Proteomes by 18O Labeling. Mol. Cell Proteom. 2011, 10, M110.003335. [Google Scholar] [CrossRef]
- Perez-Hernandez, D.; Gutiérrez-Vázquez, C.; Jorge, I.; López-Martín, S.; Ursa, A.; Sánchez-Madrid, F.; Vázquez, J.; Yáñez-Mó, M. The Intracellular Interactome of Tetraspanin-Enriched Microdomains Reveals Their Function as Sorting Machineries toward Exosomes. J. Biol. Chem. 2013, 288, 11649–11661. [Google Scholar] [CrossRef]
- López-Valverde, L.; Vázquez-Mosquera, M.E.; Colón-Mejeras, C.; Bravo, S.B.; Barbosa-Gouveia, S.; Álvarez, J.V.; Sánchez-Martínez, R.; López-Mendoza, M.; López-Rodríguez, M.; Villacorta-Argüelles, E.; et al. Characterization of the Plasma Proteomic Profile of Fabry Disease: Potential Sex- and Clinical Phenotype-Specific Biomarkers. Transl. Res. 2024, 269, 47–63. [Google Scholar] [CrossRef]
- Álvarez, V.J.; Bravo, S.B.; Chantada-Vazquez, M.P.; Colón, C.; De Castro, M.J.; Morales, M.; Vitoria, I.; Tomatsu, S.; Otero-Espinar, F.J.; Couce, M.L. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int. J. Mol. Sci. 2020, 22, 226. [Google Scholar] [CrossRef]
- Álvarez, J.V.; Bravo, S.B.; Chantada-Vázquez, M.P.; Barbosa-Gouveia, S.; Colón, C.; López-Suarez, O.; Tomatsu, S.; Otero-Espinar, F.J.; Couce, M.L. Plasma Proteomic Analysis in Morquio A Disease. Int. J. Mol. Sci. 2021, 22, 6165. [Google Scholar] [CrossRef]
- Lambert, J.-P.; Ivosev, G.; Couzens, A.L.; Larsen, B.; Taipale, M.; Lin, Z.-Y.; Zhong, Q.; Lindquist, S.; Vidal, M.; Aebersold, R.; et al. Mapping Differential Interactomes by Affinity Purification Coupled with Data-Independent Mass Spectrometry Acquisition. Nat. Methods 2013, 10, 1239–1245. [Google Scholar] [CrossRef]
- Redestig, H.; Fukushima, A.; Stenlund, H.; Moritz, T.; Arita, M.; Saito, K.; Kusano, M. Compensation for Systematic Cross-Contribution Improves Normalization of Mass Spectrometry Based Metabolomics Data. Anal. Chem. 2009, 81, 7974–7980. [Google Scholar] [CrossRef] [PubMed]
Pat. | Patient 1 | Patient 2 | Patient 3 |
---|---|---|---|
Gender | Female | Male | Male |
Ethnicity | Caucasian | Caucasian | Caucasian |
GA (weeks) | 37 + 5 | 37 + 2 | 29 + 4 |
Weight (g) and length (cm) at birth | 2.020 (p2) 47 (p23) | 2.480 (p13) 47.2 (p20) | 900 (p2) 36 (p4) |
Current age (y) | 5 | 2 | 0.9 |
Current weight (g) and length (cm) | 7.460 (p < 1) 68 (p < 1) | 7.500 (p < 1) 67.5 (p < 1) | 6.670 (p < 1) NA |
PTH value (pg/mL) | NA | 194 | 138 |
Alkaline phosphatase (UI/L) | 553 | 2.687 | 870 |
Cardiac findings | Present | Present | Present |
Abdominal wall defects | Absent | Present | Present |
Recurrent respiratory infections | Present | Absent | Absent |
Long bone abnormalities | Present | NA | Present |
Hypotonia | Present (sits without support, unable to stand) | Present (sits with support, cephalic control difficulties) | Present (unable to hold his head up) |
Language development | Simple verbal language | Limited lexical repertoire, use of non-verbal language (gestures) | Non-verbal language (gestures) |
Surgical procedures | Tenotomy | Gastrostomy, cranial remodeling | Gastrostomy, tracheostomy, surgical correction of the abdominal wall defects |
Pharmacological treatment | Levothyroxine, captopril | None | Omeprazole |
Pat. | Age | Creatinine (mmol/dL) | Glycosaminoglycans (mg/mmol Creatinine) | ||
---|---|---|---|---|---|
Sample Date | DS | HS | CS | ||
Pat. 1 | NN | 0.13 (0.02–1.06) | 23.1 (8.2–21.4) | 10.0 (1.6–7.2) | 65.6 (18.5–48.9) |
2 y | 0.15 (0.13–1.24) | 5.1 (0.45–10.6) | 3.7 (0.18–1.62) | 4.0 (3.6–19.2) | |
Pat. 2 | NN | 0.07 (0.02–1.06) | 16.3 (8.2–21.4) | 6.4 (1.6–7.2) | 40.9 (18.5–48.9) |
7.5 m | 0.24 (0.01–0.64) | 11.2 (2.7–17.1) | 4.3 (0.7–4.5) | 12.2 (8.6–45.6) | |
Pat. 3 | NN | 0.15 (0.02–1.06) | 24.5 (8.2–21.4) | 13.9 (1.6–7.2) | 38.2 (18.5–48.9) |
5 m | 0.33 (0.01–0.64) | 13.2 (2.7–17.1) | 9.8 (0.7–4.5) | 24.7 (8.6–45.6) |
Pat. | Age | ASMD | IDUA | IDS | NAGLU | GUSB | ARSB |
---|---|---|---|---|---|---|---|
Pat. 1 | NN | 127.6 (3.6–5.0) | 16.7 (1.4–5.2) | 85.9 (10.2–15.4) | 57.9 (8.9–27.2) | 96.7 (51.2–79.2) | 20.4 (8.0–27.9) |
5 y | 111.4 (1.4–12) | 34.2 (1.4–12.6) | 172.0 (4.0–30.0) | 98.7 (7.6–38.8) | 175.9 (31.0–90.0) | 54.4 (7.0–27.0) | |
Pat. 2 | NN | 91.5 (3.6–5.0) | 15.1 (1.4–5.2) | 98.8 (10.2–15.4) | 100.0 (8.9–27.2) | 122.2 (51.2–79.2) | 38.4 (8.0–27.9) |
2 y | 150.0 (1.4–12) | 27.1 (1.4–12.6) | 178.0 (4.0–30.0) | 124.0 (7.6–38.8) | 241.0 (31.0–90.0) | 69.6 (7.0–27.0) | |
Pat. 3 | NN | 163.0 (3.6–5.0) | 11.3 (1.4–5.2) | 102.9 (10.2–5.4) | 72.8 (8.9–27.2) | 169.0 (51.2–79.2) | 30.2 (8.0–27.9) |
5 m | 187.0 (1.4–12) | 19.7 (1.4–12.6) | 172.0 (4.0–30.0) | 242.0 (7.6–38.8) | 282.0 (31.0–90.0) | 80.4 (7.0–27.0) |
Pat. | Age | GALC | GAA | GLA | GBA | GALNS | GLB1 |
---|---|---|---|---|---|---|---|
Pat. 1 | NN | 0.63 (1.0–8.83) | 9.6 (2.5–13.1) | 1.0 (3.6–15.8) | 1.8 (2.9–19.2) | 4.4 (3.0–8.6) | 15.5 (27.8–60.1) |
5 y | 1.5 (0.6–5.6) | 11.5 (1.2–8.6) | 5.8 (1.6–10.0) | 6.9 (1.6–11.0) | 20.8 (2.3–19.2) | 37.4 (9.7–64.0) | |
Pat. 2 | NN | 0.63 (1.0–8.83) | 8.3 (2.5–13.1) | 3.5 (3.6–15.8) | 7.7 (2.9–19.2) | 3.2 (3.0–8.6) | 27.6 (27.8–60.1) |
2 y | 1.5 (0.6–5.6) | 9.1 (1.2–8.6) | 3.7 (1.6–10.0) | 6.7 (1.6–11.0) | 15.1 (2.3–19.2) | 28.6 (9.7–64.0) | |
Pat. 3 | NN | 5.8 (1.0–8.83) | 8.1 (2.5–13.1) | 4.5 (3.6–15.8) | 23.7 (2.9–19.2) | 3.8 (3.0–8.6) | 28.1 (27.8–60.1) |
5 m | 3.2 (0.6–5.6) | 14.6 (1.2–8.6) | 5.4 (1.6–10.0) | 7.5 (1.6–11.0) | 16.5 (2.3–19.2) | 36.5 (9.7–64.0) |
Upregulated Proteins in ML II Neonatal Patients vs. Healthy Neonatal Samples | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
P11177 | ODPB | Pyruvate dehydrogenase E1 component subunit beta, mitochondrial | 6.15 |
P01011 | AACT | Alpha-1-antichymotrypsin | 5.17 |
A0A075B6S2 | KVD29 | Immunoglobulin kappa variable 2D-29 | 4.39 |
P30711 | GSTT1 | Glutathione S-transferase theta-1 | 4.38 |
P13473 | LAMP2 | Lysosome-associated membrane glycoprotein 2 | 3.49 |
P47756 | CAPZB | F-actin-capping protein subunit beta | 3.46 |
Q99715 | COCA1 | Collagen lpha-1(XII) chain | 3.24 |
P63241 | IF5A1 | Eukaryotic translation initiation factor 5A-1 | 3.22 |
P0DJI9 | SAA2 | Serum amyloid A-2 protein | 3.21 |
Q9Y617 | SERC | Phosphoserine aminotransferase | 3.19 |
P01019 | ANGT | Angiotensinogen | 3.06 |
P36980 | FHR2 | Complement factor H-related protein 2 | 2.87 |
P22894 | MMP8 | Neutrophil collagenase | 2.64 |
Q99613 | EIF3C | Eukaryotic translation initiation factor 3 subunit C | 2.64 |
P46776 | RL27A | 60S ribosomal protein L27a | 2.61 |
A0A075B6I1 | LV460 | Immunoglobulin lambda variable 4–60 | 2.34 |
P15880 | RS2 | 40S ribosomal protein S2 | 2.26 |
Q9NZI8 | IF2B1 | Insulin-like growth factor 2 mRNA-binding protein 1 | 2.18 |
Q01955 | CO4A3 | Collagen lpha-3(IV) chain | 2.13 |
P08779 | K1C16 | Keratin, type I cytoskeletal 16 | 2.05 |
P04004 | VTNC | Vitronectin | 2.02 |
P08758 | ANXA5 | Annexin A5 | 1.94 |
P13645 | K1C10 | Keratin, type I cytoskeletal 10 | 1.93 |
P11387 | TOP1 | DNA topoisomerase 1 | 1.91 |
Q16775 | GLO2 | Hydroxyacylglutathione hydrolase, mitochondrial | 1.90 |
P45880 | VDAC2 | Voltage-dependent anion-selective channel protein 2 | 1.74 |
Q8WUM4 | PDC6I | Programmed cell death 6-interacting protein | 1.68 |
O43451 | MGA | Maltase-glucoamylase, intestinal | 1.65 |
P08311 | CATG | Cathepsin G | 1.58 |
Q99808 | S29A1 | Equilibrative nucleoside transporter 1 | 1.41 |
Q9UBW5 | BIN2 | Bridging integrator 2 | 1.34 |
Downregulated ML II Neonatal Patients vs. Healthy Neonatal Samples | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
Q32P28 | P3H1 | Prolyl 3-hydroxylase 1 | 0.69 |
P02730 | B3AT | Band 3 anion transport protein | 0.64 |
Q14520 | HABP2 | Hyaluronan-binding protein 2 | 0.58 |
Q15181 | IPYR | Inorganic pyrophosphatase | 0.58 |
P16403 | H12 | Histone H1.2 | 0.58 |
P04843 | RPN1 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 | 0.56 |
Q86YW5 | TRML1 | Trem-like transcript 1 protein | 0.53 |
Q9H299 | SH3L3 | SH3 domain-binding glutamic acid-rich-like protein 3 | 0.52 |
P31947 | 1433S | 14-3-3 protein sigma | 0.51 |
P20851 | C4BPB | C4b-binding protein beta chain | 0.48 |
P11597 | CETP | Cholesteryl ester transfer protein | 0.47 |
Q96AC1 | FERM2 | Fermitin family homolog 2 | 0.46 |
P0DOY3 | IGLC3 | Immunoglobulin lambda constant 3 | 0.36 |
P07686 | HEXB | Beta-hexosaminidase subunit beta | 0.31 |
P00915 | CAH1 | Carbonic anhydrase 1 | 0.27 |
P26639 | SYTC | Threonine-tRNA ligase, cytoplasmic | 0.27 |
P10619 | PPGB | Lysosomal protective protein | 0.13 |
Upregulated Proteins in ML II Diagnosis Patients vs. Healthy Neonatal Samples | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
P30405 | PPIF | Peptidyl-prolyl cis-trans isomerase F, mitochondrial | 4.11 |
P14314 | GLU2B | Glucosidase 2 subunit beta | 3.59 |
O00194 | RB27B | Ras-related protein Rab-27B | 2.59 |
P08572 | CO4A2 | Collagen alpha-2(IV) chain | 2.48 |
Q01955 | CO4A3 | Collagen alpha-3(IV) chain | 2.34 |
Q04828 | AK1C1 | Aldo-keto reductase family 1 member C1 | 2.32 |
P22105 | TENX | Tenascin-X | 2.22 |
O00339 | MATN2 | Matrilin-2 | 2.15 |
P04278 | SHBG | Sex hormone-binding globulin | 2.11 |
P55084 | ECHB | Trifunctional enzyme subunit beta, mitochondrial | 2.09 |
P05090 | APOD | Apolipoprotein D | 1.91 |
P00918 | CAH2 | Carbonic anhydrase 2 | 1.90 |
P10644 | KAP0 | cAMP-dependent protein kinase type I-alpha regulatory subunit | 1.87 |
Q32P28 | P3H1 | Prolyl 3-hydroxylase 1 | 1.83 |
P06396 | GELS | Gelsolin | 1.76 |
Q9Y696 | CLIC4 | Chloride intracellular channel protein 4 | 1.71 |
O43451 | MGA | Maltase-glucoamylase, intestinal | 1.61 |
Downregulated ML II Neonatal Patients vs. Healthy Neonatal Samples | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
P04406 | G3P | Glyceraldehyde-3-phosphate dehydrogenase | 0.77 |
Q15181 | IPYR | Inorganic pyrophosphatase | 0.71 |
P37840 | SYUA | Alpha-synuclein | 0.64 |
P07195 | LDHB | L-lactate dehydrogenase B chain | 0.62 |
P39060 | COIA1 | Collagen alpha-1(XVIII) chain | 0.59 |
P78417 | GSTO1 | Glutathione S-transferase omega-1 | 0.54 |
P02549 | SPTA1 | Spectrin alpha chain, erythrocytic 1 | 0.53 |
P54727 | RD23B | UV excision repair protein RAD23 homolog B | 0.51 |
P13489 | RINI | Ribonuclease inhibitor | 0.51 |
P26639 | SYTC | Threonine-tRNA ligase, cytoplasmic | 0.50 |
P04040 | CATA | Catalase | 0.46 |
P13798 | ACPH | Acylamino-acid-releasing enzyme | 0.46 |
P53396 | ACLY | ATP-citrate synthase | 0.36 |
P00338 | LDHA | L-lactate dehydrogenase A chain | 0.32 |
P07686 | HEXB | Beta-hexosaminidase subunit beta | 0.31 |
O43657 | TSN6 | Tetraspanin-6 | 0.28 |
P12259 | FA5 | Coagulation factor V | 0.28 |
Q14974 | IMB1 | Importin subunit beta-1 | 0.23 |
P28065 | PSB9 | Proteasome subunit beta type-9 | 0.16 |
P02008 | HBAZ | Hemoglobin subunit zeta | 0.05 |
Upregulated Proteins in Healthy Neonates vs. Samples of ML II Patients (Neonatal Period and Diagnosis) | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
P01033 | TIMP1 | Metalloproteinase inhibitor 1 | 5.30 |
P27695 | APEX1 | DNA-(apurinic or apyrimidinic site) lyase | 3.58 |
P07686 | HEXB | Beta-hexosaminidase subunit beta | 3.21 |
P28065 | PSB9 | Proteasome subunit beta type-9 | 2.94 |
Q9UGM5 | FETUB | Fetuin-B | 2.83 |
P26639 | SYTC | Threonine-tRNA ligase, cytoplasmic | 2.61 |
P39656 | OST48 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit | 2.34 |
P0DOY3 | IGLC3 | Immunoglobulin lambda constant 3 | 2.24 |
Q9H299 | SH3L3 | SH3 domain-binding glutamic acid-rich-like protein 3 | 2.07 |
Q9P2J5 | SYLC | Leucine-tRNA ligase, cytoplasmic | 2.06 |
P28066 | PSA5 | Proteasome subunit alpha type-5 | 1.84 |
P54920 | SNAA | Alpha-soluble NSF attachment protein | 1.71 |
P02549 | SPTA1 | Spectrin alpha chain, erythrocytic 1 | 1.67 |
Q96AC1 | FERM2 | Fermitin family homolog 2 | 1.60 |
Q93009 | UBP7 | Ubiquitin carboxyl-terminal hydrolase 7 | 1.60 |
Q15181 | IPYR | Inorganic pyrophosphatase | 1.55 |
P02652 | APOA2 | Apolipoprotein A-II | 1.53 |
P04843 | RPN1 | Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 | 1.48 |
P02730 | B3AT | Band 3 anion transport protein | 1.41 |
P17655 | CAN2 | Calpain-2 catalytic subunit | 1.40 |
P37840 | SYUA | Alpha-synuclein | 1.37 |
P04406 | G3P | Glyceraldehyde-3-phosphate dehydrogenase | 1.24 |
Downregulated Protein Found in ML II Patients (Neonatal Period and at Diagnosis) vs. Healthy Neonates | |||
---|---|---|---|
Uniprot Code | Protein Code | Protein | Fold Change |
P13796 | PLSL | Plastin-2 | 0.68 |
P08311 | CATG | Cathepsin G | 0.64 |
O43451 | MGA | Maltase-glucoamylase, intestinal | 0.61 |
P11387 | TOP1 | DNA topoisomerase 1 | 0.57 |
P04278 | SHBG | Sex hormone-binding globulin | 0.55 |
P22105 | TENX | Tenascin-X | 0.55 |
P08758 | ANXA5 | Annexin A5 | 0.55 |
Q01955 | CO4A3 | Collagen alpha-3(IV) chain | 0.45 |
Q99613 | EIF3C | Eukaryotic translation initiation factor 3 subunit C | 0.42 |
P01019 | ANGT | Angiotensinogen | 0.37 |
P14314 | GLU2B | Glucosidase 2 subunit beta | 0.34 |
Q9Y617 | SERC | Phosphoserine aminotransferase | 0.27 |
Upregulated Proteins in Neonatal and Diagnosis ML Samples vs. Healthy Neonates | ||||
Code Protein | Protein Code | Protein | FC Neo | FC Dg |
Q01955 | CO4A3 | Collagen alpha-3(IV) chain | 2.13 | 2.34 |
O43451 | MGA | Maltase-glucoamylase, intestinal | 1.65 | 1.61 |
Downregulated proteins in Healthy Neonates vs. Neonatal and Diagnosis ML Samples | ||||
Code Protein | Protein Code | Protein | FC Neo | FC Dg |
Q15181 | IPYR | Inorganic pyrophosphatase | 0.58 | 0.71 |
P26639 | SYTC | Threonine-tRNA ligase, cytoplasmic | 0.27 | 0.50 |
P07686 | HEXB | Beta-hexosaminidase subunit beta | 0.31 | 0.31 |
Upregulated Proteins in Neonatal ML Samples vs. Diagnostic ML Samples Remain Elevated | ||||
Code Protein | Protein Code | Protein | FC Neo | FC Dg |
P30711 | GSTT1 | Glutathione S-transferase theta-1 | 4.38 | |
P63241 | IF5A1 | Eukaryotic translation initiation factor 5A-1 | 3.22 | |
Q99715 | COCA1 | Collagen lpha-1(XII) chain | 3.24 | |
Q16775 | GLO2 | Hydroxyacylglutathione hydrolase, mitochondrial | 1.90 | |
Q9NZI8 | IF2B1 | Insulin-like growth factor 2 mRNA-binding protein 1 | 2.18 | |
P08779 | K1C16 | Keratin, type I cytoskeletal 16 | 2.05 |
Time (min) | 0.00 | 2.50 | 3.20 | 3.21 | 4.00 |
% B | 20 | 100 | 100 | 20 | 20 |
Flow (mL/min) | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Time (min) | 0.00 | 0.75 | 1.00 | 1.50 | 1.80 | 2.15 | 2.16 | 4.00 |
% B | 0.50 | 25 | 60 | 75 | 100 | 100 | 0.50 | 0.50 |
Flow (mL/min) | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteagudo-Vilavedra, E.; Rodrigues, D.; Vella, G.; Bravo, S.B.; Pena, C.; Lopez-Valverde, L.; Colon, C.; Sanchez-Pintos, P.; Otero Espinar, F.J.; Couce, M.L.; et al. Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II. Int. J. Mol. Sci. 2025, 26, 2408. https://doi.org/10.3390/ijms26062408
Monteagudo-Vilavedra E, Rodrigues D, Vella G, Bravo SB, Pena C, Lopez-Valverde L, Colon C, Sanchez-Pintos P, Otero Espinar FJ, Couce ML, et al. Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II. International Journal of Molecular Sciences. 2025; 26(6):2408. https://doi.org/10.3390/ijms26062408
Chicago/Turabian StyleMonteagudo-Vilavedra, Eines, Daniel Rodrigues, Giorgia Vella, Susana B. Bravo, Carmen Pena, Laura Lopez-Valverde, Cristobal Colon, Paula Sanchez-Pintos, Francisco J. Otero Espinar, Maria L. Couce, and et al. 2025. "Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II" International Journal of Molecular Sciences 26, no. 6: 2408. https://doi.org/10.3390/ijms26062408
APA StyleMonteagudo-Vilavedra, E., Rodrigues, D., Vella, G., Bravo, S. B., Pena, C., Lopez-Valverde, L., Colon, C., Sanchez-Pintos, P., Otero Espinar, F. J., Couce, M. L., & Alvarez, J. V. (2025). Novel Phenotypical and Biochemical Findings in Mucolipidosis Type II. International Journal of Molecular Sciences, 26(6), 2408. https://doi.org/10.3390/ijms26062408