Lower Sphingomyelin SM 42:1 Plasma Level in Coronary Artery Disease—Preliminary Study
Abstract
:1. Introduction
2. Results
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Methods
4.2. Statistical Analysis
4.3. Bioethics Committee
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garg, P.K.; Bhatia, H.S.; Allen, T.S.; Grainger, T.; Pouncey, A.L.; Dichek, D.; Virmani, R.; Golledge, J.; Allison, M.A.; Powell, J.T. Assessment of Subclinical Atherosclerosis in Asymptomatic People In Vivo: Measurements Suitable for Biomarker and Mendelian Randomization Studies. Arterioscler. Thromb. Vasc. Biol. 2024, 44, 24–47. [Google Scholar] [CrossRef]
- Riccardi, G.; Giosuè, A.; Calabrese, I.; Vaccaro, O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc. Res. 2022, 118, 1188–1204. [Google Scholar] [CrossRef]
- Ekblom-Bak, E.; Börjesson, M.; Ekblom, Ö.; Angerås, O.; Bergman, F.; Berntsson, C.; Carlhäll, C.J.; Engström, G.; Engvall, J.; Fagman, E.; et al. Accelerometer derived physical activity and subclinical coronary and carotid atherosclerosis: Cross-sectional analyses in 22 703 middle-aged men and women in the SCAPIS study. BMJ Open 2023, 13, e073380. [Google Scholar] [CrossRef] [PubMed]
- Della Corte, V.; Todaro, F.; Cataldi, M.; Tuttolomondo, A. Atherosclerosis and Its Related Laboratory Biomarkers. Int. J. Mol. Sci. 2023, 24, 15546. [Google Scholar] [CrossRef]
- Fernández-Alvarez, V.; Linares-Sánchez, M.; Suárez, C.; López, F.; Guntinas-Lichius, O.; Mäkitie, A.A.; Bradley, P.J.; Ferlito, A. Novel Imaging-Based Biomarkers for Identifying Carotid Plaque Vulnerability. Biomolecules 2023, 13, 1236. [Google Scholar] [CrossRef]
- Oleksiak, A.; Kępka, C.; Rucińska, K.; Marcinkiewicz, K.; Demkow, M.; Kruk, M. Iron levels and vulnerable coronary atherosclerotic plaques. Kardiol. Pol. 2024, 82, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Tuzimek, A.; Dziedzic, E.A.; Beck, J.; Kochman, W. Correlations Between Acute Coronary Syndrome and Novel Inflammatory Markers (Systemic Immune-Inflammation Index, Systemic Inflammation Response Index, and Aggregate Index of Systemic Inflammation) in Patients with and without Diabetes or Prediabetes. J. Inflamm. Res. 2024, 17, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Nieddu, G.; Formato, M.; Lepedda, A.J. Searching for Atherosclerosis Biomarkers by Proteomics: A Focus on Lesion Pathogenesis and Vulnerability. Int. J. Mol. Sci. 2023, 24, 15175. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; He, Q.; Liu, Y.; Qiu, M.; Wu, J.; Hu, B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater. Today Bio. 2022, 16, 100368. [Google Scholar] [CrossRef]
- Urbanowicz, T.K.; Michalak, M.; Olasińska-Wiśniewska, A.; Żukowski, M.; Koczorowski, K.; Łasowski, B.; Woźnicki, M.; Filipiak, K.J.; Tykarski, A.; Jemielity, M. Left main coronary artery disease treated with beating heart surgery: 10-year single center results. Postepy Kardiol. Interwencyjnej. 2024, 20, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Wańha, W.; D’Ascenzo, F.; Kuźma, Ł.; Januszek, R.; Iwańczyk, S.; Tomasiewicz, B.; Brzozowski, P.; Niezgoda, P.; Kowalewski, M.; Jaguszewski, M.; et al. Long-term outcomes following paclitaxel-coated balloons versus thin-strut drug-eluting stents for treatment of in-stent restenosis in chronic coronary syndrome (CCS Dragon-Registry). Kardiol. Pol. 2024, 82, 749–759. [Google Scholar] [CrossRef]
- Secemsky, E.A.; Kochar, A. Illuminating the Path for Novel Peripheral Drug-Eluting Stents. JACC Cardiovasc. Interv. 2022, 15, 627–629. [Google Scholar] [CrossRef]
- Gaudino, M.; Andreotti, F.; Kimura, T. Current concepts in coronary artery revascularisation. Lancet 2023, 401, 1611–1628. [Google Scholar] [CrossRef]
- Liga, R.; Colli, A.; Taggart, D.P.; Boden, W.E.; De Caterina, R. Myocardial Revascularization in Patients With Ischemic Cardiomyopathy: For Whom and How. J. Am. Heart Assoc. 2023, 12, e026943. [Google Scholar] [CrossRef]
- Rajendran, A.; Minhas, A.S.; Kazzi, B.; Varma, B.; Choi, E.; Thakkar, A.; Michos, E.D. Sex-specific differences in cardiovascular risk factors and implications for cardiovascular disease prevention in women. Atherosclerosis 2023, 384, 117269. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Zhang, W.; Song, H.; Xu, X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis. 2024, 29, 1860–1878. [Google Scholar] [CrossRef]
- Fang, X.; Miao, R.; Wei, J.; Wu, H.; Tian, J. Advances in multi-omics study of biomarkers of glycolipid metabolism disorder. Comput. Struct. Biotechnol. J. 2022, 20, 5935–5951. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, G.; Moorthi, S.; Luberto, C. Role and Function of Sphingomyelin Biosynthesis in the Development of Cancer. Adv. Cancer Res. 2018, 140, 61–96. [Google Scholar] [PubMed]
- Schneider, N.; Hauser, J.; Oliveira, M.; Cazaubon, E.; Mottaz, S.C.; O’Neill, B.V.; Steiner, P.; Deoni, S.C.L. Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 2019, 6, ENEURO.0421-18.2019. [Google Scholar] [CrossRef]
- Quadri, Z.; Elsherbini, A.; Crivelli, S.M.; El-Amouri, S.S.; Tripathi, P.; Zhu, Z.; Ren, X.; Zhang, L.; Spassieva, S.D.; Nikolova-Karakashian, M.; et al. Ceramide-mediated orchestration of oxidative stress response through filopodia-derived small extracellular vesicles. J. Extracell. Vesicles 2024, 13, e12477. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Nenchovska, Z.; Kortenska, L.; Uzunova, V.; Georgieva, I.; Tzoneva, R. Impact of Melatonin Deficit on Emotional Status and Oxidative Stress-Induced Changes in Sphingomyelin and Cholesterol Level in Young Adult, Mature, and Aged Rats. Int. J. Mol. Sci. 2022, 23, 2809. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Walsh, M.T.; Hammad, S.M.; Hussain, M.M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017, 28, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Peng, Q.; Huang, Y. Potential therapeutic targets for atherosclerosis in sphingolipid metabolism. Clin. Sci. 2019, 133, 763–776. [Google Scholar] [CrossRef]
- Taniguchi, M.; Okazaki, T. Role of ceramide/sphingomyelin (SM) balance regulated through “SM cycle” in cancer. Cell Signal. 2021, 87, 110119. [Google Scholar] [CrossRef] [PubMed]
- Gardeta, S.R.; García-Cuesta, E.M.; D’Agostino, G.; Soler Palacios, B.; Quijada-Freire, A.; Lucas, P.; Bernardino de la Serna, J.; Gonzalez-Riano, C.; Barbas, C.; Rodríguez-Frade, J.M.; et al. Sphingomyelin Depletion Inhibits CXCR4 Dynamics and CXCL12-Mediated Directed Cell Migration in Human T Cells. Front. Immunol. 2022, 13, 925559. [Google Scholar] [CrossRef]
- Varela, Y.R.; Iriondo, M.N.; Goñi, F.M.; Alonso, A.; Montes, L.R. Ceramide regulation of autophagy: A biophysical approach. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2024, 1869, 159444–159459. [Google Scholar] [CrossRef]
- Surendran, A.; Ismail, U.; Atefi, N.; Bagchi, A.K.; Singal, P.K.; Shah, A.; Aliani, M.; Ravandi, A. Lipidomic Predictors of Coronary No-Reflow. Metabolites 2023, 13, 79. [Google Scholar] [CrossRef]
- Ghahremani, M.; Foghi, A.; Dorrington, J.H. Activation of Fas ligand/receptor system kills ovarian cancer cell lines by an apoptotic mechanism. Gynecol. Oncol. 1998, 70, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Phulara, N.R.; Rege, A.; Bieberich, C.J.; Seneviratne, H.K. Mass Spectrometry Imaging Reveals Region-Specific Lipid Alterations in the Mouse Brain in Response to Efavirenz Treatment. ACS Pharmacol. Transl. Sci. 2024, 7, 2379–2390. [Google Scholar] [CrossRef] [PubMed]
- Sakkers, T.R.; Mokry, M.; Civelek, M.; Erdmann, J.; Pasterkamp, G.; Diez Benavente, E.; den Ruijter, H.M. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 2023, 384, 117279. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Haneya, A.; Straburzyńska-Migaj, E.; Bociański, M.; Jemielity, M. Gender differences in coronary artery diameters and survival results after off-pump coronary artery bypass (OPCAB) procedures. J. Thorac. Dis. 2021, 13, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Michalak, M.; Komosa, A.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Tykarski, A.; Jemielity, M. Predictive value of systemic inflammatory response index (SIRI) for complex coronary artery disease occurrence in patients presenting with angina equivalent symptoms. Cardiol. J. 2024, 31, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Pruc, M.; Kubica, J.; Banach, M.; Swieczkowski, D.; Rafique, Z.; Peacock, W.F.; Siudak, Z.; Kurek, K.; Nanayakkara, P.; Szarpak, Ł. Diagnostic and prognostic performance of the neutrophil-to-lymphocyte ratio in acute coronary syndromes: A meta-analysis of 90 studies including 45 990 patients. Kardiol. Pol. 2024, 82, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.T.; Yee, A.; Peterson, S.J.; Kobayashi, Y.; Sacchi, T.; Parikh, M.; Brener, S.J. Neutrophil-to-lymphocyte ratio and prognosis in patients undergoing percutaneous coronary intervention for acute coronary syndrome. Cardiovasc. Revasc. Med. 2024, 60, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Olasińska-Wiśniewska, A.; Gładki, M.; Jemielity, M. The Significance of Simple Inflammatory Markers in Off Pump Surgery-Review. Rev. Cardiovasc. Med. 2022, 23, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Olasińska-Wiśniewska, A.; Michalak, M.; Rodzki, M.; Witkowska, A.; Straburzyńska-Migaj, E.; Perek, B.; Jemielity, M. The Prognostic Significance of Neutrophil to Lymphocyte Ratio (NLR), Monocyte to Lymphocyte Ratio (MLR) and Platelet to Lymphocyte Ratio (PLR) on Long-Term Survival in Off-Pump Coronary Artery Bypass Grafting (OPCAB) Procedures. Biology 2021, 11, 34. [Google Scholar] [CrossRef]
- Rampidis, G.P.; Benetos, G.; Benz, D.C.; Giannopoulos, A.A.; Buechel, R.R. A guide for Gensini Score calculation. Atherosclerosis 2019, 287, 181–183. [Google Scholar] [CrossRef]
Parameters | CAD Group n = 23 | Control Group n = 15 | p |
---|---|---|---|
Sex (m (%)/f (%)) | 18 (78)/5 (22) | 5 (33)/10 (67) | 0.007 |
Age (years) (median (Q1–Q3)) | 69 (63–72) | 70 (64–72) | 0.765 |
Height (cm) (median (Q1–Q3)) | 170 (164–175) | 164 (162–176) | 0.385 |
Weight (kg) (median (Q1–Q3)) | 79 (72–92) | 80 (67–88) | 0.731 |
BMI (kg/m2) (median (Q1–Q3)) | 29.1 (25.3–30.9) | 27.9 (25.1–32.0) | 1.000 |
Co-morbidities: | |||
HA (n (%)) | 20 (87) | 12 (80) | 0.587 |
DM (n (%)) | 7 (30) | 4 (27) | 0.820 |
Dyslipidemia (n (%)) | 19 (83) | 13 (87) | 0.759 |
COPD (n (%)) | 5 (22) | 1 (7) | 0.228 |
Kidney (n (%)) | 3 (13) | 1 (7) | 0.555 |
Nicotine (n (%)) | 7 (30) | 2 (13) | 0.240 |
Parameters | CAD Group n = 23 | Control Group n = 15 | p |
---|---|---|---|
Whole blood count: | |||
WBC (G/L) (median (Q1–Q3)) | 7.51 (96.40–8.72) | 6.61 (5.56–7.32) | 0.062 |
Neutrophil (G/L) (median (Q1–Q3)) | 5.07 (4.12–5.75) | 3.88 (3.18–4.80) | 0.014 |
Monocyte (G/L) (median (Q1–Q3)) | 0.45 (0.42–0.53) | 0.53 (0.44–0.62) | 0.155 |
Lymphocyte (G/L) (median (Q1–Q3)) | 1.53 (1.24–2.17) | 1.75 (1.59–1.85) | 0.395 |
NLR (median (Q1–Q3)) | 2.86 (2.45–3.95) | 2.09 (1.81–2.66) | 0.016 |
MLR (median (Q1–Q3)) | 0.28 (0.22–0.38) | 0.30 (0.26–0.35) | 0.701 |
Hb (mmol/L) (median (Q1–Q3)) | 9.20 (8.55–9.70) | 8.60 (8.05–9.05) | 0.073 |
Hct (%) (median (Q1–Q3)) | 44 (42–46) | 41 (41–44) | 0.129 |
MCHC (g/dL) (median (Q1–Q3)) | 20.99 (20.46–21.30) | 20.70 (20.35–20.90) | 0.189 |
Plt (G/L) (median (Q1–Q3)) | 216 (205–235) | 221 (190–257) | 0.929 |
Liver function test: | |||
ALT (IU/L) (median (Q1–Q3)) | 31 (26–42) | 29 (22–34) | 0.311 |
Kidney function test: | |||
Serum creatinine (mmol/L) (median (Q1–Q3)) | 85 (74–102) | 76 (71–89) | 0.220 |
Lipoprotein (mg/dL) (median (Q1–Q3)) | 0.300 (0.295–0.800) | 0.130 (0.100–0.205) | 0.067 |
Myocardial injury tests: | |||
CK-MB (ng/mL) (median (Q1–Q3)) | 14.85 (3.03–16.02) | 0.74 (0.58–1.70) | <0.001 |
Uric acid (mg/dL) (median (Q1–Q3)) | 396 (380–413) | 305 (266–354) | 0.126 |
C—reactive protein (mg/L) (median (Q1–Q3)) | 6 (5–7) | 6 (4–7) | 0.439 |
Lipidorgam: | |||
Total cholesterol (mmol/L) (median (Q1–Q3)) | 3.83 (2.98–4.73) | 4.42 (3.86–4.84) | 0.252 |
HDL (mmol/L) (median (Q1–Q3)) | 1.05 (0.90–1.22) | 1.56 (1.26–1.69) | 0.003 |
LDL (mmol/L) (median (Q1–Q3)) | 2.45 (1.67–3.22) | 2.20 (1.70–2.93) | 0.843 |
Triglycerides (mmol/L) (median (Q1–Q3)) | 1.30 (1.03–1.92) | 1.41 (0.93–1.83) | 0.781 |
Sphingomyelins (SM) (uM) | Whole Analyzed Group n = 38 | CAD Group n = 23 | Control Group n = 15 | p |
---|---|---|---|---|
SM 33:1 (median (Q1–Q3) | 5.18 (4.17–6.63) | 4.9 (4.3–6.0) | 6.67 (4.0–7.6) | 0.521 |
SM 34:1 (median (Q1–Q3)) | 92.0 (81.4–102.5) | 86.4 (81.4–96.7) | 101.0 (82.3–120.0) | 0.078 |
SM 34:2 (median (Q1–Q3)) | 13.7 (11.7–16.0) | 12.8 (11.3–14.8) | 15.5 (12.5–18.3) | 0.054 |
SM 35:1 (median (Q1–Q3)) | 3.3 (2.5–4.1) | 3.2 (2.6–3.8) | 4.0 (2.5–4.5) | 0.473 |
SM 36:1 (median (Q1–Q3)) | 22.5 (20.2–24.6) | 22.3 (20.1–23.9) | 23.8 (21.6–26.6) | 0.151 |
SM 36:2 (median (Q1–Q3)) | 10.95 (8.82–11.88) | 10.4 (8.6–11.5) | 11.7 (10.0–13.2) | 0.091 |
SM 38:3 (median (Q1–Q3)) | 0.37 (0.27–0.45) | 0.4 (0.3–0.4) | 0.4 (0.3–0.5) | 0.375 |
SM 40:4 (median (Q1–Q3)) | 1.285 (1.060–1.548) | 1.2 (1.1–1.3) | 1.5 (1.2–1.8) | 0.091 |
SM 41:1 (median (Q1–Q3)) | 10.55 (8.86–13.38) | 10.4 (8.8–10.9) | 13.5 (9.3–15.7) | 0.113 |
SM 41:2 (median (Q1–Q3)) | 10.2 (8.2–12.5) | 10.1 (8.3–10.7) | 12.7 (7.9–15.0) | 0.215 |
SM 42:1 (median (Q1–Q3)) | 18.15 (15.53–21.08) | 16.2 (14.2–19.1) | 20.8 (18.9–21.7) | 0.044 * |
SM 42:2 (median (Q1–Q3)) | 49.9(44.1–57.0) | 47.0 (43.7–55.9) | 55.1 (45.7–62.1) | 0.189 |
SM 43:1 (median (Q1–Q3)) | 1.19 (1.05–1.44) | 1.1 (1.1–1.3) | 1.4 (1.0–1.6) | 0.199 |
SM 44:1 (median (Q1–Q3)) | 0.175 (0.151–0.218) | 0.17 (0.15–0.22) | 0.19 (0.15–0.21) | 0.765 |
SM 44:2 (median (Q1–Q3)) | 0.49 (0.43–0.65) | 0.46 (0.42–0.62) | 0.54 (0.46–0.68) | 0.483 |
Parameters | CAD Prediction, Including Male Sex | ||
---|---|---|---|
Log Odds Ratio | 95% Confidence Interval | p | |
SM 42:1 | 1.97 | 1.62–2.32 | <0.001 |
Neutrophil count | 1.99 | 1.25–2.77 | <0.001 |
NLR | 1.72 | 0.78–2.71 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Gutaj, P.; Plewa, S.; Spasenenko, I.; Krasińska, B.; Olasińska-Wiśniewska, A.; Kowalczyk, D.; Krasiński, Z.; Grywalska, E.; Rahnama-Hezavah, M.; et al. Lower Sphingomyelin SM 42:1 Plasma Level in Coronary Artery Disease—Preliminary Study. Int. J. Mol. Sci. 2025, 26, 1715. https://doi.org/10.3390/ijms26041715
Urbanowicz T, Gutaj P, Plewa S, Spasenenko I, Krasińska B, Olasińska-Wiśniewska A, Kowalczyk D, Krasiński Z, Grywalska E, Rahnama-Hezavah M, et al. Lower Sphingomyelin SM 42:1 Plasma Level in Coronary Artery Disease—Preliminary Study. International Journal of Molecular Sciences. 2025; 26(4):1715. https://doi.org/10.3390/ijms26041715
Chicago/Turabian StyleUrbanowicz, Tomasz, Paweł Gutaj, Szymon Plewa, Ievgen Spasenenko, Beata Krasińska, Anna Olasińska-Wiśniewska, Dariusz Kowalczyk, Zbigniew Krasiński, Ewelina Grywalska, Mansur Rahnama-Hezavah, and et al. 2025. "Lower Sphingomyelin SM 42:1 Plasma Level in Coronary Artery Disease—Preliminary Study" International Journal of Molecular Sciences 26, no. 4: 1715. https://doi.org/10.3390/ijms26041715
APA StyleUrbanowicz, T., Gutaj, P., Plewa, S., Spasenenko, I., Krasińska, B., Olasińska-Wiśniewska, A., Kowalczyk, D., Krasiński, Z., Grywalska, E., Rahnama-Hezavah, M., Kowalewski, M., Tykarski, A., Wender-Ożegowska, E., & Matysiak, J. (2025). Lower Sphingomyelin SM 42:1 Plasma Level in Coronary Artery Disease—Preliminary Study. International Journal of Molecular Sciences, 26(4), 1715. https://doi.org/10.3390/ijms26041715