Design of New Daunorubicin Derivatives with High Cytotoxic Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Research
2.2.1. Cytotoxic Profile
2.2.2. Cell Cycle Analysis
2.2.3. Glycolysis
2.2.4. Acute Toxicity In Vivo
2.3. Molecular Modeling
2.4. Drug–Likeness Analysis of Compounds
3. Materials and Methods
3.1. Synthesis and General Procedures
3.2. General Procedure of Synthesis of Amines 4a–h
3.2.1. X–Ray Diffraction Data
3.2.2. Cell Cultivation
3.2.3. Cytotoxicity
3.2.4. Cell Cycle
3.2.5. Glycolysis
3.2.6. Analysis of Hexokinase, Phosphofructokinase, and Pyruvate Kinase Activity
3.2.7. Acute Toxicity In Vivo
3.2.8. Molecular Modeling
3.2.9. In Silico Drug–Likeness Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martins-Teixeira, M.B.; Carvalho, I. Antitumour Anthracyclines: Progress and Perspectives. ChemMedChem 2020, 15, 933–948. [Google Scholar] [CrossRef]
- Hills, R.K. Evaluating sixty years of UK trials research in acute myeloid leukaemia: Lessons for trial design, past, present and future. Br. J. Haematol. 2020, 188, 29–35. [Google Scholar] [CrossRef]
- Schirone, L.; Toldo, S.; Cianflone, E.; Sala, V.; Greco, E. The Role of Anthracyclines in Cardio-Oncology: Oxidative Stress, Inflammation, and Autophagy. Oxidative Med. Cell Longev. 2022, 2022, 9862524. [Google Scholar] [CrossRef] [PubMed]
- Bayles, C.E.; Hale, D.E.; Konieczny, A.; Anderson, V.D.; Richardson, C.R.; Brown, K.V.; Nguyen, J.T.; Hecht, J.; Schwartz, N.; Kharel, M.K.; et al. Upcycling the anthracyclines: New mechanisms of action, toxicology, and pharmacology. Toxicol. Appl. Pharmacol. 2023, 459, 116362. [Google Scholar] [CrossRef]
- Lima, M.A.C.; Brito, H.R.A.; Mitidieri, G.G.; de Souza, E.P.; Sobral, A.C.G.; Melo, H.; Vasconcelos, G.B.; de Almeida, B.B.D.; Figueiredo, T.A.D.; Filho, M.; et al. Cardiotoxicity in cancer patients treated with chemotherapy: A systematic review. Int. J. Health Sci. 2022, 16, 39–46. [Google Scholar]
- Zhang, J.; Cui, X.; Yan, Y.; Li, M.; Yang, Y.; Wang, J.; Zhang, J. Research progress of cardioprotective agents for prevention of anthracycline cardiotoxicity. Am. J. Transl. Res. 2016, 8, 2862–2875. [Google Scholar]
- Khairnar, S.I.; Kulkarni, Y.A.; Singh, K. Cardiotoxicity linked to anticancer agents and cardioprotective strategy. Arch. Pharmacal Res. 2022, 45, 704–730. [Google Scholar] [CrossRef] [PubMed]
- Saharkhiz, S.; Zarepour, A.; Zarrabi, A. A new theranostic pH-responsive niosome formulation for doxorubicin delivery and bio-imaging against breast cancer. Int. J. Pharm. 2023, 637, 122845. [Google Scholar] [CrossRef]
- Jiang, H.; Li, H.; Song, G.; Di, L.; Shao, B.; Yan, Y.; Liu, X.; Chen, Y.; Zhang, R.; Ran, R.; et al. Pegylated liposomal doxorubicin (Duomeisu®) monotherapy in patients with HER2-negative metastatic breast cancer heavily pretreated with anthracycline and taxanes: A single-arm, phase II study. Breast Cancer Res. Treat. 2023, 199, 67–79. [Google Scholar] [CrossRef]
- Peter, S.; Alven, S.; Maseko, R.B.; Aderibigbe, B.A. Doxorubicin-Based Hybrid Compounds as Potential Anticancer Agents: A Review. Molecules 2022, 27, 4478. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Y.; Lin, Z.; Sa, R.; Yin, Y.; Zhang, X.; Zhang, B. Current Status and Trends of Research on Anthracycline-Induced Cardiotoxicity from 2002 to 2021: A Twenty-Year Bibliometric and Visualization Analysis. Oxidative Med. Cell. Longev. 2022, 2022, 6260243. [Google Scholar] [CrossRef]
- Umezawa, H.; Takahashi, Y.; Kinoshita, M.; Naganawa, H.; Masuda, T.; Ishizuka, M.; Tatsuta, K.; Takeuchi, T. Tetrahydropyranyl derivatives of daunomycin and adriamycin. J. Antibiot. 1979, 32, 1082–1084. [Google Scholar] [CrossRef]
- Battisti, R.F.; Zhong, Y.; Fang, L.; Gibbs, S.; Shen, J.; Nadas, J.; Zhang, G.; Sun, D. Modifying the sugar moieties of daunorubicin overcomes P-gp-mediated multidrug resistance. Mol. Pharm. 2007, 4, 140–153. [Google Scholar] [CrossRef]
- Zunino, F.; Pratesi, G.; Perego, P. Role of the sugar moiety in the pharmacological activity of anthracyclines: Development of a novel series of disaccharide analogs. Biochem. Pharmacol. 2001, 61, 933–938. [Google Scholar] [CrossRef]
- Csorvasi, A.; Kover, K.E.; Menyhart, M.M.; Sztaricskai, F.; Dobrynin, Y.V.; Nikolaeva, T.G. Synthesis of phosphoramide mustard analogues of daunomycin and carminomycin. Arch. Pharm. 1998, 331, 265–268. [Google Scholar] [CrossRef]
- Tong, G.L.; Wu, H.Y.; Smith, T.H.; Henry, D.W. Adriamycin analogues. 3. Synthesis of N-alkylated anthracyclines with enhanced efficacy and reduced cardiotoxicity. J. Med. Chem. 1979, 22, 912–918. [Google Scholar] [CrossRef]
- Masquelier, M.; Tirzitis, G.; Peterson, C.O.; Palsson, M.; Amolins, A.; Plotniece, M.; Plotniece, A.; Makarova, N.; Vitols, S.G. Plasma stability and cytotoxicity of lipophilic daunorubicin derivatives incorporated into low density lipoproteins. Eur. J. Med. Chem. 2000, 35, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Polgar, L.; Lajko, E.; Soos, P.; Lang, O.; Manea, M.; Merkely, B.; Mezo, G.; Kohidai, L. Drug targeting to decrease cardiotoxicity—Determination of the cytotoxic effect of GnRH-based conjugates containing doxorubicin, daunorubicin and methotrexate on human cardiomyocytes and endothelial cells. Beilstein J. Org. Chem. 2018, 14, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Mielczarek-Puta, M.; Struga, M.; Roszkowski, P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). Med. Chem. Res. 2019, 28, 2153–2164. [Google Scholar] [CrossRef]
- Castaneda, L.; Maruani, A.; Schumacher, F.F.; Miranda, E.; Chudasama, V.; Chester, K.A.; Baker, J.R.; Smith, M.E.; Caddick, S. Acid-cleavable thiomaleamic acid linker for homogeneous antibody-drug conjugation. Chem. Commun. 2013, 49, 8187–8189. [Google Scholar] [CrossRef] [PubMed]
- Bargiotti, A.; Caruso, M.; Grandi, M.; Ripamonti, M.; Suarato, A. 3’-Aziridino-Anthracycline Derivatives. Patent EP 0 683 788 B1, 2 July 1996. [Google Scholar]
- Wasowska, M.; Wietrzyk, J.; Opolski, A.; Oszczapowicz, J.; Oszczapowicz, I. Effect of structural modifications of anthracyclines on the ability to overcome drug resistance of cancer cells. Anticancer Res. 2006, 26, 2009–2012. [Google Scholar]
- Israel, M.; Potti, P.G.; Seshadri, R. Adriamycin analogues. rationale, synthesis, and preliminary antitumor evaluation of highly active DNA-nonbinding N-(trifluoroacetyl)adriamycin 14-O-hemiester derivatives. J. Med. Chem. 1985, 28, 1223–1228. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Dong, J.-Q.; Wang, Y.-G. Synthesis and biological activities of novel seleno epi-daunomycin derivatives. ChemInform 2003, 33, 1891–1898. [Google Scholar] [CrossRef]
- Kim, J.S.; Sharma, A.; Lee, M.G.; Won, M.; Lee, J.Y.; Chi, S.-G.; Sessler, J.L. Anticancer Prodrug for Overcoming Drug Resistance. Patent US 2020/0129626 A1, 24 October 2018. [Google Scholar]
- Olsufyeva, E.N.; Tevyashova, A.N.; Trestchalin, I.D.; Preobrazhenskaya, M.N.; Platt, D.; Klyosov, A. Synthesis and antitumor activity of new D-galactose-containing derivatives of doxorubicin. Carbohydr. Res. 2003, 338, 1359–1367. [Google Scholar] [CrossRef]
- Masquelier, M.; Baurain, R.; Trouet, A. Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physicochemical properties, and lysosomal digestion. J. Med. Chem. 1980, 23, 1166–1170. [Google Scholar] [CrossRef]
- Tevyashova, A.N.; Olsufyeva, E.N.; Preobrazhenskaya, M.N. Design of dual action antibiotics as an approach to search for new promising drugs. Russ. Chem. Rev. 2015, 84, 61–97. [Google Scholar] [CrossRef]
- Zhang, G.; Fang, L.; Zhu, L.; Sun, D.; Wang, P.G. Syntheses and biological activity of bisdaunorubicins. Bioorganic Med. Chem. 2006, 14, 426–434. [Google Scholar] [CrossRef]
- Moiseeva, A.A.; Artyushin, O.I.; Anikina, L.V.; Brel, V.K. Synthesis and antitumor activity of daunorubicin conjugates with of 3,4-methylendioxybenzaldehyde. Bioorganic Med. Chem. Lett. 2019, 29, 126617. [Google Scholar] [CrossRef] [PubMed]
- Brel, V.K.; Moiseeva, A.A.; Artyushin, O.I.; Anikina, L.V.; Klemenkova, Z.S. Simple methods of modification of daunorubicin on the daunosamine nitrogen atom. Med. Chem. Res. 2021, 30, 564–573. [Google Scholar] [CrossRef]
- Artyushin, O.I.; Brel, V.K.; Moiseeva, A.A. Synthesis of Daunorubicin Piperonal Derivatives by One-Step Reductive Amination. Mosc. Univ. Chem. Bull. 2020, 75, 106–109. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Schwartz, G.G.; Buhr, K.A.; Ginsberg, H.N.; Johansson, J.O.; Kalantar-Zadeh, K.; Kulikowski, E.; Toth, P.P.; Wong, N.; Sweeney, M.; et al. Apabetalone and hospitalization for heart failure in patients following an acute coronary syndrome: A prespecified analysis of the BETonMACE study. Cardiovasc. Diabetol. 2021, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Thibault, N.; Peytavin, G.; Claude, J.R. Calcium channel blocking agents protect against acetaminophen-induced cytotoxicity in rat hepatocytes. J. Biochem. Toxicol. 1991, 6, 237–238. [Google Scholar] [CrossRef] [PubMed]
- Khaled, M.; Jiang, Z.Z.; Zhang, L.Y. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J. Ethnopharmacol. 2013, 149, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Shenvi, S.; Diwakar, L.; Reddy, G.C. Nitro Derivatives of Naturally Occurring β-Asarone and Their Anticancer Activity. Int. J. Med. Chem. 2014, 2014, 835485. [Google Scholar] [CrossRef]
- Chen, Z.H.; Xu, R.M.; Zheng, G.H.; Jin, Y.Z.; Li, Y.; Chen, X.Y.; Tian, Y.S. Development of Combretastatin A-4 Analogues as Potential Anticancer Agents with Improved Aqueous Solubility. Molecules 2023, 28, 1717. [Google Scholar] [CrossRef] [PubMed]
- van der Veer, L.J.; Westerhof, G.R.; Rijksen, G.; Schornagel, J.H.; Jansen, G. Cytotoxicity of methotrexate and trimetrexate and its reversal by folinic acid in human leukemic CCRF-CEM cells with carrier-mediated and receptor-mediated folate uptake. Leuk. Res. 1989, 13, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Artyushin, O.I.; Sharova, E.V.; Vinogradova, N.M.; Genkina, G.K.; Moiseeva, A.A.; Khodak, A.A.; Brel, V.K. Synthesis of new daunorubicin N-derivatives by one-step reductive amination. Russ. J. Gen. Chem. 2017, 87, 1323–1326. [Google Scholar] [CrossRef]
- Borch, R.F.; Bernstein, M.D.; Durst, H.D. Cyanohydridoborate anion as a selective reducing agent. J. Am. Chem. Soc. 1971, 93, 2897–2904. [Google Scholar] [CrossRef]
- Sancar, A.; Lindsey-Boltz, L.A.; Unsal-Kacmaz, K.; Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 2004, 73, 39–85. [Google Scholar] [CrossRef]
- Cutts, S.M.; Swift, L.P.; Rephaeli, A.; Nudelman, A.; Phillips, D.R. Recent advances in understanding and exploiting the activation of anthracyclines by formaldehyde. Curr. Med. Chem. Anticancer Agents 2005, 5, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Puente, B.N.; Kimura, W.; Muralidhar, S.A.; Moon, J.; Amatruda, J.F.; Phelps, K.L.; Grinsfelder, D.; Rothermel, B.A.; Chen, R.; Garcia, J.A.; et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014, 157, 565–579. [Google Scholar] [CrossRef] [PubMed]
- Czyz, M.; Szulawska, A.; Bednarek, A.K.; Duchler, M. Effects of anthracycline derivatives on human leukemia K562 cell growth and differentiation. Biochem. Pharmacol. 2005, 70, 1431–1442. [Google Scholar] [CrossRef]
- Denel-Bobrowska, M.; Lukawska, M.; Bukowska, B.; Gajek, A.; Oszczapowicz, I.; Marczak, A. Molecular mechanism of action of oxazolinoanthracyclines in cells derived from human solid tumors. Part 2. Toxicol. In Vitro 2018, 46, 323–334. [Google Scholar] [CrossRef]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef]
- Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473. [Google Scholar] [CrossRef]
- Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: Essential part of metabolic reprogramming and central contributor to cancer progression. Int. J. Radiat. Biol. 2019, 95, 912–919. [Google Scholar] [CrossRef]
- Sidorov, K.K. On the classification of toxicity of poisons by parenteral routes of administration, in Toxicology of New Industrial Chemicals. Medicine 1973, 13, 47. [Google Scholar]
- Woodman, R.J.; Cysyk, R.L.; Kline, I.; Gang, M.; Venditti, J.M. Enhancement of the effectiveness of daunorubicin (NSC-82151) or adriamycin (NSC-123127) against early mouse L1210 leukemia with ICRF-159 (NSC-129943). Cancer Chemother. Rep. 1975, 59, 689–695. [Google Scholar] [PubMed]
- González-Méndez, I.; Aguayo-Ortiz, R.; Sorroza-Martínez, K.; Solano, J.D.; Porcu, P.; Rivera, E.; Dominguez, L. Conformational analysis by NMR and molecular dynamics of adamantane-doxorubicin prodrugs and their assemblies with β-cyclodextrin: A focus on the design of platforms for controlled drug delivery. Bioorg. Med. Chem. 2020, 28, 115510. [Google Scholar] [CrossRef]
- Tsedilin, A.M.; Fakhrutdinov, A.N.; Eremin, D.B.; Zalesskiy, S.S.; Chizhov, A.O.; Kolotyrkina, N.G.; Ananikov, V.P. How sensitive and accurate are routine NMR and MS measurements? Mendeleev Commun. 2015, 25, 454–456. [Google Scholar] [CrossRef]
- Artyushin, O.I.; Sharova, E.V.; Vinogradova, N.M.; Genkina, G.K.; Moiseeva, A.A.; Klemenkova, Z.S.; Orshanskaya, I.R.; Shtro, A.A.; Kadyrova, R.A.; Zarubaev, V.V.; et al. Synthesis of camphecene derivatives using click chemistry methodology and study of their antiviral activity. Bioorg. Med. Chem. Lett. 2017, 27, 2181–2184. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef]
- Prozorovsky, V.P.; Prozorovskaya, M.P.; Demchenko, V.M. Express method for determining the average effective dose and its errors. Farmakol. I Toksikol. 1978, 41, 497–502. [Google Scholar]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; Mackerell, A.D. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
IC50 (μM) | |||||
---|---|---|---|---|---|
A549 | RD | HCT116 | MCF7 | HEK293 | |
DR * | 0.46 ± 0.01 (SI < 10) | 0.30 ± 0.01 (SI = 12.00) | 0.21 ± 0.00 (SI = 17.14) | 1.80 ± 0.17 (SI < 10) | 3.60 ± 0.35 |
4a | 0.17 ± 0.00 (SI = 25.71) | 0.31 ± 0.02 (SI = 14.10) | 0.03 ± 0.00 (SI > 50) | 0.13 ± 0.04 (SI = 33.62) | 4.37 ± 0.00 |
4b | 0.26 ± 0.01 (SI < 10) | 0.45 ± 0.01 (SI < 10) | 0.45 ± 0.00 (SI < 10) | 0.16 ± 0.00 (SI < 10) | 0.94 ± 0.01 |
4c | 42.12 ± 5.25 (SI < 10) | 39.25 ± 2.35 (SI < 10) | 80.10 ± 1.02 (SI < 10) | 79.45 ± 4.77 (SI < 10) | 87.50 ± 6.69 |
4d | 1.86 ± 0.13 (SI < 10) | 1.43 ± 0.06 (SI < 10) | 1.73 ± 0.02 (SI < 10) | 1.66 ± 0.23 (SI < 10) | 0.52 ± 0.06 |
4e | 0.001 ± 0.00 (SI > 50) | 0.08 ± 0.01 (SI < 10) | 0.04 ± 0.00 (SI < 10) | 0.085 ± 0.01 (SI < 10) | 0.05 ± 0.01 |
4f | 0.001 ± 0.01 (SI > 50) | 0.05 ± 0.01 (SI < 10) | 0.21 ± 0.01 (SI < 10) | 0.23 ± 0.02 (SI < 10) | 0.23 ± 0.01 |
4g | 0.21 ± 0.01 (SI = 12.62) | 0.10 ± 0.03 (SI = 26.50) | 0.13 ± 0.05 (SI = 20.38) | 0.57 ± 0.02 (SI < 10) | 2.65 ± 0.14 |
4h | 0.36 ± 0.00 (SI = 32.64) | 1.29 ± 0.06 (SI < 10) | 0.007 ± 0.00 (SI > 50) | 0.45 ± 0.02 (SI = 26.11) | 11.75 ± 0.30 |
Glycolysis | Glycolytic Capacity | Glycolytic Reserve | |
---|---|---|---|
Control | 19.70 ± 0.97 | 53.06 ± 1.58 | 33.36 ± 1.73 |
4a | 6.02 ± 0.04 **** | 27.16 ± 0.46 **** | 21.14 ± 0.13 **** |
4b | 15.01 ± 1.03 * | 41.43 ± 1.40 *** | 26.42 ± 0.62 ** |
4c | 19.28 ± 0.93 | 52.29 ± 1.90 | 33.01 ± 1.10 |
4d | 17.33 ± 1.45 | 47.50 ± 0.49 * | 30.17 ± 0.98 |
4e | 6.50 ± 0.11 **** | 22.66 ± 0.19 **** | 16.16 ± 0.23 **** |
4f | 5.58 ± 0.10 **** | 20.80 ± 0.60 **** | 15.22 ± 0.42 **** |
4g | 6.83 ± 0.24 **** | 27.18 ± 0.43 **** | 20.35 ± 0.28 **** |
4h | 15.07 ± 0.54 * | 45.27 ± 0.15 ** | 29.20 ± 0.28 * |
DR | 14.32 ± 1.66 ** | 39.27 ± 1.01 **** | 24.95 ± 2.84 ** |
Cmpd. | Physicochemical Properties (Lipinski Rule of Five) | Solubility | Pharmacokinetics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MW | HB Donors | HB Acceptors | Rotatable Bonds | Consensus Log P | Log S (ESOL) | Log S (Ali) | Log S (SILICOS-IT) | GI Absorption | CYP Enzyme Inhibitors | |
4e | 662 | 5 | 12 | 8 | 3.02 | Poorly soluble | Low | No | ||
4f | 708 | 5 | 14 | 10 | 2.68 | Poorly soluble | Low | No | ||
DR | 528 | 5 | 11 | 4 | 1.12 | Moderately soluble | Low | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalashnikova, A.A.; Toibazarova, A.B.; Artyushin, O.I.; Anikina, L.V.; Globa, A.A.; Klemenkova, Z.S.; Andreev, M.V.; Radchenko, E.V.; Palyulin, V.A.; Aleksandrova, Y.R.; et al. Design of New Daunorubicin Derivatives with High Cytotoxic Potential. Int. J. Mol. Sci. 2025, 26, 1270. https://doi.org/10.3390/ijms26031270
Kalashnikova AA, Toibazarova AB, Artyushin OI, Anikina LV, Globa AA, Klemenkova ZS, Andreev MV, Radchenko EV, Palyulin VA, Aleksandrova YR, et al. Design of New Daunorubicin Derivatives with High Cytotoxic Potential. International Journal of Molecular Sciences. 2025; 26(3):1270. https://doi.org/10.3390/ijms26031270
Chicago/Turabian StyleKalashnikova, Aleksandra A., Altynkul B. Toibazarova, Oleg I. Artyushin, Lada V. Anikina, Anastasiya A. Globa, Zinaida S. Klemenkova, Maxim V. Andreev, Eugene V. Radchenko, Vladimir A. Palyulin, Yulia R. Aleksandrova, and et al. 2025. "Design of New Daunorubicin Derivatives with High Cytotoxic Potential" International Journal of Molecular Sciences 26, no. 3: 1270. https://doi.org/10.3390/ijms26031270
APA StyleKalashnikova, A. A., Toibazarova, A. B., Artyushin, O. I., Anikina, L. V., Globa, A. A., Klemenkova, Z. S., Andreev, M. V., Radchenko, E. V., Palyulin, V. A., Aleksandrova, Y. R., Syzdykbayev, M. I., Appazov, N. O., Chubarev, V. N., Neganova, M. E., & Brel, V. K. (2025). Design of New Daunorubicin Derivatives with High Cytotoxic Potential. International Journal of Molecular Sciences, 26(3), 1270. https://doi.org/10.3390/ijms26031270