Molecular Mechanisms in the Etiopathology of Rosacea—Systematic Review
Abstract
1. Introduction
2. Methods
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Studies Assessing Oxidative Stress and Molecular Alterations
3.4. Studies Assessing Cytokine-Driven Signaling Pathways
3.5. Studies Assessing Immune Cell Signaling and Skin Barrier Dysfunction
3.6. Studies Assessing Metabolic Molecular Markers
4. Discussion
4.1. Limitations
4.2. Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AOPP | Advanced oxidation protein products |
| ARE | Arylesterase activity |
| AU | Arbitrary units |
| AUC | Area under the curve |
| Ca2+ | Calcium ion |
| CCL2 | C-C motif chemokine ligand 2 |
| CCR2 | C-C chemokine receptor type 2 |
| CD4+ | Cluster of differentiation 4 positive T lymphocytes |
| CREB | cAMP response element-binding protein |
| CRP | C-reactive protein |
| CXCL2, 5, 7, 10 | C-X-C motif chemokine ligand 2, 5, 7, 10 |
| DOP | Dendrobium polysaccharide |
| ELISA | Enzyme-linked immunosorbent assay |
| ERK1/2 | Extracellular signal-regulated kinase 1/2 |
| ESR | Erythrocyte sedimentation rate |
| HC | Healthy controls |
| HDL | High-density lipoprotein |
| HIF-1α | Hypoxia-inducible factor 1-alpha |
| HMGB1 | High-mobility group box 1 |
| HSP60 | Heat shock protein 60 |
| IDO | Indoleamine 2,3-dioxygenase |
| IL-1β, 6, 10, 12, 17, 36, 37, 38 | Interleukin 1 beta, 6, 10, 12, 17, 36, 37, 38 |
| IRAK | Interleukin-1 receptor-associated kinase |
| JAK/STAT | Janus kinase/Signal transducer and activator of transcription |
| KLK5 | Kallikrein-5 |
| LDL | Low-density lipoprotein |
| LIF | Leukemia inhibitory factor |
| MAPK | Mitogen-activated protein kinase |
| MH | Monocyte-to-high-density lipoprotein ratio |
| MLR | Monocyte-to-lymphocyte ratio |
| MMP 2, 9 | Matrix metalloproteinases 2, 9 |
| MPV | Mean platelet volume |
| mTOR | Mammalian target of rapamycin |
| mTORC1 | Mechanistic target of rapamycin complex 1 |
| MYD88 | Myeloid differentiation primary response 88 |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NF-κBp65 | NF-κB subunit p65 |
| NLR | Neutrophil-to-lymphocyte ratio |
| NLS | Non-lesional skin |
| OSDI | Ocular Surface Disease Index |
| OSI | Oxidative stress index |
| OSM | Oncostatin M |
| PBMC | Peripheral blood mononuclear cells |
| PLR | Platelet-to-lymphocyte ratio |
| PPR | Papulopustular rosacea |
| qPCR | Quantitative polymerase chain reaction |
| RNA-seq | RNA sequencing |
| ROC | Receiver operating characteristic |
| ROS | Reactive oxygen species |
| RT-qPCR | Reverse transcription quantitative PCR |
| SBD | Skin barrier dysfunction |
| SII | Systemic Immune-Inflammation Index |
| SLE | Systemic lupus erythematosus |
| STAT3, 5a | Signal transducer and activator of transcription 3, 5a |
| TAS | Total antioxidant status |
| TBUT | Tear break-up time |
| Th1/Th2 | T helper 1/T helper 2 differentiation |
| TLR | Toll-like receptor |
| TLR2, 4, 7 | Toll-like receptor 2, 4, 7 |
| TNF-α | Tumor necrosis factor alpha |
| TOS | Total oxidant status |
| TRAF6 | TNF receptor–associated factor 6 |
| TRP | Transient receptor potential channel |
| TRPV1, 4 | Transient receptor potential vanilloid 1, 4 |
| UV | Ultraviolet |
| VEGF | Vascular endothelial growth factor |
| WGCNA | Weighted gene co-expression network analysis |
References
- Kim, H.S. Microbiota in Rosacea. Am. J. Clin. Dermatol. 2020, 21, 25–35. [Google Scholar] [CrossRef]
- van Zuuren, E.J.; Arents, B.W.M.; van der Linden, M.M.D.; Vermeulen, S.; Fedorowicz, Z.; Tan, J. Rosacea: New Concepts in Classification and Treatment. Am. J. Clin. Dermatol. 2021, 22, 457–465. [Google Scholar] [CrossRef]
- Thiboutot, D.; Anderson, R.; Cook-Bolden, F.; Draelos, Z.; Gallo, R.L.; Granstein, R.D.; Kang, S.; Macsai, M.; Gold, L.S.; Tan, J. Standard management options for rosacea: The 2019 update by the National Rosacea Society Expert Committee. J. Am. Acad. Dermatol. 2020, 82, 1501–1510. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pellicer, P.; Eguren-Michelena, C.; Garcia-Gavin, J.; Llamas-Velasco, M.; Navarro-Moratalla, L.; Nunez-Delegido, E.; Aguera-Santos, J.; Navarro-Lopez, V. Rosacea, microbiome and probiotics: The gut-skin axis. Front. Microbiol. 2023, 14, 1323644. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Almeida, L.M.C.; Bewley, A.; Cribier, B.; Del Rosso, J.; Dlova, N.C.; Gallo, R.L.; Granstein, R.D.; Kautz, G.; Mannis, M.J.; et al. Recommendations for rosacea diagnosis, classification and management: Update from the global ROSacea COnsensus 2019 panel. Br. J. Dermatol. 2020, 182, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Almeida, L.M.; Bewley, A.; Cribier, B.; Dlova, N.C.; Gallo, R.; Kautz, G.; Mannis, M.; Oon, H.H.; Rajagopalan, M.; et al. Updating the diagnosis, classification and assessment of rosacea: Recommendations from the global ROSacea COnsensus (ROSCO) panel. Br. J. Dermatol. 2017, 176, 431–438. [Google Scholar] [CrossRef]
- van Zuuren, E.J. Rosacea. N. Engl. J. Med. 2017, 377, 1754–1764. [Google Scholar] [CrossRef]
- Grafanaki, K.; Bakoli Sgourou, D.; Maniatis, A.; Pasmatzi, E. The exposomal imprint on rosacea: More than skin deep. J. Eur. Acad. Dermatol. Venereol. 2025; early view. [Google Scholar] [CrossRef]
- Kang, C.N.; Shah, M.; Tan, J. Rosacea: An Update in Diagnosis, Classification and Management. Skin Therapy Lett. 2021, 26, 1–8. [Google Scholar]
- Woo, Y.R.; Kim, H.S.; Lee, S.H.; Ju, H.J.; Bae, J.M.; Cho, S.H.; Lee, J.D. Systemic Comorbidities in Korean Patients with Rosacea: Results from a Multi-Institutional Case-Control Study. J. Clin. Med. 2020, 9, 3336. [Google Scholar] [CrossRef]
- Aldrich, N.; Gerstenblith, M.; Fu, P.; Tuttle, M.S.; Varma, P.; Gotow, E.; Cooper, K.D.; Mann, M.; Popkin, D.L. Genetic vs Environmental Factors That Correlate With Rosacea: A Cohort-Based Survey of Twins. JAMA Dermatol. 2015, 151, 1213–1219. [Google Scholar] [CrossRef]
- Bonamigo, R.R.; Barea, P.; Peruzzo, J.; Boza, J.; Miot, H.A.; Bagatin, E.; Almeida, L.M.C.; Milano, G.I.; Lima, C.W.G.; Vidal, L.F.; et al. Clinical-demographic profile, aggravating factors, comorbidities, and quality of life in patients with Rosacea: A Brazilian multicenter study (GBPER: Brazilian Research and Studies Group on Rosacea). An. Bras. Dermatol. 2025, 100, 501160. [Google Scholar] [CrossRef]
- Rodrigues-Braz, D.; Zhao, M.; Yesilirmak, N.; Aractingi, S.; Behar-Cohen, F.; Bourges, J.L. Cutaneous and ocular rosacea: Common and specific physiopathogenic mechanisms and study models. Mol. Vis. 2021, 27, 323–353. [Google Scholar]
- Geng, R.S.Q.; Bourkas, A.N.; Mufti, A.; Sibbald, R.G. Rosacea: Pathogenesis and Therapeutic Correlates. J. Cutan. Med. Surg. 2024, 28, 178–189. [Google Scholar] [CrossRef]
- Schwab, V.D.; Sulk, M.; Seeliger, S.; Nowak, P.; Aubert, J.; Mess, C.; Rivier, M.; Carlavan, I.; Rossio, P.; Metze, D.; et al. Neurovascular and neuroimmune aspects in the pathophysiology of rosacea. J. Investig. Dermatol. Symp. Proc. 2011, 15, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kanada, K.; Macleod, D.T.; Borkowski, A.W.; Morizane, S.; Nakatsuji, T.; Cogen, A.L.; Gallo, R.L. TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J. Investig. Dermatol. 2011, 131, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Frohm, M.; Agerberth, B.; Ahangari, G.; Stâhle-Bäckdahl, M.; Lidén, S.; Wigzell, H.; Gudmundsson, G.H. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J. Biol. Chem. 1997, 272, 15258–15263. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Sheng, L.; Shi, G.; Jiang, L.; Lian, C. Colchicine Alleviates Rosacea by Inhibiting Neutrophil Inflammation Activated by the TLR2 Pathway. Inflammation 2024, 47, 1002–1014. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, D.; Chen, M.; Xu, S.; Peng, Q.; Zhu, Y.; Long, J.; Liu, T.; Deng, Z.; Xie, H.; et al. TLR7 promotes skin inflammation via activating NFkappaB-mTORC1 axis in rosacea. PeerJ 2023, 11, e15976. [Google Scholar] [CrossRef]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Yesilirmak, N.; Saritas, O.; Kurt, B.; Neselioglu, S.; Aktas, A.; Erel, O. Investigation of Thiol/Disulfide Homeostasis and Clinical Parameters in Rosacea Patients According to Skin Subtypes. J. Clin. Med. 2024, 13, 4052. [Google Scholar] [CrossRef]
- Wang, Y.; Long, L.; Chen, M.; Li, J. Oxidative stress mediated by the NOX2/ROS/NF-κB signaling axis is involved in rosacea. Arch. Dermatol. Res. 2025, 317, 505. [Google Scholar] [CrossRef]
- Fernandez, J.; Jimenez, C.; Benadof, D.; Morales, P.; Astorga, J.; Caceres, F.; Hernandez, M.; Fernandez, A.; Valenzuela, F. MMP-9 Levels in the Gingival Crevicular Fluid of Chilean Rosacea Patients. Int. J. Mol. Sci. 2022, 23, 9858. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pang, S.; Hao, S.; Liu, Y.; Lei, W.; Zhong, W.; Xu, K. Dendrobium polysaccharide-based microneedles loaded with Celosia cristata flavonoids and adapalene nanoparticles for efficacious treatment of acne vulgaris. Int. J. Biol. Macromol. 2025, 310, 143480. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.; Yang, Z.; Jiang, G.; Zhou, H.; Zhang, Y.; Wang, C.; Peng, Y.; Yan, Y.; Chen, Z. Dendrobium polysaccharide (DOP) ameliorates the LL-37-induced rosacea by inhibiting NF-kappaB activation in a mouse model. Skin. Res. Technol. 2024, 30, e13543. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- McKenzie, J.E.; Brennan, S.E.; Ryan, R.E.; Thomson, H.J.; Johnson, R.V.; Thomas, J. Defining the Criteria for Including Studies and How They Will Be Grouped for the Synthesis. In Cochrane Handbook for Systematic Reviews of Interventions; Wiley-Blackwell: Chichester, UK, 2019; pp. 33–65. [Google Scholar]
- Ekinci, A.; Kilic, S.O.; Demir, N.; Siddikoglu, D. Important Roles of Interleukin-36, Interleukin-37, and Interleukin-38 Cytokines in the Pathogenesis of Rosacea. Indian J. Dermatol. 2024, 69, 232–237. [Google Scholar] [CrossRef]
- Erdogan, H.K.; Bulur, I.; Kocaturk, E.; Saracoglu, Z.N.; Alatas, O.; Bilgin, M. Advanced oxidation protein products and serum total oxidant/antioxidant status levels in rosacea. Postep. Dermatol. Alergol. 2018, 35, 304–308. [Google Scholar] [CrossRef]
- Gao, C.; Ge, L.; Chen, D.; Zhang, M.; Zhao, L.; Liu, W.; Chen, S.; Wang, J.; Zhou, C.; Zhao, X.; et al. Increased Frequency of Circulating Classical Monocytes in Patients with Rosacea. Clin. Cosmet. Investig. Dermatol. 2021, 14, 1629–1636. [Google Scholar] [CrossRef]
- Harden, J.L.; Shih, Y.H.; Xu, J.; Li, R.; Rajendran, D.; Hofland, H.; Chang, A.L.S. Paired Transcriptomic and Proteomic Analysis Implicates IL-1beta in the Pathogenesis of Papulopustular Rosacea Explants. J. Investig. Dermatol. 2021, 141, 800–809. [Google Scholar] [CrossRef]
- Karaosmanoglu, N.; Ozdemir Cetinkaya, P.; Orenay, O.M. Evaluation of inflammatory status in blood in patients with rosacea. Sci. Rep. 2023, 13, 9068. [Google Scholar] [CrossRef]
- Odabasi, M.; Yazici, S.; Ozkaya, G.; Baskan, E.; Oral, A. Serum indoleamine 2,3-dioxygenase level and diagnostic value in patients with rosacea. Dermatol. Sin. 2023, 41, 25. [Google Scholar] [CrossRef]
- Tas-Aygar, G.; Cemil, B.C.; Aydin, F.N.; Buran, V.; Kartal, S.P. Serum Biomarkers IL-6 and HIF-1alpha in Rosacea: Assessing Their Significance in Disease Pathogenesis and Telangiectasia Formation. Dermatol. Pract. Concept. 2024, 14, e2024267. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, B.; Huang, Y.; Li, Y.; Yan, S.; Xie, H.; Zhang, Y.; Li, J. Multi-Transcriptomic Analysis and Experimental Validation Implicate a Central Role of STAT3 in Skin Barrier Dysfunction Induced Aggravation of Rosacea. J. Inflamm. Res. 2022, 15, 2141–2156. [Google Scholar] [CrossRef]
- Wladis, E.J.; Lau, K.W.; Adam, A.P. Nuclear Factor Kappa-B Is Enriched in Eyelid Specimens of Rosacea: Implications for Pathogenesis and Therapy. Am. J. Ophthalmol. 2019, 201, 72–81. [Google Scholar] [CrossRef]
- Wladis, E.J.; Swamy, S.; Herrmann, A.; Yang, J.; Carlson, J.A.; Adam, A.P. Activation of p38 and Erk Mitogen-Activated Protein Kinases Signaling in Ocular Rosacea. Investig. Ophthalmol. Vis. Sci. 2017, 58, 843–848. [Google Scholar] [CrossRef]
- Yesilirmak, N.; Bukan, N.; Kurt, B.; Fatsa, T.; Yuzbasioglu, S.; Zhao, M.; Hosbul, T.; Bourges, J.L.; Behar-Cohen, F. Toll-like receptor-4 expression and oxidative stress in ocular rosacea. Mol. Vis. 2023, 29, 357–364. [Google Scholar] [CrossRef]
- Yesilirmak, N.; Bukan, N.; Kurt, B.; Yuzbasioglu, S.; Zhao, M.; Rodrigues-Braz, D.; Aktas, A.; Behar-Cohen, F.; Bourges, J.L. Evaluation of Ocular and Systemic Oxidative Stress Markers in Ocular Rosacea Patients. Investig. Ophthalmol. Vis. Sci. 2023, 64, 22. [Google Scholar] [CrossRef]
- Gao, X.; Xiang, W. Efficacy of Widely Used Topical Drugs for Rosacea: A Systematic Review and Meta-Analysis. Actas Dermosifiliogr. 2025, 116, 863–875. [Google Scholar] [CrossRef]
- King, A.; Tan, M.G.; Kirshen, C.; Tolkachjov, S.N. Low-dose isotretinoin for the management of rosacea: A systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 2025, 39, 785–792. [Google Scholar] [CrossRef]
- Hua, N.J.; Chen, J.; Geng, R.S.Q.; Sibbald, R.G.; Sibbald, C. Efficacy of Treatments in Reducing Facial Erythema in Rosacea: A Systematic Review. J. Cutan. Med. Surg. 2025, 29, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Cheng, S.; Liu, R.; Xie, J.; Han, X.; Yu, Z. Meta-Analysis of the Efficacy of Intense Pulsed Light and Pulsed-Dye Laser Therapy in the Management of Rosacea. J. Cosmet. Dermatol. 2024, 23, 3821–3827. [Google Scholar] [CrossRef] [PubMed]
- Martignago, C.C.S.; Bonifacio, M.; Ascimann, L.T.; Vassão, P.G.; Parisi, J.R.; Renno, A.P.; Garcia, L.A.; Ribeiro, D.A.; Renno, A.C.M. Efficacy and safety of intense pulsed light in rosacea: A systematic review. Indian. J. Dermatol. Venereol. Leprol. 2024, 90, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Avraham, S.; Khaslavsky, S.; Kashetsky, N.; Starkey, S.Y.; Zaslavsky, K.; Lam, J.M.; Mukovozov, I. Treatment of ocular rosacea: A systematic review. J. Dtsch. Dermatol. Ges. 2024, 22, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Katamanin, O.; Jafferany, M. Exploring the psychodermatologic burden and associated psychiatric manifestations in rosacea: A systemic review. Arch. Dermatol. Res. 2025, 317, 427. [Google Scholar] [CrossRef]
- Chang, H.C.; Huang, Y.C.; Lien, Y.J.; Chang, Y.S. Association of rosacea with depression and anxiety: A systematic review and meta-analysis. J. Affect. Disord. 2022, 299, 239–245. [Google Scholar] [CrossRef]
- Chiu, C.W.; Tsai, J.; Huang, Y.C. Health-related Quality of Life of Patients with Rosacea: A Systematic Review and Meta-analysis of Real-world Data. Acta Derm. Venereol. 2024, 104, adv40053. [Google Scholar] [CrossRef]
- Geng, R.S.Q.; Bourkas, A.N.; Sibbald, R.G.; Sibbald, C. Biomarkers in rosacea: A systematic review. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 1048–1057. [Google Scholar] [CrossRef]
- Dirr, M.A.; Ahmed, A.; Schlessinger, D.I.; Haq, M.; Shi, V.; Koza, E.; Ma, M.; Christensen, R.E.; Ibrahim, S.A.; Schmitt, J.; et al. Rosacea Core Domain Set for Clinical Trials and Practice: A Consensus Statement. JAMA Dermatol. 2024, 160, 658–666. [Google Scholar] [CrossRef]


| Parameter | Inclusion Criteria | Exclusion Criteria |
|---|---|---|
| Population | Human participants diagnosed with rosacea (any clinical subtype: erythematotelangiectatic, papulopustular, phymatous, ocular). Adults (≥18 years). | Participants without a confirmed diagnosis of rosacea. Studies including only pediatric populations (<18 years). |
| Intervention/Exposure | Assessment of molecular biomarkers, signaling pathways, or gene/protein expression related to the etiopathogenesis of rosacea. | Research focused primarily on therapeutic interventions without investigation of molecular mechanisms. Studies assessing only the skin or gut microbiome composition without molecular pathway analysis. |
| Comparison | Healthy controls; if unavailable, non-lesional skin or internal patient comparisons. | Studies without any valid comparator (no healthy controls, no non-lesional samples, no pre–post design, and no reference range). |
| Outcomes | Quantitative or qualitative data on molecular mechanisms (e.g., cytokines, oxidative stress markers, transcription factors, immune cell profiles, skin barrier proteins). | Lack of quantitative or qualitative data on molecular biomarkers, signaling pathways, or gene/protein expression relevant to rosacea pathogenesis. Studies reporting only clinical outcomes without molecular analysis. |
| Study design | Original research articles (case–control, cross-sectional, cohort, experimental studies). Studies providing data from human samples, even if combined with complementary in vitro or animal experiments. | Full version of the document not available Non-English language publications. Published before 2015 Literature reviews, editorials, commentaries, letters to the editor, and case reports. |
| Author | Study Design | Rosacea Type | Participants | Molecular Mechanism Studied |
|---|---|---|---|---|
| Ekinci [28] 2024 Turkey | Observational case–control study | erythematotelangiectatic, papulopustular, ocular, phymatous | Rosacea patients (n = 50) Controls (n = 50) | IL-36, IL-37, IL-38 |
| Erdogan [29] 2018 Turkey | Observational case–control study | papulopustular, erythematotelangiectatic, ocular | Rosacea patients (n = 70) Controls (n = 30) | Oxidative stress biomarkers: TAS, TOS, AOPP, OSI |
| Fernández [23] 2022 Chile | Observational case–control study | not reported | Rosacea patients (n = 18) Controls (n = 20) | MMP-9 as an inflammatory biomarker in rosacea |
| Gao [30] 2021 China | Cohort | erythematotelangiectatic, papulopustular, phymatous, erythematotelangiectatic overlapping papulopustular | Rosacea patients (n = 116) SLE patients (n = 26) Acne patients (n = 28) Controls (n = 42) | Circulating monocyte subsets, CCR2 expression, CCL2, HMGB-1, IL-1β, TNF-α |
| Harden [31] 2021 USA | Translational ex-perimental study | papulopustular | Rosacea patients (n = 5) | IL-1β as central mediator; MAPK and TNF signaling pathways upregulated in PPR |
| Huang [19] 2023 China | Translational experimental study | not reported | Rosacea patients (n = 24) Controls (n = 17) | TLR7, NF-κB and mTORC1 |
| Karaosmanoglu [32] 2023 Turkey | Observational case–control study | erythematotelangiectatic, papulopustular, phymatous, ocular | Rosacea patients (n = 100) Controls (n = 58) | Monocytes, platelets, MPV, ESR, CRP, NLR, MLR, PLR, MHR, SII index |
| Odabasi [33] 2023 Turkey | Observational case–control study | erythematotelangiectatic and papulopustular | Rosacea patients (n = 52) Controls (n = 29) | Serum indoleamine 2,3-dioxygenase |
| Taş-Aygar [34] 2024 Turkey | Observational case–control study | erythematotelangiectatic and papulopustular | Rosacea patients (n = 40) Controls (n = 40) | IL-6, HIF-1α |
| Wang [35] 2022 China | Translational experimental study | not reported | Rosacea patients (n = 19) Controls (n = 10) additional validation in rosacea patients (n = 8) and Controls (n = 6) | STAT3 |
| Wladis [36] 2019 USA | Observational case–control study | ocular | Immunohistochemistry: rosacea patients (n = 12) Controls (n = 12) Western blot: rosacea patients (n = 15) Controls (n = 14) | NF-κB signaling in rosacea skin |
| Wladis [37] 2017 USA | Observational case–control study | ocular | Immunohistochemistry: rosacea patients (n = 12) Controls (n = 12) Western blot: rosacea patients (n = 14) Controls (n = 16) | MAPK pathway activation via increased p38 and Erk1/2 phosphorylation in rosacea keratinocytes. |
| Yesilirmak [38] 2023 Turkey and France | Observational case–control study | ocular | Rosacea patients (n = 40) Controls (n = 20) | TLR-4 expression in conjunctival epithelium and PBMCs, and its association with oxidative stress markers (TAS, TOS, OSI, ARE) in ocular rosacea. |
| Yesilirmak [39] 2023 Turkey | Cross-sectional observational study | ocular | Rosacea patients (n = 90) Controls (n = 30) | Oxidative stress balance, including TAS, TOS, OSI and ARE activity in serum and tears. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrusiewicz, A.; Khimuk, S.; Mijas, D.; Shmorhun, B.; Nowicka, D. Molecular Mechanisms in the Etiopathology of Rosacea—Systematic Review. Int. J. Mol. Sci. 2025, 26, 11292. https://doi.org/10.3390/ijms262311292
Andrusiewicz A, Khimuk S, Mijas D, Shmorhun B, Nowicka D. Molecular Mechanisms in the Etiopathology of Rosacea—Systematic Review. International Journal of Molecular Sciences. 2025; 26(23):11292. https://doi.org/10.3390/ijms262311292
Chicago/Turabian StyleAndrusiewicz, Anastazja, Sofiia Khimuk, Daniel Mijas, Bohdan Shmorhun, and Danuta Nowicka. 2025. "Molecular Mechanisms in the Etiopathology of Rosacea—Systematic Review" International Journal of Molecular Sciences 26, no. 23: 11292. https://doi.org/10.3390/ijms262311292
APA StyleAndrusiewicz, A., Khimuk, S., Mijas, D., Shmorhun, B., & Nowicka, D. (2025). Molecular Mechanisms in the Etiopathology of Rosacea—Systematic Review. International Journal of Molecular Sciences, 26(23), 11292. https://doi.org/10.3390/ijms262311292

