Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide
Abstract
1. Introduction
2. Results
2.1. Peptide Design and Molecular Docking Analysis
2.2. Target Binding Analysis
2.3. Interaction Inhibition Analysis Between RBD and ACE2
2.4. Inhibition Analysis Using a NanoLuc Bioreporter Assay
2.5. Pseudovirus Infectivity Assay Analysis
3. Discussion
4. Materials and Methods
4.1. Peptide Design and Molecular Docking Analysis
4.2. Target Binding Analysis
4.3. Interaction Inhibition Analysis Between RBD and Human ACE2
4.4. Inhibition Analysis Using a NanoLuc Bioreporter Assay
4.5. Pseudovirus Infectivity Assay Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SARS-CoV-2 | Severe acute respiratory syndrome-coronavirus-2 |
| S1 | Spike 1 protein |
| ELISA | Enzyme-linked immunosorbent assay |
| RBD | Receptor-binding domain |
| ACE2 | Angiotensin-converting enzyme 2 |
| AI | Artificial intelligence |
| InSiPS | In Silico Protein Synthesizer |
| PPI | Protein–protein interaction |
| HRP | Horseradish peroxidase |
| RLU | Relative light unit |
| Å | Angstroms |
References
- Singh, N.; Vayer, P.; Tanwar, S.; Poyet, J.-L.; Tsaioun, K.; Villoutreix, B.O. Drug Discovery and Development: Introduction to the General Public and Patient Groups. Front. Drug Discov. 2023, 3, 1201419. [Google Scholar] [CrossRef]
- Sertkaya, A.; Beleche, T.; Jessup, A.; Sommers, B.D. Costs of Drug Development and Research and Development Intensity in the US, 2000–2018. JAMA Netw. Open 2024, 7, e2415445. [Google Scholar] [CrossRef] [PubMed]
- Barman, P.; Joshi, S.; Sharma, S.; Preet, S.; Sharma, S.; Saini, A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int. J. Pept. Res. Ther. 2023, 29, 61. [Google Scholar] [CrossRef]
- Kazmirchuk, T.D.D.; Bradbury-Jost, C.; Withey, T.A.; Gessese, T.; Azad, T.; Samanfar, B.; Dehne, F.; Golshani, A. Peptides of a Feather: How Computation Is Taking Peptide Therapeutics under Its Wing. Genes 2023, 14, 1194. [Google Scholar] [CrossRef] [PubMed]
- Pechenov, S.; Revell, J.; Will, S.; Naylor, J.; Tyagi, P.; Patel, C.; Liang, L.; Tseng, L.; Huang, Y.; Rosenbaum, A.I.; et al. Development of an Orally Delivered GLP-1 Receptor Agonist through Peptide Engineering and Drug Delivery to Treat Chronic Disease. Sci. Rep. 2021, 11, 22521. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, X.; Huang, Y.-H.; King, G.J.; Collins, B.M.; Gao, Y.; Craik, D.J.; Wang, C.K. Rational Design of Potent Peptide Inhibitors of the PD-1:PD-L1 Interaction for Cancer Immunotherapy. J. Am. Chem. Soc. 2021, 143, 18536–18547. [Google Scholar] [CrossRef]
- Bray, B.L. Large-Scale Manufacture of Peptide Therapeutics by Chemical Synthesis. Nat. Rev. Drug Discov. 2003, 2, 587–593. [Google Scholar] [CrossRef]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in Peptide Drug Discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Burnside, D.; Schoenrock, A.; Moteshareie, H.; Hooshyar, M.; Basra, P.; Hajikarimlou, M.; Dick, K.; Barnes, B.; Kazmirchuk, T.; Jessulat, M.; et al. In Silico Engineering of Synthetic Binding Proteins from Random Amino Acid Sequences. iScience 2019, 11, 375–387. [Google Scholar] [CrossRef]
- Huang, P.-S.; Boyken, S.E.; Baker, D. The Coming of Age of de Novo Protein Design. Nature 2016, 537, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Kazmirchuk, T.D.D.; Wang, J.; Bury, L.; Falcinelli, E.; Bradbury-Jost, C.; Koziar, A.; Al-gafari, M.; Takallou, S.; Willmore, W.G.; Dehne, F.; et al. Developing an AI-Generated Peptide Targeting Platelet-Type von Willebrand Disease. Blood Adv. 2025; in press. [Google Scholar] [CrossRef]
- Ghosh, R.; Joung, H.-A.; Goncharov, A.; Palanisamy, B.; Ngo, K.; Pejcinovic, K.; Krockenberger, N.; Horn, E.J.; Garner, O.B.; Ghazal, E.; et al. Rapid Single-Tier Serodiagnosis of Lyme Disease. Nat. Commun. 2024, 15, 7124. [Google Scholar] [CrossRef]
- Jiang, H.-W.; Li, Y.; Tao, S.-C. SARS-CoV-2 Peptides/Epitopes for Specific and Sensitive Diagnosis. Cell. Mol. Immunol. 2023, 20, 540–542. [Google Scholar] [CrossRef]
- Broderick, K.; Moutaoufik, M.T.; Saccon, T.; Malty, R.; Amin, S.; Phanse, S.; Joseph, T.P.; Zilocchi, M.; Hosseinnia, A.; Istace, Z.; et al. Human Protein Interaction Networks of Ancestral and Variant SARS-CoV-2 in Organ-Specific Cells and Bodily Fluids. Nat. Commun. 2025, 16, 5784. [Google Scholar] [CrossRef] [PubMed]
- Kalita, P.; Tripathi, T.; Padhi, A.K. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. ACS Cent. Sci. 2023, 9, 602–613. [Google Scholar] [CrossRef]
- Hajikarimlou, M.; Hooshyar, M.; Moutaoufik, M.T.; Aly, K.A.; Azad, T.; Takallou, S.; Jagadeesan, S.; Phanse, S.; Said, K.B.; Samanfar, B.; et al. A Computational Approach to Rapidly Design Peptides That Detect SARS-CoV-2 Surface Protein S. NAR Genom. Bioinform. 2022, 4, lqac058. [Google Scholar] [CrossRef]
- Kumar, S.; Thambiraja, T.S.; Karuppanan, K.; Subramaniam, G. Omicron and Delta Variant of SARS-CoV-2: A Comparative Computational Study of Spike Protein. J. Med. Virol. 2022, 94, 1641–1649. [Google Scholar] [CrossRef]
- Martínez, L.; Malaina, I.; Salcines-Cuevas, D.; Terán-Navarro, H.; Zeoli, A.; Alonso, S.; De la Fuente, I.M.; Gonzalez-Lopez, E.; Ocejo-Vinyals, J.G.; Gozalo-Margüello, M.; et al. First Computational Design Using Lambda-Superstrings and in Vivo Validation of SARS-CoV-2 Vaccine. Sci. Rep. 2022, 12, 6410. [Google Scholar] [CrossRef]
- Muralidharan, N.; Sakthivel, R.; Velmurugan, D.; Gromiha, M.M. Computational Studies of Drug Repurposing and Synergism of Lopinavir, Oseltamivir and Ritonavir Binding with SARS-CoV-2 Protease against COVID-19. J. Biomol. Struct. Dyn. 2021, 39, 2673–2678. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant Antimicrobial Peptides: Structures, Functions, and Applications. Bot. Stud. 2021, 62, 5. [Google Scholar] [CrossRef] [PubMed]
- Ciociola, T.; Giovati, L.; Conti, S.; Magliani, W.; Santinoli, C.; Polonelli, L. Natural and Synthetic Peptides with Antifungal Activity. Future Med. Chem. 2016, 8, 1413–1433. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial Peptides: Linking Partition, Activity and High Membrane-Bound Concentrations. Nat. Rev. Microbiol. 2009, 7, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, V.; Bárcenas, O.; Pintado-Grima, C.; Burdukiewicz, M.; Ventura, S. Structural Information in Therapeutic Peptides: Emerging Applications in Biomedicine. FEBS Open Bio 2025, 15, 254–268. [Google Scholar] [CrossRef]
- Jalil, A.T.; Abdulhadi, M.A.; Al-Ameer, L.R.; Taher, W.M.; Abdulameer, S.J.; Abosaooda, M.; Fadhil, A.A. Peptide-Based Therapeutics in Cancer Therapy. Mol. Biotechnol. 2024, 66, 2679–2696. [Google Scholar] [CrossRef]
- Li, B.; Liu, Y.; Yan, P.; Ouyang, X.; Ba, Z.; Wang, Y.; Yang, T.; Yu, Z.; Ren, B.; Zhong, C.; et al. The Novel β-Hairpin Antimicrobial Peptide D-G(RF)3 Demonstrates Exceptional Antibacterial Efficacy. Eur. J. Med. Chem. 2025, 283, 117149. [Google Scholar] [CrossRef]
- Purohit, K.; Reddy, N.; Sunna, A. Exploring the Potential of Bioactive Peptides: From Natural Sources to Therapeutics. Int. J. Mol. Sci. 2024, 25, 1391. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Chen, D.; Shen, H.; Yuan, Z.; Wei, H.; Feng, Y.; Li, L.; Dong, J.; Zhang, L. Discovery of Two Novel ACE Inhibitory Peptides from Soybeans: Stability, Molecular Interactions, and in Vivo Antihypertensive Effects. Int. J. Biol. Macromol. 2025, 308, 142247. [Google Scholar] [CrossRef]
- Xu, B.; Dong, Q.; Yu, C.; Chen, H.; Zhao, Y.; Zhang, B.; Yu, P.; Chen, M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants 2024, 13, 479. [Google Scholar] [CrossRef] [PubMed]
- Al Musaimi, O.; AlShaer, D.; de la Torre, B.G.; Albericio, F. 2024 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals 2025, 18, 291. [Google Scholar] [CrossRef]
- Gare, C.L.; White, A.M.; Malins, L.R. From Lead to Market: Chemical Approaches to Transform Peptides into Therapeutics. Trends Biochem. Sci. 2025, 50, 467–480. [Google Scholar] [CrossRef]
- Wang, L.; Wang, N.; Zhang, W.; Cheng, X.; Yan, Z.; Shao, G.; Wang, X.; Wang, R.; Fu, C. Therapeutic Peptides: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2022, 7, 48. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Scardino, V.; Di Filippo, J.I.; Cavasotto, C.N. How Good Are AlphaFold Models for Docking-Based Virtual Screening? iScience 2023, 26, 105920. [Google Scholar] [CrossRef]
- Wong, F.; Krishnan, A.; Zheng, E.J.; Stärk, H.; Manson, A.L.; Earl, A.M.; Jaakkola, T.; Collins, J.J. Benchmarking AlphaFold Enabled Molecular Docking Predictions for Antibiotic Discovery. Mol. Syst. Biol. 2022, 18, e11081. [Google Scholar] [CrossRef]
- Xia, X. Domains and Functions of Spike Protein in SARS-Cov-2 in the Context of Vaccine Design. Viruses 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Azad, T.; Singaravelu, R.; Taha, Z.; Jamieson, T.R.; Boulton, S.; Crupi, M.J.F.; Martin, N.T.; Fekete, E.E.F.; Poutou, J.; Ghahremani, M.; et al. Nanoluciferase Complementation-Based Bioreporter Reveals the Importance of N-Linked Glycosylation of SARS-CoV-2 S for Viral Entry. Mol. Ther. 2021, 29, 1984–2000. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Cardenas, J.A.; Gutierrez, M.; López-Arredondo, A.; Castañeda-Delgado, J.E.; Rojas-Martinez, A.; Nakamura, Y.; Enciso-Moreno, J.A.; Palomares, L.A.; Brunck, M.E.G. A Pseudovirus-Based Platform to Measure Neutralizing Antibodies in Mexico Using SARS-CoV-2 as Proof-of-Concept. Sci. Rep. 2022, 12, 17966. [Google Scholar] [CrossRef]
- Dick, K.; Samanfar, B.; Barnes, B.; Cober, E.R.; Mimee, B.; Tan, L.H.; Molnar, S.J.; Biggar, K.K.; Golshani, A.; Dehne, F.; et al. PIPE4: Fast PPI Predictor for Comprehensive Inter- and Cross-Species Interactomes. Sci. Rep. 2020, 10, 1390. [Google Scholar] [CrossRef]
- Brown, E.E.F.; Rezaei, R.; Jamieson, T.R.; Dave, J.; Martin, N.T.; Singaravelu, R.; Crupi, M.J.F.; Boulton, S.; Tucker, S.; Duong, J.; et al. Characterization of Critical Determinants of ACE2–SARS CoV-2 RBD Interaction. Int. J. Mol. Sci. 2021, 22, 2268. [Google Scholar] [CrossRef]
- Janse van Rensburg, H.J.; Lai, D.; Azad, T.; Hao, Y.; Yang, X. TAZ Enhances Mammary Cell Proliferation in 3D Culture through Transcriptional Regulation of IRS1. Cell. Signal. 2018, 52, 12–22. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Kazmirchuk, T.D.D.; Hajikarimlou, M.; Al-Gafari, M.; Takallou, S.; Moteshareie, H.; Dehne, F.; Samanfar, B.; Babu, M.; Azad, T.; et al. Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide. Int. J. Mol. Sci. 2025, 26, 10607. https://doi.org/10.3390/ijms262110607
Wang J, Kazmirchuk TDD, Hajikarimlou M, Al-Gafari M, Takallou S, Moteshareie H, Dehne F, Samanfar B, Babu M, Azad T, et al. Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide. International Journal of Molecular Sciences. 2025; 26(21):10607. https://doi.org/10.3390/ijms262110607
Chicago/Turabian StyleWang, Jiashu, Thomas David Daniel Kazmirchuk, Maryam Hajikarimlou, Mustafa Al-Gafari, Sarah Takallou, Houman Moteshareie, Frank Dehne, Bahram Samanfar, Mohan Babu, Taha Azad, and et al. 2025. "Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide" International Journal of Molecular Sciences 26, no. 21: 10607. https://doi.org/10.3390/ijms262110607
APA StyleWang, J., Kazmirchuk, T. D. D., Hajikarimlou, M., Al-Gafari, M., Takallou, S., Moteshareie, H., Dehne, F., Samanfar, B., Babu, M., Azad, T., & Golshani, A. (2025). Artificial Intelligence Reveals Nature: Functional Parallels Between a Designed and a Natural Peptide. International Journal of Molecular Sciences, 26(21), 10607. https://doi.org/10.3390/ijms262110607

