Blood-Based Tau as a Biomarker for Early Detection and Monitoring of Alzheimer’s Disease: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction and Quality Assessment
2.4. Effect Size and Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Tau Biomarker Findings
3.3. Quality Assessment
3.4. Meta-Analysis of Plasma Tau Biomarkers
3.5. Meta-Analysis of Tau PET Biomarkers
3.6. Meta-Analysis Matching Plasma Tau Isoforms with Tau PET
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AD | Alzheimer’s disease |
| ADAS | Alzheimer’s Disease Assessment Scale |
| ADNI | Alzheimer’s Disease Neuroimaging Initiative (ADNI) database |
| CANDI | China Aging and Neurodegenerative Disorder Initiative (CANDI) cohort |
| CDR-SB | Clinical Dementia Rating-Sum of Boxes |
| CN | cognitively normal |
| CSF | cerebrospinal fluid |
| CU | cognitively unimpaired |
| CU− | Aβ-negative cognitively unimpaired |
| CU+ | Aβ-positive cognitively unimpaired |
| EBM | event-based modeling |
| MCI | mild cognitive impairment |
| MCI+ | Aβ-positive mild cognitive impairment |
| MCSA | mayo clinic study of aging |
| MMSE | Mini-Mental State Examination |
| PET | positron emission tomography |
| p-tau181 | tau phosphorylated at threonine 181 |
| RoBANS | Risk of Bias Assessment Tool for Non-randomized Studies |
| ROI | region of interest |
| SUVR | standard uptake value ratio |
| TRIAD | Translational Biomarkers in Aging and Dementia (TRIAD) cohort |
| t-tau | total tau |
| UCSF | University of California San Francisco (UCSF) cohort |
References
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. The Humanistic and Economic Burden of Alzheimer’s Disease. Neurol. Ther. 2022, 11, 525–551. [Google Scholar] [CrossRef]
- Ni, M.; Zhu, Z.H.; Gao, F.; Dai, L.B.; Lv, X.Y.; Wang, Q.; Zhu, X.X.; Xie, J.K.; Shen, Y.; Wang, S.C.; et al. Plasma Core Alzheimer’s Disease Biomarkers Predict Amyloid Deposition Burden by Positron Emission Tomography in Chinese Individuals with Cognitive Decline. ACS Chem. Neurosci. 2023, 14, 170–179. [Google Scholar] [CrossRef]
- Tay, L.X.; Ong, S.C.; Tay, L.J.; Ng, T.; Parumasivam, T. Economic Burden of Alzheimer’s Disease: A Systematic Review. Value Health Reg. Issues 2024, 40, 1–12. [Google Scholar] [CrossRef]
- Coomans, E.M.; Verberk, I.M.W.; Ossenkoppele, R.; Verfaillie, S.C.J.; Visser, D.; Gouda, M.; Tuncel, H.; Wolters, E.E.; Timmers, T.; Windhorst, A.D.; et al. A Head-to-Head Comparison Between Plasma pTau181 and Tau PET Along the Alzheimer’s Disease Continuum. J. Nucl. Med. 2023, 64, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Hagen, C.E.; Xu, J.; Chai, X.Y.; Vemuri, P.; Lowe, V.J.; Airey, D.C.; Knopman, D.S.; Roberts, R.O.; Machulda, M.M.; et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement. 2018, 14, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Nitsch, R.M. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front. Aging Neurosci. 2021, 13, 751897. [Google Scholar] [CrossRef]
- Doré, V.; Doecke, J.D.; Saad, Z.S.; Triana-Baltzer, G.; Slemmon, R.; Krishnadas, N.; Bourgeat, P.; Huang, K.; Burnham, S.; Fowler, C.; et al. Plasma p217+tau versus NAV4694 amyloid and MK6240 tau PET across the Alzheimer’s continuum. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12307. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.J.; Ribaldi, F.; Lathuiliere, A.; Ashton, N.J.; Janelidze, S.; Zetterberg, H.; Scheffler, M.; Assal, F.; Garibotto, V.; Blennow, K.; et al. Head-to-head study of diagnostic accuracy of plasma and cerebrospinal fluid p-tau217 versus p-tau181 and p-tau231 in a memory clinic cohort. J. Neurol. 2024, 271, 2053–2066. [Google Scholar] [CrossRef]
- Mielke, M.M.; Dage, J.L.; Frank, R.D.; Algeciras-Schimnich, A.; Knopman, D.S.; Lowe, V.J.; Bu, G.; Vemuri, P.; Graff-Radford, J.; Jack, C.R.; et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 2022, 28, 1398–1405. [Google Scholar] [CrossRef]
- Dhauria, M.; Mondal, R.; Deb, S.; Shome, G.; Chowdhury, D.; Sarkar, S.; Benito-Leon, J. Blood-Based Biomarkers in Alzheimer’s Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int. J. Mol. Sci. 2024, 25, 10911. [Google Scholar] [CrossRef]
- Moscoso, A.; Grothe, M.J.; Ashton, N.J.; Karikari, T.K.; Rodriguez, J.L.; Snellman, A.; Suárez-Calvet, M.; Zetterberg, H.; Blennow, K.; Schöll, M. Time course of phosphorylated-tau181 in blood across the Alzheimer’s disease spectrum. Brain 2021, 144, 325–339. [Google Scholar] [CrossRef]
- Xiong, X.; He, H.J.; Ye, Q.Q.; Qian, S.J.; Zhou, S.T.; Feng, F.F.; Fang, E.F.; Xie, C.L. Alzheimer’s disease diagnostic accuracy by fluid and neuroimaging ATN framework. CNS Neurosci. Ther. 2024, 30, 16. [Google Scholar] [CrossRef]
- Du, L.; Hermann, B.P.; Jonaitis, E.M.; Cody, K.A.; Rivera-Rivera, L.; Rowley, H.; Field, A.; Eisenmenger, L.; Christian, B.T.; Betthauser, T.J.; et al. Harnessing cognitive trajectory clusterings to examine subclinical decline risk factors. Brain Commun. 2023, 5, fcad333. [Google Scholar] [CrossRef]
- Tissot, C.; Therriault, J.; Kunach, P.; Benedet, A.L.; Pascoal, T.A.; Ashton, N.J.; Karikari, T.K.; Servaes, S.; Lussier, F.Z.; Chamoun, M.; et al. Comparing tau status determined via plasma pTau181, pTau231 and [(18)F]MK6240 tau-PET. EBioMedicine 2022, 76, 103837. [Google Scholar] [CrossRef]
- Janelidze, S.; Berron, D.; Smith, R.; Strandberg, O.; Proctor, N.K.; Dage, J.L.; Stomrud, E.; Palmqvist, S.; Mattsson-Carlgren, N.; Hansson, O. Associations of Plasma Phospho-Tau217 Levels With Tau Positron Emission Tomography in Early Alzheimer Disease. JAMA Neurol. 2021, 78, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.L.; Milà-Alomà, M.; Vrillon, A.; Ashton, N.J.; Pascoal, T.A.; Lussier, F.; Karikari, T.K.; Hourregue, C.; Cognat, E.; Dumurgier, J.; et al. Differences between Plasma and Cerebrospinal Fluid Glial Fibrillary Acidic Protein Levels across the Alzheimer Disease Continuum. JAMA Neurol. 2021, 78, 1471–1483. [Google Scholar] [CrossRef] [PubMed]
- Ferrari-Souza, J.P.; Bellaver, B.; Ferreira, P.C.L.; Benedet, A.L.; Povala, G.; Lussier, F.Z.; Leffa, D.T.; Therriault, J.; Tissot, C.; Soares, C.; et al. APOEε4 potentiates amyloid β effects on longitudinal tau pathology. Nat. Aging 2023, 3, 1210–1218. [Google Scholar] [CrossRef]
- Ferreira, P.C.L.; Therriault, J.; Tissot, C.; Ferrari-Souza, J.P.; Benedet, A.L.; Povala, G.; Bellaver, B.; Leffa, D.T.; Brum, W.S.; Lussier, F.Z.; et al. Plasma p-tau231 and p-tau217 inform on tau tangles aggregation in cognitively impaired individuals. Alzheimer’s Dement. 2023, 19, 4463–4474. [Google Scholar] [CrossRef] [PubMed]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Krishnadas, N.; Doré, V.; Laws, S.M.; Porter, T.; Lamb, F.; Bozinovski, S.; Villemagne, V.L.; Rowe, C.C. Exploring discordant low amyloid beta and high neocortical tau positron emission tomography cases. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2022, 14, e12326. [Google Scholar] [CrossRef]
- Leuzy, A.; Smith, R.; Cullen, N.C.; Strandberg, O.; Vogel, J.W.; Binette, A.P.; Borroni, E.; Janelidze, S.; Ohlsson, T.; Jögi, J.; et al. Biomarker-Based Prediction of Longitudinal Tau Positron Emission Tomography in Alzheimer Disease. JAMA Neurol. 2022, 79, 149–158. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Strom, A.; Fonseca, C.; Iaccarino, L.; Wolf, A.; Spina, S.; Allen, I.E.; Cobigo, Y.; Heuer, H.; et al. Plasma phosphorylated tau 217 and phosphorylated tau 181 as biomarkers in Alzheimer’s disease and frontotemporal lobar degeneration: A retrospective diagnostic performance study. Lancet Neurol. 2021, 20, 739–752, Erratum in Lancet Neurol. 2021, 20, 739–752. [Google Scholar] [CrossRef]
- Thijssen, E.H.; La Joie, R.; Wolf, A.; Strom, A.; Wang, P.; Iaccarino, L.; Bourakova, V.; Cobigo, Y.; Heuer, H.; Spina, S.; et al. Diagnostic value of plasma phosphorylated tau181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat. Med. 2020, 26, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Groot, C.; Villeneuve, S.; Smith, R.; Hansson, O.; Ossenkoppele, R. Tau PET Imaging in Neurodegenerative Disorders. J. Nucl. Med. 2022, 63, 20S–26S. [Google Scholar] [CrossRef]
- Villemagne, V.L.; Okamura, N. Tau imaging in the study of ageing, Alzheimer’s disease, and other neurodegenerative conditions. Curr. Opin. Neurobiol. 2016, 36, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Ossenkoppele, R.; Smith, R.; Mattsson-Carlgren, N.; Groot, C.; Leuzy, A.; Strandberg, O.; Palmqvist, S.; Olsson, T.; Jogi, J.; Stormrud, E.; et al. Accuracy of Tau Positron Emission Tomography as a Prognostic Marker in Preclinical and Prodromal Alzheimer Disease: A Head-to-Head Comparison Against Amyloid Positron Emission Tomography and Magnetic Resonance Imaging. JAMA Neurol. 2021, 78, 961–971. [Google Scholar] [CrossRef]
- Karlsson, L.; Vogel, J.; Arvidsson, I.; Astrom, K.; Strandberg, O.; Seidlitz, J.; Bethlehem, R.A.I.; Stomrud, E.; Ossenkoppele, R.; Ashton, N.J.; et al. Machine learning prediction of tau-PET in Alzheimer’s disease using plasma, MRI, and clinical data. Alzheimers Dement. 2025, 21, e14600. [Google Scholar] [CrossRef]
- Nam, E.; Lee, Y.B.; Moon, C.; Chang, K.A. Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer’s Disease Progression. Int. J. Mol. Sci. 2020, 21, 5007. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.J.; Stoops, E.; Rainey-Smith, S.R.; Vanmechelen, E.; Vanbrabant, J.; Dewit, N.; Mauroo, K.; Maruff, P.; Rowe, C.C.; Fripp, J.; et al. Plasma p-tau181/Abeta(1–42) ratio predicts Abeta-PET status and correlates with CSF-p-tau181/Abeta(1-42) and future cognitive decline. Alzheimers Dement. 2022, 14, e12375. [Google Scholar] [CrossRef]
- Palmqvist, S.; Stomrud, E.; Cullen, N.; Janelidze, S.; Manuilova, E.; Jethwa, A.; Bittner, T.; Eichenlaub, U.; Suridjan, I.; Kollmorgen, G.; et al. An accurate fully automated panel of plasma biomarkers for Alzheimer’s disease. Alzheimers Dement. 2023, 19, 1204–1215. [Google Scholar] [CrossRef]
- Lombardi, G.; Pancani, S.; Manca, R.; Mitolo, M.; Baiardi, S.; Massa, F.; Coppola, L.; Franzese, M.; Nicolai, E.; Guerini, F.R.; et al. Role of Blood P-Tau Isoforms (181, 217, 231) in Predicting Conversion from MCI to Dementia Due to Alzheimer’s Disease: A Review and Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 12916. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, Z.; Zhang, Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. J. Alzheimers Dis. 2024, 98, 13–32. [Google Scholar] [CrossRef]
- Dasari, M.; Kurian, J.A.; Gundraju, S.; Raparthi, A.; Medapati, R.V. Blood-Based beta-Amyloid and Phosphorylated Tau (p-Tau) Biomarkers in Alzheimer’s Disease: A Systematic Review of Their Diagnostic Potential. Cureus 2025, 17, e79881. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Falcon, B.; Zhang, W.; Newell, K.L.; Hasegawa, M.; Scheres, S.H.W.; Ghetti, B. Tau Protein and Frontotemporal Dementias. Adv. Exp. Med. Biol. 2021, 1281, 177–199. [Google Scholar] [CrossRef]
- de Bruin, H.; Groot, C.; Kamps, S.; Vijverberg, E.G.B.; Steward, A.; Dehsarvi, A.; Pijnenburg, Y.A.L.; Ossenkoppele, R.; Franzmeier, N. Amyloid-beta and tau deposition in traumatic brain injury: A study of Vietnam War veterans. Brain Commun. 2025, 7, fcaf009. [Google Scholar] [CrossRef]
- Mattsson-Carlgren, N.; Salvado, G.; Ashton, N.J.; Tideman, P.; Stomrud, E.; Zetterberg, H.; Ossenkoppele, R.; Betthauser, T.J.; Cody, K.A.; Jonaitis, E.M.; et al. Prediction of Longitudinal Cognitive Decline in Preclinical Alzheimer Disease Using Plasma Biomarkers. JAMA Neurol. 2023, 80, 360–369. [Google Scholar] [CrossRef]
- Du, L.; Langhough, R.E.; Wilson, R.E.; Reyes, R.E.R.; Hermann, B.P.; Jonaitis, E.M.; Betthauser, T.J.; Chin, N.A.; Christian, B.; Chaby, L.; et al. Longitudinal plasma phosphorylated-tau217 and other related biomarkers in a non-demented Alzheimer’s risk-enhanced sample. Alzheimers Dement. 2024, 20, 6183–6204. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shin, K.Y.; Chang, K.A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef]
- Musaeus, C.S.; Gleerup, H.S.; Clemmensen, F.K.; Sellebjerg, F.; Hansen, M.B.; Sondergaard, H.B.; Waldemar, G.; Hasselbalch, S.G.; Simonsen, A.H. Serum neurofilament light chain levels are associated with cognitive decline in a consecutive cohort of patients with Alzheimer’s disease. J. Neurol. Sci. 2025, 477, 123679. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, E.H.; Rabinovici, G.D. Rapid Progress Toward Reliable Blood Tests for Alzheimer Disease. JAMA Neurol. 2021, 78, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Cogswell, P.M.; Wiste, H.J.; Therneau, T.M.; Griswold, M.E.; Mattsson-Carlgren, N.; Palmqvist, S.; Binette, A.P.; Stomrud, E.; Bateman, R.J.; Barthelemy, N.; et al. Association of plasma Alzheimer’s disease biomarkers with cognitive decline in cognitively unimpaired individuals. Alzheimers Dement. 2025, 21, e70625. [Google Scholar] [CrossRef] [PubMed]
- Ottoy, J.; Niemantsverdriet, E.; Verhaeghe, J.; De Roeck, E.; Struyfs, H.; Somers, C.; Wyffels, L.; Ceyssens, S.; Van Mossevelde, S.; Van den Bossche, T.; et al. Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid- and (18)F-FDG-PET imaging. Neuroimage Clin. 2019, 22, 101771. [Google Scholar] [CrossRef] [PubMed]
- Zurron, M.; Pereiro, A.X.; Rodriguez-Perez, A.I.; Galdo-Alvarez, S.; Ansede, J.J.; Lojo-Seoane, C.; Lindin, M.; Facal, D.; Rivas-Fernandez, M.A.; Campos-Magdaleno, M.; et al. Plasma and neurostructural biomarkers in the clinical-biological characterization of early stages of the Alzheimer’s disease continuum: Findings from the Compostela Aging Study. J. Prev. Alzheimers Dis. 2025, 100331. [Google Scholar] [CrossRef]
- Yim, S.; Park, S.; Lim, K.; Kang, H.; Shin, D.; Jo, H.; Jang, H.; Weiner, M.W.; Zetterberg, H.; Blennow, K.; et al. Integrating MRI Volume and Plasma p-Tau217 for Amyloid Risk Stratification in Early-Stage Alzheimer Disease. Neurology 2025, 105, e213954. [Google Scholar] [CrossRef] [PubMed]
- Warmenhoven, N.; Salvado, G.; Janelidze, S.; Mattsson-Carlgren, N.; Bali, D.; Orduna Dolado, A.; Kolb, H.; Triana-Baltzer, G.; Barthelemy, N.R.; Schindler, S.E.; et al. A comprehensive head-to-head comparison of key plasma phosphorylated tau 217 biomarker tests. Brain 2025, 148, 416–431. [Google Scholar] [CrossRef]
- Mila-Aloma, M.; Ashton, N.J.; Shekari, M.; Salvado, G.; Ortiz-Romero, P.; Montoliu-Gaya, L.; Benedet, A.L.; Karikari, T.K.; Lantero-Rodriguez, J.; Vanmechelen, E.; et al. Plasma p-tau231 and p-tau217 as state markers of amyloid-beta pathology in preclinical Alzheimer’s disease. Nat. Med. 2022, 28, 1797–1801, Correction in Nat. Med. 2022, 28, 1965. [Google Scholar] [CrossRef]
- Quispialaya, K.M.; Therriault, J.; Aliaga, A.; Tissot, C.; Servaes, S.; Rahmouni, N.; Karikari, T.K.; Benedet, A.L.; Ashton, N.J.; Macedo, A.C.; et al. Plasma phosphorylated tau181 outperforms [(18)F] fluorodeoxyglucose positron emission tomography in the identification of early Alzheimer disease. Eur. J. Neurol. 2024, 31, e16255. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef]
- Ashton, N.J.; Pascoal, T.A.; Karikari, T.K.; Benedet, A.L.; Lantero-Rodriguez, J.; Brinkmalm, G.; Snellman, A.; Scholl, M.; Troakes, C.; Hye, A.; et al. Plasma p-tau231: A new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol. 2021, 141, 709–724. [Google Scholar] [CrossRef]
- Hansson, O.; Grothe, M.J.; Strandberg, T.O.; Ohlsson, T.; Hagerstrom, D.; Jogi, J.; Smith, R.; Scholl, M. Tau Pathology Distribution in Alzheimer’s disease Corresponds Differentially to Cognition-Relevant Functional Brain Networks. Front. Neurosci. 2017, 11, 167. [Google Scholar] [CrossRef]
- Abu-Rumeileh, S.; Scholle, L.; Mensch, A.; Grosskopf, H.; Ratti, A.; Kolsch, A.; Stoltenburg-Didinger, G.; Conrad, J.; De Gobbi, A.; Barba, L.; et al. Phosphorylated tau 181 and 217 are elevated in serum and muscle of patients with amyotrophic lateral sclerosis. Nat. Commun. 2025, 16, 2019. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Hagen, C.E.; Wennberg, A.M.V.; Airey, D.C.; Savica, R.; Knopman, D.S.; Machulda, M.M.; Roberts, R.O.; Jack, C.R., Jr.; Petersen, R.C.; et al. Association of Plasma Total Tau Level With Cognitive Decline and Risk of Mild Cognitive Impairment or Dementia in the Mayo Clinic Study on Aging. JAMA Neurol. 2017, 74, 1073–1080. [Google Scholar] [CrossRef]
- Mattsson, N.; Zetterberg, H.; Janelidze, S.; Insel, P.S.; Andreasson, U.; Stomrud, E.; Palmqvist, S.; Baker, D.; Tan Hehir, C.A.; Jeromin, A.; et al. Plasma tau in Alzheimer disease. Neurology 2016, 87, 1827–1835. [Google Scholar] [CrossRef]
- Mori, H.; Yoshino, Y.; Ueno, M.; Funahashi, Y.; Kumon, H.; Ozaki, Y.; Yamazaki, K.; Ochi, S.; Iga, J.I.; Ueno, S.I. Blood MAPT expression and methylation status in Alzheimer’s disease. PCN Rep. 2022, 1, e65. [Google Scholar] [CrossRef] [PubMed]
- Huin, V.; Buee, L.; Behal, H.; Labreuche, J.; Sablonniere, B.; Dhaenens, C.M. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer’s disease and progressive supranuclear palsy brains. Sci. Rep. 2017, 7, 12589. [Google Scholar] [CrossRef] [PubMed]








| Study (Author, Year) | Country | Analyzed Group | Number | Female n (%) | Age (M ± SD) | Cognitive Tests | Outcome Measures |
|---|---|---|---|---|---|---|---|
| Benedet et al., 2021 [16] | Canada | TRIAD: CU− | 114 | 74 (64) | 69.9 (9.4) | MMSE | 29 (1.0) |
| CU+ | 42 | 29 (69) | 74.1 (7.7) | 29 (1.0) | |||
| MCI+ | 39 | 21 (53.8) | 71.2 (7.7) | 28 (2.0) | |||
| AD | 45 | 21 (46.7) | 66.1 (9.7) | 19 (6.0) | |||
| Doré et al., 2022 [7] | Australia, USA | CU | 223 | 122 (54.7) | 75.2 (5.70) | CDR-SB MMSE | 0.0 (0.00) 29 (2.00) |
| MCI | 91 | 40 (44) | 73.6 (7.99) | 1.0 (1.50) 27 (4.00) | |||
| Dementia | 83 | 34 (41) | 70.7 (7.91) | 4.0 (1.00) 23 (4.00) | |||
| Ferrari-Souza et al., 2023 [17] | Canada | TRIAD: CU | 62 | 43 (69.4) | 70.7 (7.0) | MMSE | 29.2 (1.2) |
| MCI | 25 | 15 (60) | 71.3 (4.8) | 28.0 (1.6) | |||
| AD | 7 | 3 (42.9) | 71.2 (5.2) | 23.4 (5.0) | |||
| Ferreira et al., 2023 [18] | Canada | CU− | 108 | 67 (62) | 68.2 (10.1) | MMSE MoCA | 29.1 (1.11) 27.9 (1.82) |
| CU+ | 30 | 20 (66.7) | 72.5 (10.2) | 29.0 (1.22) 28.3 (1.32) | |||
| CI− | 18 | 10 (43.5) | 69.0 (11.8) | 27.0 (2.63) 22.8 (5.36) | |||
| CI+ | 69 | 43 (58.1) | 68.4 (8.50) | 24.6 (5.30) 20.8 (6.47) | |||
| Janelidze et al., 2020 [19] | Sweden | Cohort1: CU− | 26 | 10 | 74 (71~78) | MMSE | 29 (28~30) |
| CU+ | 38 | 23 | 75 (71~79) | 29 (29~30) | |||
| MCI+ | 28 | 9 | 72 (69~78) | 26 (24~29) | |||
| AD+ | 38 | 17 | 73 (67~78) | 21 (18~24) | |||
| Krishnadas et al., 2022 [20] | Australia | CU | 1 | 0 (0) | 76 | MMSE CDR | 29 0 |
| MCI | 2 | 1 (50) | 67/68 | 24/24 0.5/0.5 | |||
| AD | 1 | 0 (0) | 72 | 22 1 | |||
| Leuzy et al., 2022 [21] | Sweden | CU− | 137 | 64 (47) | 72.57 (7.33) | MMSE | 28.98 (1.21) |
| CU+ | 49 | 26 (53) | 72.83 (7.52) | 28.67 (1.30) | |||
| MCI+ | 58 | 32 (55) | 71.79 (7.97) | 26.69 (1.91) | |||
| AD | 63 | 35 (56) | 73.06 (6.90) | 19.74 (4.23) | |||
| Mendes et al., 2024 [8] | Switzerland | CU | 33 | 21 (64) | 68.9 (7.6) | MMSE | 28.2 (1.3) |
| MCI | 67 | 33 (49) | 72.9 (6.4) | 26.1 (3.1) | |||
| Dementia | 14 | 7 (50) | 71.1 (8.8) | 20.1 (5.6) | |||
| Mielke et al., 2022 [9] | USA | CU | 629 | 532 (45.8) | 70.9 [48.4, 79.8] | ||
| MCI | 88 | 65 (42.5) | 80.8 [75.8, 86.1] | ||||
| Dementia | 13 | 2 (13.3) | 83.5 [81.5, 85.0] | ||||
| Mielke et al., 2018 [5] | USA | CU | 172 | 119 (69.2) | 71.9 (9.5) | ||
| MCI | 57 | 45 (79.0) | 71.4 (10.7) | ||||
| AD | 40 | 23 (57.5) | 67.7 (9.2) | ||||
| Moscoso et al., 2021 [11] | USA, Canada | ADNI: CN | 359 | 191 (53.2) | 74.7 (6.7) | MMSE | 29 [24–30] |
| MCI | 518 | 227 (43.8) | 72.8 (7.9) | 28 [24–30] | |||
| AD | 186 | 78 (41.9) | 75.1 (7.8) | 23 [9–26] | |||
| Ni et al., 2023 [2] | China | CANDI: CN | 21 | 14 (66.7) | 56.1 (8.7) | MMSE CDR | 28 [26, 29] 0 |
| MCI | 61 | 37 (60.6) | 62.5 (9.7) | 21 [19, 26] 0.5 | |||
| AD | 90 | 65 (72.2) | 63.3 (8.8) | 11 [7, 17] 1–2 | |||
| Thijssen et al., 2021 [22] | USA | UCSF: NC | 118 | 63 (53.4) | 60.9 (18) | MMSE CDR | 29 (1) 0 (0) |
| MCI | 99 | 44 (44.4) | 65.5 (13) | 27 (2) 2 (1) | |||
| AD | 58 | 33 (56.9) | 65.3 (10) | 19 (7) 6 (3) | |||
| Thijssen et al., 2020 [23] | USA et al. | HC | 69 | 32 (46.4) | 60.6 (22) | MMSE CDR-SB | 29.0 (1) 0 (0) |
| MCI | 47 | 21 (44.7) | 60.8(14) | 26.8 (3) 2.0 (1) | |||
| AD | 56 | 33 (58.9) | 65.0 (9) | 20.3 (6) 4.8 (3) | |||
| Tissot et al., 2022 [14] | Canada | TRIAD: CU | 162 | 102 (63) | 69.4 (10.3) | MMSE CDR | No cognitive impairment |
| MCI | 60 | 27 (45) | 70.3 (9.1) | ≥26 0.5 | |||
| AD | 32 | 16 (50) | 64.9 (10.4) | <26 >0.5 | |||
| Xiong et al., 2024 [12] | USA, Canada | ADNI: CN | 863 | 382 (44.3) | 72.7 (6.35) | ADAS-11 ADAS-13 | 5.33 [3.67, 7.33] 29.0 [29.0, 30.0] |
| MCI | 1068 | 626 (58.6) | 72.8 (7.64) | 9.67 [7.00, 13.0] 28.0 [26.0, 29.0] | |||
| AD | 409 | 230 (56.2) | 74.9 (7.91) | 19.0 [14.7, 23.0] 23.0 [21.0, 25.0] |
| Study | Group | Blood Tau | Tau PET | |||||
|---|---|---|---|---|---|---|---|---|
| Total Tau | p-Tau181 | p-Tau217 | p-Tau231 | PET Tracer | SUVR Value or Correlation Measures | |||
| Benedet et al., 2021 [16] | CU− | 9.9 (4.4) n = 114 | 18F-MK6240 | Spearman correlation coefficients (ρ) = 0.59 n = 293 | ||||
| CU+ | 14.8 (11.0) n = 42 | |||||||
| MCI+ | 18.1 (8.1) * n = 39 | |||||||
| AD | 24.1 (9.6) *,+ n = 45 | |||||||
| Doré et al., 2022 [7] | CU | 87.8 (67.8) n = 223 | 18F-MK6240 | pTau217: correlated with meta Temporal ROI SUVR (Spearman ρ = 0.63, p < 10−46) 1.02 (0.23) n = 31 | ||||
| MCI | 183.7 (141.0) * n = 91 | 1.48 (0.61) * n = 48 | ||||||
| Dementia | 229.9 (150.7) *,+ n = 83 | 1.93 (0.77) *,+ n = 64 | ||||||
| Ferrari-Souza et al., 2023 [17] | CU | 0.05 (0.03) n = 62 | 18F-MK6240 | pTau217: correlated with Temporal meta-ROI SUVR (p < 0.0001) 0.77 (0.10) n = 62 | ||||
| MCI | 0.11 (0.06) * n = 25 | 1.04 (0.41) * n = 25 | ||||||
| AD | 0.40 (0.32) *,+ n = 7 | 1.81 (0.70) *,+ n = 7 | ||||||
| Ferreira et al., 2023 [18] | CU− | 9.83 (4.35) n = 108 | 0.0487 (0.02) | 12.7 (5.62) | 18F-MK-6240 | BraakI-II SUVR 0.948 (0.218) n = 108 | pTau231: correlated with entorhinal SUVR (R2 = 0.17; p < 0.001 *) pTau217: correlated with entorhinal SUVR (R2 = 0.12; p < 0.001 *) pTau181: correlated with entorhinal SUVR (R2 = 0.16; p = 0.007) | |
| CU+ | 13.2 (5.49) n = 30 | 0.0905 (0.04) | 21.1 (7.85) | 1.28 (0.409) n = 30 | ||||
| CI− | 12.9 (7.06) n = 18 | 0.09 (0.06) | 14.1 (7.82) | 1.10 (0.51) n = 18 | pTau231: correlated with entorhinal SUVR (R2 = 0.18; p < 0.001 *) pTau217: correlated with entorhinal SUVR (R2 = 0.19; p < 0.001 *) pTau181: correlated with entorhinal SUVR (R2 = 0.17; p < 0.001 *) | |||
| CI+ | 19.9 (8.42) n = 69 | 0.186 (0.12) | 23.3 (10.1) | 2.32 (0.88) n = 69 | ||||
| Janelidze et al., 2020 [19] | Cohort1: CU− | 1.3 [0.9–2.4] | 18F-flortaucipir | n = 26 Temporal meta ROI SUVR Braak I–IV ROI, p = 3.3 × 10−21, 1.17 [1.10–1.20], Braak I–II ROI, p = 5.7 × 10−19, 1.06 [1.01–1.12] Braak III–IV ROI, p = 5.5 × 10−21, 1.17 [1.10–1.20] Braak V–VI ROI, p = 9.0 × 10−17, 1.05 [1.00–1.07] Inferior temporal cortex, p = 1.2 × 10−19, 1.21 [1.14–1.24] | ||||
| CU+ | 1.9 [1.4–2.8] * | n = 38 1.15 [1.12–1.22] 1.09 [1.02–1.22] 1.16 [1.12–1.23] 1.04 [1.00–1.07] 1.21 [1.15–1.26] | ||||||
| MCI+ | 3.8 [2.5–5.7] *,+ | n = 28 1.56 [1.25–1.80] 1.43 [1.25–1.78] 1.56 [1.24–1.82] 1.22 [1.06–1.28] 1.65 [1.30–1.90] | ||||||
| AD+ | 4.4 [3.3–6.4] *,+ | n = 38 1.92 [1.60–2.29] 1.67 [1.50–1.75] 1.95 [1.60–2.31] 1.45 [1.18–1.64] 2.09 [1.70–2.54] | ||||||
| Krishnadas et al., 2020 [20] | CU | High | 18F-MK6240 | n = 1 Mesial temporal SUVR: 1.14 Temporo-parietal SUVR: 1.37 * Rest of brain SUVR: 0.96 | ||||
| MCI | −(no test)/High | n = 2 2.73 */3.27 * 3.59 */4.01 * 1.89 */2.01 * | ||||||
| AD | High | n = 1 1.27 3.04 * 1.68 * | ||||||
| Leuzy et al., 2022 [21] | CU− | 1.29 (2.67) | 18F-RO948 | n = 137 EBM stage I: 0.97 (0.13) * EBM stage II: 1.27 (0.11) EBM stage III: 1.26 (0.12) EBM stage IV: 1.13 (0.11) EBM stage V: 1.18 (0.11) | ||||
| CU+ | 3.22 (2.39) | n = 49 1.17 (0.21) * 1.42 (0.39) * 1.35 (0.36) * 1.16 (0.17) * 1.19 (0.12) * | ||||||
| MCI+ | 3.81 (2.14) | n = 58 1.38 (0.32) * 1.61 (0.45) * 1.55 (0.54) * 1.20 (0.18) * 1.20 (0.14) * | ||||||
| AD | 8.01 (4.38) | n = 63 1.71 (0.36) * 2.62 (0.94) * 2.37 (0.91) * 1.69 (0.86) * 1.52 (0.43) * | ||||||
| Mendes et al., 2024 [8] | CU | 16.3 (7.6) n = 26 | 0.25 (0.3) n = 33 | 10.7 (4.2) n = 26 | 18F-flortaucipir | Total global SUVR 1.16 (0.17), n = 322 | ||
| MCI | 22.3 (10.6) n = 59 | 0.5 (0.42) * n = 67 | 13.3 (6.1) n = 60 | 1.35 (0.27), n = 66 * | ||||
| Dementia | 25.5 (11.1) * n = 10 | 0.7 (0.41) *,+ n = 14 | 12.2 (5.2) n = 10 | 1.57 (0.39), n = 12 * | ||||
| Mielke et al., 2022 [9] | CU | 1.00 [0.80, 1.32] | 0.14 [0.11, 0.19] | 18F-flortaucipir | Temporal meta ROI (SUVR ≥ 1.29) 11.9% (55/462) Entorhinal cortex (SUVR ≥ 1.27) 8.7% (40/462) | |||
| MCI | 1.61 [1.05, 2.47] * | 0.24 [0.14, 0.39] * | 28.1% (9/32) 25.0% (8/32) | |||||
| Dementia | 2.01 [1.45, 3.40] * | 0.40 [0.15, 0.72] * | 100% (1/1) 100% (1/1) | |||||
| Mielke et al., 2018 [5] | CU | 5.9 (1.9) n = 172 | 6.4 (6.4) n = 172 | 18F-flortaucipir | Entorhinal cortex 1.1 (0.1) n = 172 | |||
| MCI | 5.9 (2.8) * n = 57 | 9.0 (13.9) n = 57 | 1.2 (0.2) n = 57 * | |||||
| AD | 7.2 (2.8) * n = 40 | 11.6 (4.1) * n = 40 | 1.8 (0.3) n = 40 * | |||||
| Moscoso et al., 2021 [11] | CN | 13.6 [0.8–72.3] | 18F-flortaucipir | CN vs. MCI: higher SUVR in Braak III–IV and V–VI regions in MCI | ||||
| MCI | 15.8 [1.6–69.6] | MCI vs. AD: higher SUVR in Braak III–IV and V–VI regions in AD | ||||||
| AD | 23.2 [6.3–63.3] | CN vs. AD: higher SUVR in all regions in AD | ||||||
| Ni et al., 2023 [2] | CN | 2.840 [1.925, 3.839] | 2.430 [1.565, 3.817] | 18F-flortaucipir | p-tau181: correlated with global SUVR (r = 0.257, p < 0.0001) | |||
| MCI | 2.693 [2.108, 3.743] | 3.298 [1.863, 5.317] | p-tau181/t-tau ratio: correlated with global SUVR (r = 0.263, p < 0.0001) | |||||
| AD | 2.946 [2.390, 3.844] | 5.883 [4.175, 7.451] *,+ | ||||||
| Thijssen et al., 2021 [22] | NC | 0.9 (1) | 0.17 (0.1) | 18F-flortaucipir | Temporal meta ROI SUVR 1.1 (0.1) n = 8 | |||
| MCI | 1.2 (1) * | 0.29 (0.3) *,+ | 1.4 (0.3) n = 46 * | |||||
| AD | 2.3 (1) *,+ | 0.72 (0.4) *,+ | 2.0 (0.4) n = 50 *,+ | |||||
| Thijssen et al., 2020 [23] | HC | 2.4 (3) n = 69 | 18F-flortaucipir | Cortical SUVR | ||||
| MCI | 3.7 (6) n = 47 | 1.2 (0) n = 31 | ||||||
| AD | 8.4 (4) *,+ n = 56 | 1.8 (0) n = 48 *,+ | ||||||
| Tissot et al., 2022 [14] | TRIAD: CU | 11.3 (6.9) n = 162 | 15.4 (8.6) n = 162 | 18F-MK6240 | Temporal meta ROI SUVR 1.1 (0.2) n = 162 | |||
| MCI | 16.1(8.6) * n = 60 | 18.1 (9.5) * n = 60 | 1.6 (0.8) * n = 60 | |||||
| AD | 26.8(12.9) *,+ n = 32 | 27.6 (11.0) *,+ n = 32 | 2.6 (0.9) *,+ n = 32 | |||||
| Xiong et al., 2024 [12] | ADNI: CN | 2.52 [1.77, 3.11] | 14.0 [9.85, 19.2] | 18F-flortaucipir | 1.18 [1.13, 1.23] n = 863 | |||
| MCI | 2.62 [1.76, 3.45] | 17.1 [11.2, 24.4] *,+ | 1.22 [1.15, 1.37] * n = 1068 | |||||
| AD | 2.82 [2.09, 3.84] *,+ | 23.0 [17.5, 27.8] *,+ | 1.53 [1.27, 1.80] *,+ n = 409 | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.Y.; Shin, K.Y.; Chang, K.-A. Blood-Based Tau as a Biomarker for Early Detection and Monitoring of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2025, 26, 10330. https://doi.org/10.3390/ijms262110330
Kim KY, Shin KY, Chang K-A. Blood-Based Tau as a Biomarker for Early Detection and Monitoring of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2025; 26(21):10330. https://doi.org/10.3390/ijms262110330
Chicago/Turabian StyleKim, Ka Young, Ki Young Shin, and Keun-A Chang. 2025. "Blood-Based Tau as a Biomarker for Early Detection and Monitoring of Alzheimer’s Disease: A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 26, no. 21: 10330. https://doi.org/10.3390/ijms262110330
APA StyleKim, K. Y., Shin, K. Y., & Chang, K.-A. (2025). Blood-Based Tau as a Biomarker for Early Detection and Monitoring of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 26(21), 10330. https://doi.org/10.3390/ijms262110330

