New Bioinformatic Insight into CD44: Classification of Human Variants and Structural Analysis of CD44 Targeting
Abstract
1. Introduction
1.1. CD44-HA Signalling
1.2. The Role of CD44 and Osteopontin Interactions in Biomineralization
1.3. Overall CD44 Structure
2. Results and Discussion
2.1. Recognized CD44 Isoforms and Their Nomenclature
Exon(s) Spliced Out | Abbreviation(s) | [aa] | Additional Differences | NCBI Accession | UniProt Accession | Ref. |
---|---|---|---|---|---|---|
N/A (Full-length form) | CD44v2-10 canonical NCBI 1 UniProt 1 | 742 | NP_000601.3 | P16070-1 | [47,52] | |
unnamed isoform | 742 | p.K417R p.I479T | AAB13628.1 KAI4070736.1 | [47,52] | ||
unnamed isoform | 742 | p.S109Y p.T241A p.K417R p.I479T p.D494N | CAB61878.1 | [53] | ||
CRA_d | 742 | p.K417R | EAW68148.1 EAW68147.1 KAI2559389.1 | [54] | ||
NCBI 9 | 743 | p.345_346insA | NP_001427253.1 | [55] | ||
NCBI 10 | 741 | p.A428del | NP_001427254.1 | [56] | ||
Exons 2–19 p.23_742delinsGVGRRKS | CD44SP UniProt 2 | 29 | AAB27917.1 | P16070-2 | [57] | |
Exons 3–19 p.78_742delinsSST | unnamed isoform | 80 | AAH52287.1 KAI2559398.1 KAI4070737.1 | [54] | ||
Exons 3–19 p.78_742delinsSLHCSQQ SKKVWAEEKASDQQW QWSCGGQKCGGQKAK WTQRRGQQVSGNGAF GEQGVVRNSRPVYDS | CD44sol (soluble) CD44RC, CRA_g NCBI 5 UniProt 19 | 139 | NP_001001392.1 AAC70782.1 EAW68152.1 KAI2559396.1 KAI4070741.1 | P16070-19 | [58] | |
Part of exon 5 p.192_223delinsA | UniProt 3 | 711 | - | P16070-3 | (?) | |
NCBI 11 | 712 | p.345_346insA | NP_001427255.1 | [55] | ||
Part of exon 5 p.192_223delinsA Exon V6 p.385_428delinsT | unnamed isoform | 668 | p.I479T | AAB13626.1 | [47,52] | |
CRA_h UniProt 16 | 668 | EAW68153.1 | P16070-16 | [59] | ||
Exon V2 p.223_266delinsS | CD44v3-10 epidermal epican NCBI 2 UniProt 4 | 699 | NP_001001389.1 | P16070-4 | [60] | |
epican | 699 | p.E410V p.I479T | CAA47271.1 | [60] | ||
CRA_f | 699 | p.K417R | EAW68150.1 KAI2559390.1 | [54] | ||
unnamed isoform | 699 | K417R p.I479T | AAH04372.1 KAI4070734.1 | [54] | ||
NCBI 12 | 700 | p.345_346insA | NP_001427256.1 | [55] | ||
NCBI 13 | 699 | p.345_346insA p.A428del | NP_0001427257.1 | [55] | ||
NCBI 14 | 696 | p.A123_E126del p.345_346insA | NP_001427258.1 | [55] | ||
Exon V2 p.223_266delinsS Exons V7–19 p.428_742delinsGDCGS MAWVKKYFSFIFL | NCBI 36 | 403 | p.345_346insA | NP_001427280.1 | - | [55] |
NCBI 37 | 402 | NP_001427281.1 | - | [55] | ||
Exons V2–V3 p.223_308delinsI | NCBI 20 | 658 | p.345_346insA | NP_001427264.1 | [55] | |
NCBI 21 | 657 | NP_001427265.1 | [55] | |||
Exons V2–V4 p.223_385delinsI | NCBI 26 | 580 | NP_001427270.1 | [55] | ||
NCBI 27 | 579 | p.A428del | NP_001427271.1 | [55] | ||
Exon V2 p.223_266delinsS Exons V4–V7 p.308_472delinsN | NCBI 31 CRA_j | 535 | NP_001427275.1 EAW68155.1 | [59] | ||
Exons V2-V7 p.223_472delinsN | CD44v8-10 epithelial keratinocyte CD44E CRA_e NCBI 3 UniProt 10 | 493 | NP_001001390.1 EAW68151.1 EAW68149.1 KAI2559391.1 | P16070-10 | [61,62] | |
CD44R1 | 493 | p.I479T | CAA40133.1 AAB13627.1 KAI4070739.1 | - | [47,52] | |
Exons V2–V7 p.223_472delinsN Exons V9–V10 p.506_604delinsR | UniProt 14 | 396 | - | P16070-14 | [57] | |
CRA_i | 396 | EAW68154.1 | - | [59] | ||
CD44R5 | 395 | p.I479T | AAB27919.1 | - | [57] | |
Exons V2–V7 p.223_472delinsN Exon V10 p.536-604delinsR | CD44R4 UniProt 13 | 425 | p.I479T | AAB27918.2 | P16070-13 | [57] |
NCBI 35 CRA_b | 425 | NP_001427279.1 EAW68145.1 | - | [63] | ||
Exons V2–V9 p.223_536delinsN | CD44v10 CD44R2 NCBI 6 UniProt 11 | 429 | NP_001189484.1 KAI2559392.1 KAI4070742.1 | P16070-11 | [62] | |
Exons V2–V10 p.223_604delinsR | CD44s (standard) CDw44 reticulocyte CRA_a CD44H haematopoietic NCBI 4 UniProt 12 | 361 | NP_001001391.1 EAW68144.1 AAB13624.1 KAI2559393.1 KAI4070735.1 | P16070-12 | [11] | |
unnamed isoform | 361 | p.S109Y | AAA51950.1 | - | [64] | |
unnamed isoform | 361 | p.S697I | AAH67348.1 AAM50041.1 | - | [54,65] | |
unnamed isoform | 361 | p.H92Q | AXZ96474.1 | - | [66] | |
Exons V2–V10 p.223_604delinsR Exon 19 p.675_742delinsS | CD44st (short-tail) Hermes NCBI 8 UniProt 15 | 294 | NP_001189486.1 AAB13622.1 | P16070-15 H0Y5E4 | [9] | |
Exons V2–15 p.223_625delinsR | CD44s-exon15 NCBI 7 UniProt 18 | 340 | NP_001189485.1 KAI2559394.1 KAI4070743.1 | P16070-18 | [67] | |
Part of exon V3 p.266_273delinsA | UniProt 5 | 734 | - | P16070-5 | (?) | |
Part of exon V3 p.G266_S273del Exon V6 p.385_428delinsT | CRA_c UniProt 17 | 691 | EAW68146.1 | P16070-17 | [59] | |
unnamed isoform | 691 | p.I479T | AAB13625.1 | [47,52] | ||
Exon V6 p.385_428delinsT | UniProt 6 | 699 | P16070-6 | (?) | ||
Exon V9 p.506_535delinsR | UniProt 7 | 713 | - | P16070-7 | (?) | |
Exon V10 p.536_604delinsR | UniProt 8 | 674 | P16070-8 | (?) | ||
Exon 19 p.675_742delinsS | UniProt 9 | 675 | P16070-9 | (?) | ||
unnamed isoform | 675 | p.K417R p.I479T | AAB13623.1 | [47,52] |
Mutation Type | Example | Explanation Based on the Example |
---|---|---|
Deletion–insertion | p.385_428delinsT | Deletion of amino acids located at positions 385–428 in the canonical sequence and insertion of threonine in place of the deleted residues (between positions 384 and 429). |
Single residue deletion | p.A428del | Deletion of alanine located at position 428 in the canonical sequence. |
Multiple residue deletion | p.G266_S273del | Deletion of amino acids located on positions 266–273 in the canonical sequence. The first deleted residue is glycine, and the last is serine. |
Single residue insertion | p.345_346insA | Insertion of an additional alanine between the residues occupying positions 345 and 346 in the canonical sequence. |
Single residue substitution | p.K417R | Substitution of lysine at position 417 in the canonical sequence for arginine. |
2.2. Structural Analysis of Experimental Three-Dimensional Structures of CD44 LinkDomain
Protein, UniProt | Amino Acids | Ligand | PDB ID | Method | Title in PDB | Ref. |
---|---|---|---|---|---|---|
Human CD44, P16070 | 20–178 | - | 1UUH | X-ray | Hyaluronan-binding domain of human CD44 | [71] |
20–178 | - | 1POZ | NMR | Solution structure of the hyaluronan-binding domain of human CD44 | [71] | |
21–178 | Bound state/no HA visible | 2I83 | NMR | Hyaluronan-binding domain of CD44 in its ligand-bound form | [76] | |
18–170 | Undefined peptide | 4PZ3 | X-ray | High-resolution crystal structure of the human CD44 hyaluronan-binding domain complex with undefined peptides | [75] | |
18–171 | - | 4PZ4 | X-ray | High-resolution crystal structure of the human CD44 hyaluronan-binding domain in a new space group | [75] | |
678–685 | ERM (ezrin/ radixin) | 6TXS | X-ray | The structure of the FERM domain and helical linker of human moesin bound to a CD44 peptide | [70] | |
Murine CD44, P15379 | 23–174 | HA8 | 2JCQ | X-ray | The hyaluronan-binding domain of murine CD44 in a type A complex with an HA 8-mer | [77] |
23–174 | HA8 | 2JCR | X-ray | The hyaluronan-binding domain of murine CD44 in a type B complex with an HA 8-mer | [77] | |
23–174 | - | 2JCP | X-ray | The hyaluronan-binding domain of murine CD44 | [77] | |
708–727 | ERM (ezrin/ radxin) | 2ZPY | X-ray | Crystal structure of the mouse radxin FERM domain complexed with the mouse CD44 cytoplasmic peptide | [78] | |
23–171 | HA4 or small molecules | 4MRD-H, 4NP2-3 | X-ray | Crystal structure of the murine CD44 hyaluronan-binding domain complex with a small molecule | [79] | |
21–171 | Small molecules | 5BZC-Z | X-ray | Crystal structure of the murine CD44 hyaluronan-binding domain complex with a small molecule | [80] * | |
21–171 | Small molecules | 5SBK-Z, 5SC0-7 | X-ray | CD44 PanDDA analysis group deposition - The hyaluronan-binding domain of CD44 in complex with Z2856434899 | [81] * |
3. Materials and Methods
3.1. Data Source Selection
3.2. Sequence Alignments in Clustal Omega, BLASTp, and COBALT
3.3. Structural Analysis of CD44-Ligand Complexes
3.4. Hot Spot Analysis of Human and Murine CD44
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Akt | Protein kinase B |
Arp2/3 | Actin-related protein 2/3 complex |
BMP-2 | Bone morphogenetic protein 2 |
CaM | Calmodulin |
CAMKK2 | Calmodulin-regulated kinase II |
CD44 | Cluster of differentiation 44 |
Cdc42 | Cell division cycle 42 |
ECD | Extracellular domain |
ECM | Extracellular matrix |
ECMR-III | Extracellular matrix receptor type III |
ELISA | Enzyme-linked immunosorbent assay |
ERK | Extracellular signal-regulated kinase |
ERM | Ezrin/radixin/moesin |
ESE | Exonic splicing enhancer |
ESS | Exonic splicing suppressor |
FERM | 4.1/ezrin/radixin/moesin |
GAG | Glycosaminoglycan |
HA | Hyaluronic acid |
HABD | Hyaluronan-binding domain; Link module |
H-CAM | Homing cell adhesion molecule |
HVGS | Human Genome Variation Society |
ICD | Intracellular domain |
IgSF11 | Immunoglobulin superfamily 11 |
iOPN | Intracellular form of OPN |
IPI | International Protein Index |
IQGAP1 | ROCK-GTPase-activating-like protein 1 |
IP3 | Inositol 1,4,5-triphosphate |
IP3R | Inositol 1,4,5-triphosphate receptor |
LIMK | LIM-motif containing kinase |
MAC | Medial arterial calcification |
MAPK | Mitogen-activated protein kinase |
mDia | Mammalian Diaphanous-related formin |
MLC | Myosin II light chain |
MLCP | Myosin light chain phosphatase |
MMPs | Matrix metalloproteinases |
MSN | Moesin |
NCBI | National Centre for Biotechnology Information |
OPN | Osteopontin |
PAAM | Polyacrylamide |
PAK | p21-activated kinase |
PD | Pharmacodynamic |
PDB | Protein Data Bank |
PDZ | PSD-95/Dlg/ZO-1 |
Pgp-1 | Phagocytic glycoprotein-1 |
PI3K | Phosphoinositide 3-kinase |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PIP3 | Phosphatidylinositol 3,4,5-trisphosphate |
PTM | Post-translational modification |
SIBLING | Small integrin-binding ligand, N-linked glycoprotein |
SPR | Surface plasmon resonance |
Raf | Raf kinase |
Ras | Ras GTPase |
ROCK | Rho-associated coiled-coil kinase |
TMD | Transmembrane domain |
UTR | Untranslated region |
VIC | Valve interstitial cell |
VSMC | Vascular smooth muscle cell |
WAVE | Wiskott–Aldrich syndrome protein-family verprolin homologous protein |
References
- Dalchau, R.; Kirkley, J.; Fabre, J.W. Monoclonal Antibody to a Human Leukocyte-specific Membrane Glycoprotein Probably Homologous to the Leukocyte-common (L-C) Antigen of the Rat. Eur. J. Immunol. 1980, 10, 737–744. [Google Scholar] [CrossRef]
- Borche, L.; Lozano, F.; Vilella, R.; Vives, J. 80 and 106-KDa Glycoproteins in Immature Thymus Cells. In Leucocyte Typing III: White Cell Differentiation Antigens; McMichael, A.J., Beverley, P.C.L., Cobbold, S., Crumpton, M.J., Gilks, W., Gotch, F.M., Hogg, N., Horton, M., Ling, N., MacLennan, I.C.M., et al., Eds.; Oxford University Press: Oxford, UK, 1987; pp. 277–281. ISBN 978-0192615527. [Google Scholar]
- Haynes, B.F.; Harden, E.A.; Telen, M.J.; Hemler, M.E.; Strominger, J.L.; Palker, T.J.; Scearce, R.M.; Eisenbarth, G.S. Differentiation of Human T Lymphocytes. I. Acquisition of a Novel Human Cell Surface Protein (P80) during Normal Intrathymic T Cell Maturation. J. Immunol. 1983, 131, 1195–1200. [Google Scholar] [CrossRef]
- Cobbold, S.; Hale, G.; Waldmann, H. Non-Lineage, LFA-1 Family, and Leucocyte Common Antigens: New and Previously Defined Clusters. In Leucocyte Typing III: White Cell Differentiation Antigens; McMichael, A.J., Ed.; Oxford University Press: London, UK, 1987. [Google Scholar]
- Picker, L.J.; Nakache, M.; Butcher, E.C. Monoclonal Antibodies to Human Lymphocyte Homing Receptors Define a Novel Class of Adhesion Molecules on Diverse Cell Types. J. Cell Biol. 1989, 109, 927–937. [Google Scholar] [CrossRef]
- Haynes, B.F.; Telen, M.J.; Hale, L.P.; Denning, S.M. CD44—A Molecule Involved in Leukocyte Adherence and T-Cell Activation. Immunol. Today 1989, 10, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Omary, M.B.; Trowbridge, I.S.; Letarte, M.; Kagnofe, M.F.; Isacke, C.M. Structural Heterogeneity of Human Pgp-1 and Its Relationship with P85. Immunogenetics 1988, 27, 460–464. [Google Scholar] [CrossRef]
- Jalkanen, S.; Bargatze, R.F.; de los Toyos, J.; Butcher, E.C. Lymphocyte Recognition of High Endothelium: Antibodies to Distinct Epitopes of an 85-95-KD Glycoprotein Antigen Differentially Inhibit Lymphocyte Binding to Lymph Node, Mucosal, or Synovial Endothelial Cells. J. Cell Biol. 1987, 105, 983–990. [Google Scholar] [CrossRef]
- Goldstein, L.A.; Zhou, D.F.H.; Picker, L.J.; Minty, C.N.; Bargatze, R.F.; Ding, J.F.; Butcher, E.C. A Human Lymphocyte Homing Receptor, the Hermes Antigen, Is Related to Cartilage Proteoglycan Core and Link Proteins. Cell 1989, 56, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Štefanová, I.; Hilgert, I.; Bažil, V.; Krištofová, H.; Hořejší, V. Human Leucocyte Surface Glycoprotein CDw44 and Lymphocyte Homing Receptor Are Identical Molecules. Immunogenetics 1989, 29, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Stamenkovic, I.; Amiot, M.; Pesando, J.M.; Seedt, B. A Lymphocyte Molecule Implicated in Lymph Node Homing Is a Member of the Cartilage Link Protein Family. Cell 1989, 56, 1057–1062. [Google Scholar] [CrossRef]
- Jung, S.; Petelska, A.; Beldowski, P.; Augé, W.K.; Casey, T.; Walczak, D.; Lemke, K.; Gadomski, A. Hyaluronic Acid and Phospholipid Interactions Useful for Repaired Articular Cartilage Surfaces—A Mini Review toward Tribological Surgical Adjuvants. Colloid. Polym. Sci. 2017, 295, 403–412. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, C.; Gao, F. The State of CD44 Activation in Cancer Progression and Therapeutic Targeting. FEBS J. 2022, 289, 7970–7986. [Google Scholar] [CrossRef]
- Levesque, M.C.; Haynes, B.F. Cytokine Induction of the Ability of Human Monocyte CD44 to Bind Hyaluronan Is Mediated Primarily by TNF-Alpha and Is Inhibited by IL-4 and IL-13. J. Immunol. 1997, 159, 6184–6194. [Google Scholar] [CrossRef]
- Skandalis, S.S. CD44 Intracellular Domain: A Long Tale of a Short Tail. Cancers 2023, 15, 5041. [Google Scholar] [CrossRef]
- Weng, X.; Maxwell-Warburton, S.; Hasib, A.; Ma, L.; Kang, L. The Membrane Receptor CD44: Novel Insights into Metabolism. Trends Endocrinol. Metab. 2022, 33, 318–332. [Google Scholar] [CrossRef]
- Burotto, M.; Chiou, V.L.; Lee, J.; Kohn, E.C. The MAPK Pathway across Different Malignancies: A New Perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef]
- Singleton, P.A.; Bourguignon, L.Y.W. CD44 Interaction with Ankyrin and IP3 Receptor in Lipid Rafts Promotes Hyaluronan-Mediated Ca2+ Signaling Leading to Nitric Oxide Production and Endothelial Cell Adhesion and Proliferation. Exp. Cell Res. 2004, 295, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Prole, D.L.; Taylor, C.W. Inositol 1,4,5-trisphosphate Receptors and Their Protein Partners as Signalling Hubs. J. Physiol. 2016, 594, 2849–2866. [Google Scholar] [CrossRef]
- O’Byrne, S.N.; Scott, J.W.; Pilotte, J.R.; Santiago, A.d.S.; Langendorf, C.G.; Oakhill, J.S.; Eduful, B.J.; Couñago, R.M.; Wells, C.I.; Zuercher, W.J.; et al. In Depth Analysis of Kinase Cross Screening Data to Identify CAMKK2 Inhibitory Scaffolds. Molecules 2020, 25, 325. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-A.; Chang, C.-Y.; Hsueh, K.-W.; Su, H.-L.; Chiou, T.-W.; Lin, S.-Z.; Harn, H.-J. Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int. J. Mol. Sci. 2018, 19, 1115. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.F.; Ashkar, S.; Glimcher, M.J.; Cantor, H. Receptor-Ligand Interaction Between CD44 and Osteopontin (Eta-1). Science 1996, 271, 509–512. [Google Scholar] [CrossRef]
- Staines, K.A.; MacRae, V.E.; Farquharson, C. The Importance of the SIBLING Family of Proteins on Skeletal Mineralisation and Bone Remodelling. J. Endocrinol. 2012, 214, 241–255. [Google Scholar] [CrossRef]
- Ishii, T.; Ohshima, S.; Ishida, T.; Mima, T.; Tabunoki, Y.; Kobayashi, H.; Maeda, M.; Uede, T.; Liaw, L.; Kinoshita, N.; et al. Osteopontin as a Positive Regulator in the Osteoclastogenesis of Arthritis. Biochem. Biophys. Res. Commun. 2004, 316, 809–815. [Google Scholar] [CrossRef]
- Terai, K.; Takano-Yamamoto, T.; Ohba, Y.; Hiura, K.; Sugimoto, M.; Sato, M.; Kawahata, H.; Inaguma, N.; Kitamura, Y.; Nomura, S. Role of Osteopontin in Bone Remodeling Caused by Mechanical Stress. J. Bone Miner. Res. 1999, 14, 839–849. [Google Scholar] [CrossRef]
- Morinobu, M.; Ishijima, M.; Rittling, S.R.; Tsuji, K.; Yamamoto, H.; Nifuji, A.; Denhardt, D.T.; Noda, M. Osteopontin Expression in Osteoblasts and Osteocytes During Bone Formation Under Mechanical Stress in the Calvarial Suture In Vivo. J. Bone Miner. Res. 2003, 18, 1706–1715. [Google Scholar] [CrossRef]
- Sodek, J.; Ganss, B.; McKee, M.D. Osteopontin. Crit. Rev. Oral Biol. Med. 2000, 11, 279–303. [Google Scholar] [CrossRef] [PubMed]
- Giachelli, C.M.; Steitz, S. Osteopontin: A Versatile Regulator of Inflammation and Biomineralization. Matrix Biol. 2000, 19, 615–622. [Google Scholar] [CrossRef]
- Smith, L.L.; Greenfield, B.W.; Aruffo, A.; Giachelli, C.M. CD44 Is Not an Adhesive Receptor for Osteopontin. J. Cell Biochem. 1999, 73, 20–30. [Google Scholar] [CrossRef]
- Katagiri, Y.U.; Sleeman, J.; Fujii, H.; Herrlich, P.; Hotta, H.; Tanaka, K.; Chikuma, S.; Yagita, H.; Okumura, K.; Murakami, M.; et al. CD44 Variants but Not CD44s Cooperate with Β1-Containing Integrins to Permit Cells to Bind to Osteopontin Independently of Arginine-Glycine-Aspartic Acid, Thereby Stimulating Cell Motility and Chemotaxis. Cancer Res. 1999, 59, 219–226. [Google Scholar] [PubMed]
- Lee, J.-L.; Wang, M.-J.; Sudhir, P.-R.; Chen, G.-D.; Chi, C.-W.; Chen, J.-Y. Osteopontin Promotes Integrin Activation through Outside-In and Inside-Out Mechanisms: OPN-CD44V Interaction Enhances Survival in Gastrointestinal Cancer Cells. Cancer Res. 2007, 67, 2089–2097. [Google Scholar] [CrossRef]
- Chellaiah, M.A.; Hruska, K.A. The Integrin {alpha} v {beta} 3 and CD44 Regulate the Actions of Osteopontin on Osteoclast Motility. Calcif. Tissue Int. 2003, 72, 197–205. [Google Scholar] [CrossRef]
- Chellaiah, M.A.; Kizer, N.; Biswas, R.; Alvarez, U.; Strauss-Schoenberger, J.; Rifas, L.; Rittling, S.R.; Denhardt, D.T.; Hruska, K.A. Osteopontin Deficiency Produces Osteoclast Dysfunction Due to Reduced CD44 Surface Expression. Mol. Biol. Cell 2003, 14, 173–189. [Google Scholar] [CrossRef]
- Flanagan, A.M.; Sarma, U.; Steward, C.G.; Vellodi, A.; Horton, M.A. Study of the Nonresorptive Phenotype of Osteoclast-like Cells from Patients with Malignant Osteopetrosis: A New Approach to Investigating Pathogenesis. J. Bone Miner. Res. 2000, 15, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Nakajima, F.; Ogasawara, A.; Moriya, H.; Majeska, R.J.; Einhorn, T.A. Spatial and Temporal Distribution of CD44 and Osteopontin in Fracture Callus. J. Bone Jt. Surg. 1999, 81, 508–515. [Google Scholar] [CrossRef]
- Baugh, L.; Watson, M.C.; Kemmerling, E.C.; Hinds, P.W.; Huggins, G.S.; Black, L.D. Knockdown of CD44 Expression Decreases Valve Interstitial Cell Calcification in Vitro. Am. J. Physiol.-Heart Circ. Physiol. 2019, 317, H26–H36. [Google Scholar] [CrossRef]
- Yang, M.; Fan, Z.; Wang, F.; Tian, Z.; Ma, B.; Dong, B.; Li, Z.; Zhang, M.; Zhao, W. BMP-2 Enhances the Migration and Proliferation of Hypoxia-Induced VSMCs via Actin Cytoskeleton, CD44 and Matrix Metalloproteinase Linkage. Exp. Cell Res. 2018, 368, 248–257. [Google Scholar] [CrossRef]
- Lanzer, P.; Schurgers, L.; Twarda-Clapa, A.; Ferraresi, R.; Hui, H.; Kamenskiy, A.; Chen, Y.; Hamana, T.; Fok, P.-W.; Millán, Á.; et al. Medial Arterial Calcification in Ageing and Disease: Current Evidence and Knowledge Gaps. Eur. Heart J. 2025, ehaf341. [Google Scholar] [CrossRef]
- Kim, H.; Takegahara, N.; Walsh, M.C.; Choi, Y. CD44 Can Compensate for IgSF11 Deficiency by Associating with the Scaffold Protein PSD-95 during Osteoclast Differentiation. Int. J. Mol. Sci. 2020, 21, 2646. [Google Scholar] [CrossRef]
- Li, Y.; Zhong, G.; Sun, W.; Zhao, C.; Zhang, P.; Song, J.; Zhao, D.; Jin, X.; Li, Q.; Ling, S.; et al. CD44 Deficiency Inhibits Unloading-Induced Cortical Bone Loss through Downregulation of Osteoclast Activity. Sci. Rep. 2015, 5, 16124. [Google Scholar] [CrossRef]
- McDonald, M.M.; Khoo, W.H.; Ng, P.Y.; Xiao, Y.; Zamerli, J.; Thatcher, P.; Kyaw, W.; Pathmanandavel, K.; Grootveld, A.K.; Moran, I.; et al. Osteoclasts Recycle via Osteomorphs during RANKL-Stimulated Bone Resorption. Cell 2021, 184, 1330–1347.e13. [Google Scholar] [CrossRef]
- Fnu, G.; Agrawal, P.; Kundu, G.C.; Weber, G.F. Structural Constraint of Osteopontin Facilitates Efficient Binding to CD44. Biomolecules 2021, 11, 813. [Google Scholar] [CrossRef]
- Kurzbach, D.; Beier, A.; Vanas, A.; Flamm, A.G.; Platzer, G.; Schwarz, T.C.; Konrat, R. NMR Probing and Visualization of Correlated Structural Fluctuations in Intrinsically Disordered Proteins. Phys. Chem. Chem. Phys. 2017, 19, 10651–10656. [Google Scholar] [CrossRef]
- Olsen, G.L.; Szekely, O.; Mateos, B.; Kadeřávek, P.; Ferrage, F.; Konrat, R.; Pierattelli, R.; Felli, I.C.; Bodenhausen, G.; Kurzbach, D.; et al. Sensitivity-Enhanced Three-Dimensional and Carbon-Detected Two-Dimensional NMR of Proteins Using Hyperpolarized Water. J. Biomol. NMR 2020, 74, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gill, G.; Kaur, H.; Amhmed, M.; Jakhu, H. Role of Osteopontin in Bone Remodeling and Orthodontic Tooth Movement: A Review. Prog. Orthod. 2018, 19, 18. [Google Scholar] [CrossRef]
- David, G.; Reboutier, D.; Deschamps, S.; Méreau, A.; Taylor, W.; Padilla-Parra, S.; Tramier, M.; Audic, Y.; Paillard, L. The RNA-Binding Proteins CELF1 and ELAVL1 Cooperatively Control the Alternative Splicing of CD44. Biochem. Biophys. Res. Commun. 2022, 626, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Screaton, G.R.; Bell, M.V.; Jackson, D.G.; Cornelis, F.B.; Gerth, U.; Bell, J.I. Genomic Structure of DNA Encoding the Lymphocyte Homing Receptor CD44 Reveals at Least 12 Alternatively Spliced Exons. Proc. Natl. Acad. Sci. USA 1992, 89, 12160–12164. [Google Scholar] [CrossRef]
- Inoue, A.; Ohnishi, T.; Nishikawa, M.; Ohtsuka, Y.; Kusakabe, K.; Yano, H.; Tanaka, J.; Kunieda, T. A Narrative Review on CD44’s Role in Glioblastoma Invasion, Proliferation, and Tumor Recurrence. Cancers 2023, 15, 4898. [Google Scholar] [CrossRef]
- Azevedo, R.; Gaiteiro, C.; Peixoto, A.; Relvas-Santos, M.; Lima, L.; Santos, L.L.; Ferreira, J.A. CD44 Glycoprotein in Cancer: A Molecular Conundrum Hampering Clinical Applications. Clin. Proteom. 2018, 15, 22. [Google Scholar] [CrossRef]
- Maltseva, D.; Tonevitsky, A. RNA-Binding Proteins Regulating the CD44 Alternative Splicing. Front. Mol. Biosci. 2023, 10, 1326148. [Google Scholar] [CrossRef] [PubMed]
- den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; McGowan-Jordan, J.; Roux, A.-F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E.M. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef]
- Shtivelman, E.; Bishop, M.J. Expression of CD44 Is Repressed in Neuroblastoma Cells. Mol. Cell. Biol. 1991, 11, 5446–5453. [Google Scholar]
- Günthert, U. CD44: A Multitude of Isoforms with Diverse Functions. In Adhesion in Leukocyte Homing and Differentiation; Dunon, D., Mackay, C.R., Imhof, B.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 184, pp. 47–63. ISBN 978-3-642-78253-4. [Google Scholar]
- Strausberg, R.L.; Feingold, E.A.; Grouse, L.H.; Derge, J.G.; Klausner, R.D.; Collins, F.S.; Wagner, L.; Shenmen, C.M.; Schuler, G.D.; Altschul, S.F.; et al. Generation and Initial Analysis of More than 15,000 Full-Length Human and Mouse CDNA Sequences. Proc. Natl. Acad. Sci. USA 2002, 99, 16899–16903. [Google Scholar] [CrossRef]
- Cobley, V. Complete Human DNA Sequence on Chromosome 11p11.2-12 and 11p12-13. 2012; unpublished manuscript. [Google Scholar]
- Nurk, S.; Koren, S.; Rhie, A.; Rautiainen, M.; Bzikadze, A.V.; Mikheenko, A.; Vollger, M.R.; Altemose, N.; Uralsky, L.; Gershman, A.; et al. The Complete Sequence of a Human Genome. Science 2022, 376, 44–53. [Google Scholar] [CrossRef]
- Tanabe, K.K.; Nishi, T.; Saya, H. Novel Variants of CD44 Arising from Alternative Splicing: Changes in the CD44 Alternative Splicing Pattern of MCF-7 Breast Carcinoma Cells Treated with Hyaluronidase. Mol. Carcinog. 1993, 7, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Chiu, R.K.; Carpenito, C.; Dougherty, S.T.; Dougherty, G.J. Identification and Characterization of a Novel Alternatively Spliced Soluble CD44 Isoform That Can Potentiate the Hyaluronan Binding Activity of Cell Surface CD44. Neoplasia, 1998; unpublished manuscript. [Google Scholar]
- Venter, J.C.; Adams, M.D.; Myers, E.W.; Li, P.W.; Mural, R.J.; Sutton, G.G.; Smith, H.O.; Yandell, M.; Evans, C.A.; Holt, R.A.; et al. The Sequence of the Human Genome. Science 2001, 291, 1304–1351. [Google Scholar] [CrossRef]
- Kugelman, L.C.; Ganguly, S.; Haggerty, J.G.; Weissman, S.M.; Milstone, L.M. The Core Protein of Epican, a Heparan Sulfate Proteoglycan on Keratinocytes, Is an Alternative Form of CD44. J. Investig. Dermatol. 1992, 99, 887–891. [Google Scholar] [CrossRef]
- Stamenkovic, I.; Aruffo, A.; Amiot, M.; Seed, B. The Hematopoietic and Epithelial Forms of CD44 Are Distinct Polypeptides with Different Adhesion Potentials for Hyaluronate-Bearing Cells. EMBO J. 1991, 10, 343–348. [Google Scholar] [CrossRef]
- Dougherty, G.J.; Lansdorp, P.M.; Cooper, D.L.; Humphries, R.K. Molecular Cloning of CD44R1 and CD44R2, Two Novel Isoforms of the Human CD44 Lymphocyte “Homing” Receptor Expressed by Hemopoietic Cells. J. Exp. Med. 1991, 174, 1–5. [Google Scholar] [CrossRef]
- Church, D.M.; Schneider, V.A.; Graves, T.; Auger, K.; Cunningham, F.; Bouk, N.; Chen, H.-C.; Agarwala, R.; McLaren, W.M.; Ritchie, G.R.S.; et al. Modernizing Reference Genome Assemblies. PLoS Biol. 2011, 9, e1001091. [Google Scholar] [CrossRef] [PubMed]
- Harn, H.-J.; Isola, N.; Cooper, D.L. The Multispecific Cell Adhesion Molecule CD44 Is Represented in Reticulocyte CDNA. Biochem. Biophys. Res. Commun. 1991, 178, 1127–1134. [Google Scholar] [CrossRef]
- Wiebe, G.J.; Freund, D.; Corbeil, D. Sequence Analysis of the Human CD44 Antigen. 2002; unpublished manuscript. [Google Scholar]
- Stettler, J.; Lejon Crottet, S.; Hustinx, H.; Graber, J.; Niederhauser, C.; Henny, C. An Antibody against a Novel High Incidence Antigen in the Indian Blood Group System. 2018; unpublished manuscript. [Google Scholar]
- Fang, X.; Xu, W.; Zhang, X. Construction of Human CD44 Eukaryotic Vector and Its Expression in Mammary Carcinoma Cells MCF-7. 2008; unpublished manuscript. [Google Scholar]
- Liu, Q.; Fang, L.; Wu, C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes 2022, 13, 401. [Google Scholar] [CrossRef]
- Mori, T.; Gotoh, S.; Shirakawa, M.; Hakoshima, T. Structural Basis of DDB1-and-Cullin 4-associated Factor 1 (DCAF1) Recognition by Merlin/NF2 and Its Implication in Tumorigenesis by CD44-mediated Inhibition of Merlin Suppression of DCAF1 Function. Genes Cells 2014, 19, 603–619. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Bradshaw, W.J.; Leisner, T.M.; Annor-Gyamfi, J.K.; Qian, K.; Bashore, F.M.; Sikdar, A.; Nwogbo, F.O.; Ivanov, A.A.; Frye, S.V.; et al. Discovery of FERM Domain Protein–Protein Interaction Inhibitors for MSN and CD44 as a Potential Therapeutic Approach for Alzheimer’s Disease. J. Biol. Chem. 2023, 299, 105382. [Google Scholar] [CrossRef] [PubMed]
- Teriete, P.; Banerji, S.; Noble, M.; Blundell, C.D.; Wright, A.J.; Pickford, A.R.; Lowe, E.; Mahoney, D.J.; Tammi, M.I.; Kahmann, J.D.; et al. Structure of the Regulatory Hyaluronan Binding Domain in the Inflammatory Leukocyte Homing Receptor CD44. Mol. Cell 2004, 13, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.-J.; Orchard, S.; Magrane, M.; Adesina, A.; Ahmad, S.; Bowler-Barnett, E.H.; Bye-A-Jee, H.; Carpentier, D.; Denny, P.; et al. UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Res. 2025, 53, D609–D617. [Google Scholar] [CrossRef]
- Senbanjo, L.T.; Chellaiah, M.A. CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Front. Cell Dev. Biol. 2017, 5, 18. [Google Scholar] [CrossRef]
- Dodd, R.J.; Blundell, C.D.; Sattelle, B.M.; Enghild, J.J.; Milner, C.M.; Day, A.J. Chemical Modification of Hyaluronan Oligosaccharides Differentially Modulates Hyaluronan–Hyaladherin Interactions. J. Biol. Chem. 2024, 300, 107668. [Google Scholar] [CrossRef]
- Liu, L.-K.; Finzel, B. High-Resolution Crystal Structures of Alternate Forms of the Human CD44 Hyaluronan-Binding Domain Reveal a Site for Protein Interaction. Acta Crystallogr. F Struct. Biol. Commun. 2014, 70, 1155–1161. [Google Scholar] [CrossRef]
- Takeda, M.; Ogino, S.; Umemoto, R.; Sakakura, M.; Kajiwara, M.; Sugahara, K.N.; Hayasaka, H.; Miyasaka, M.; Terasawa, H.; Shimada, I. Ligand-Induced Structural Changes of the CD44 Hyaluronan-Binding Domain Revealed by NMR. J. Biol. Chem. 2006, 281, 40089–40095. [Google Scholar] [CrossRef]
- Banerji, S.; Wright, A.J.; Noble, M.; Mahoney, D.J.; Campbell, I.D.; Day, A.J.; Jackson, D.G. Structures of the Cd44–Hyaluronan Complex Provide Insight into a Fundamental Carbohydrate-Protein Interaction. Nat. Struct. Mol. Biol. 2007, 14, 234–239. [Google Scholar] [CrossRef]
- Mori, T.; Kitano, K.; Terawaki, S.; Maesaki, R.; Fukami, Y.; Hakoshima, T. Structural Basis for CD44 Recognition by ERM Proteins. J. Biol. Chem. 2008, 283, 29602–29612. [Google Scholar] [CrossRef]
- Liu, L.-K.; Finzel, B.C. Fragment-Based Identification of an Inducible Binding Site on Cell Surface Receptor CD44 for the Design of Protein–Carbohydrate Interaction Inhibitors. J. Med. Chem. 2014, 57, 2714–2725. [Google Scholar] [CrossRef]
- Bradshaw, W.J.; Katis, V.L.; Bezerra, G.A.; Koekemoer, L.; von Delft, F.; Bountra, C.; Brennan, P.E.; Gileadi, O. CD44 PanDDA analysis group deposition-The hyaluronan-binding domain of CD44 in complex with Z2856434899. 2021; unpublished manuscript. [Google Scholar]
- Liu, L.-K.; Finzel, B.C. Crystal structure of the murine CD44 hyaluronan binding domain complex with a small molecule. 2016; unpublished manuscript. [Google Scholar]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Kellett-Clarke, H.; Stegmann, M.; Barclay, A.N.; Metcalfe, C. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site. PLoS ONE 2015, 10, e0138137. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, A.J.; Reyes-Romero, A.; Dömling, A.; Velasco-Velázquez, M.A. In Silico Design and Selection of New Tetrahydroisoquinoline-Based CD44 Antagonist Candidates. Molecules 2021, 26, 1877. [Google Scholar] [CrossRef] [PubMed]
- Baggio, C.; Barile, E.; Di Sorbo, G.; Kipps, T.J.; Pellecchia, M. The Cell Surface Receptor CD44: NMR-Based Characterization of Putative Ligands. ChemMedChem 2016, 11, 1097–1106. [Google Scholar] [CrossRef]
- Pustuła, M.; Czub, M.; Łabuzek, B.; Surmiak, E.; Tomala, M.; Twarda-Clapa, A.; Guzik, K.; Popowicz, G.M.; Holak, T.A. NMR Fragment-Based Screening for Development of the CD44-Binding Small Molecules. Bioorg. Chem. 2019, 82, 284–289. [Google Scholar] [CrossRef]
- Liu, S.; Liu, Z.; Shang, A.; Xun, J.; Lv, Z.; Zhou, S.; Liu, C.; Zhang, Q.; Yang, Y. CD44 Is a Potential Immunotherapeutic Target and Affects Macrophage Infiltration Leading to Poor Prognosis. Sci. Rep. 2023, 13, 9657. [Google Scholar] [CrossRef]
- Menke-van der Houven van Oordt, C.W.; Gomez-Roca, C.; van Herpen, C.; Coveler, A.L.; Mahalingam, D.; Verheul, H.M.W.; van der Graaf, W.T.A.; Christen, R.; Rüttinger, D.; Weigand, S.; et al. First-in-Human Phase I Clinical Trial of RG7356, an Anti-CD44 Humanized Antibody, in Patients with Advanced, CD44-Expressing Solid Tumors. Oncotarget 2016, 7, 80046–80058. [Google Scholar] [CrossRef]
- Pęcak, A.; Skalniak, Ł.; Pels, K.; Książek, M.; Madej, M.; Krzemień, D.; Malicki, S.; Władyka, B.; Dubin, A.; Holak, T.A.; et al. Anti-CD44 DNA Aptamers Selectively Target Cancer Cells. Nucleic Acid Ther. 2020, 30, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, Scalable Generation of High-quality Protein Multiple Sequence Alignments Using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, J.S.; Agarwala, R. COBALT: Constraint-Based Alignment Tool for Multiple Protein Sequences. Bioinformatics 2007, 23, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Napoleon, R.L.; Yueh, C.; Whitty, A.; Vajda, S. New Frontiers in Druggability. J. Med. Chem. 2015, 58, 9063–9088. [Google Scholar] [CrossRef]
- Kitel, R.; Rodríguez, I.; del Corte, X.; Atmaj, J.; Żarnik, M.; Surmiak, E.; Muszak, D.; Magiera-Mularz, K.; Popowicz, G.M.; Holak, T.A.; et al. Exploring the Surface of the Ectodomain of the PD-L1 Immune Checkpoint with Small-Molecule Fragments. ACS Chem. Biol. 2022, 17, 2655–2663. [Google Scholar] [CrossRef]
Abbreviation(s) | Accession(s) | Full Exons Included | Unaligned Sequence C-End |
---|---|---|---|
CD44SP UniProt 2 | P16070-2 AAB27917.1 | 1 | GVGRRKS |
CD44sol CD44RC, CRA_g NCBI 5 UniProt 19 | NP_001001392.1 P16070-19 AAC70782.1 EAW68152.1 KAI2559396.1 KAI4070741.1 | 1–2 | SLHCSQQSKKVWAEEKASDQQWQWSCGG QKCGGQKAKWTQRRGQQVSGNGAFGEQ GVVRNSRPVYDS |
NCBI 36 NCBI 37 | NP_001427280.1 NP_001427281.1 | 1–5, 7–10 (V3–V6) | GDCGSMAWVKKYFSFIFL |
NCBI X22 | XP_054226555.1 XP_011518789.1 | 1–10 (1-V6) | |
NCBI 38 | NP_001427282.1 | 1–7 (1-V3) | IICLFTRRIYKQHTVTKSLGFQVQRDTTDCMD GQNGAFGYPRWRAGVFKAVLPTAAASLTVL SGRSHVLNPKVFYDRMQRTLRCLPIWLN |
CD44 Canonical (Amino Acids 1–742) |
---|
MDKFWWHAAWGLCLVPLSLAQIDLNITCRFAGVFHVEKNGRYSISRTEAADLCKAFNSTLPTMAQMEKALSIGFETCRYGFIEG HVVIPRIHPNSICAANNTGVYILTSNTSQYDTYCFNASAPPEEDCTSVTDLPNAFDGPITITIVNRDGTRYVQKGEYRTNPEDIYPS NPTDDDVSSGSSSERSSTSGGYIFYTFSTVHPIPDEDSPWITDSTDRIPATTLMSTSATATETATKRQETWDWFSWLFLPSESKNHLH TTTQMAGTSSNTISAGWEPNEENEDERDRHLSFSGSGIDDDEDFISSTISTTPRAFDHTKQNQDWTQWNPSHSNPEVLLQTTTRM TDVDRNGTTAYEGNWNPEAHPPLIHHEHHEEEETPHSTSTIQATPSSTTEETATQKEQWFGNRWHEGYRQTPKEDSHSTTGTAA ASAHTSHPMQGRTTPSPEDSSWTDFFNPISHPMGRGHQAGRRMDMDSSHSITLQPTANPNTGLVEDLDRTGPLSMTTQQSNSQ SFSTSHEGLEEDKDHPTTSTLTSSNRNDVTGGRRDPNHSEGSTTLLEGYTSHYPHTKESRTFIPVTSAKTGSFGVTAVTVGDSNSNV NRSLSGDQDTFHPSGGSHTTHGSESDGHSHGSQEGGANTTSGPIRTPQIPEWLIILASLLALALILAVCIAVNSRRRCGQKKKLVIN SGNGAVEDRKPSGLNGEASKSQEMVHLVNKESSETPDQFMTADETRNLQNVDMKIGV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlicz, W.A.; Olczak, A.; Białkowska, A.M.; Twarda-Clapa, A. New Bioinformatic Insight into CD44: Classification of Human Variants and Structural Analysis of CD44 Targeting. Int. J. Mol. Sci. 2025, 26, 9886. https://doi.org/10.3390/ijms26209886
Gerlicz WA, Olczak A, Białkowska AM, Twarda-Clapa A. New Bioinformatic Insight into CD44: Classification of Human Variants and Structural Analysis of CD44 Targeting. International Journal of Molecular Sciences. 2025; 26(20):9886. https://doi.org/10.3390/ijms26209886
Chicago/Turabian StyleGerlicz, Wiktoria A., Aleksandra Olczak, Aneta M. Białkowska, and Aleksandra Twarda-Clapa. 2025. "New Bioinformatic Insight into CD44: Classification of Human Variants and Structural Analysis of CD44 Targeting" International Journal of Molecular Sciences 26, no. 20: 9886. https://doi.org/10.3390/ijms26209886
APA StyleGerlicz, W. A., Olczak, A., Białkowska, A. M., & Twarda-Clapa, A. (2025). New Bioinformatic Insight into CD44: Classification of Human Variants and Structural Analysis of CD44 Targeting. International Journal of Molecular Sciences, 26(20), 9886. https://doi.org/10.3390/ijms26209886