Apolipoproteins in Chronic Kidney Disease and Kidney Transplant: A Long Unfinished Story
Abstract
1. Introduction
2. Apolipoprotein A and B
3. Lipoprotein (a)
4. Other Apolipoproteins in CKD and Kidney Transplant
4.1. Apolipoprotein L1
4.2. Apolipoprotein E
5. PCSK9
Focus on PCSK9 Inhibitors
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ApoA1 | Apolipoprotein A1 |
ApoB | Apolipoprotein B |
HDL | High density lipoprotein |
LDL | Low density lipoprotein |
CKD | Chronic Kidney Disease |
KTR | Kidney transplant recipient |
Lp(a) | Lipoprotein (a) |
ESRD | End-stage renal disease |
CVD | Cardiovascular disease |
CHD | Coronary heart disease |
DKD | Diabetic kidney disease |
PCSK9 | Proprotein convertase subtilisin/kexin type 9 |
GFR | Glomerular filtration rate |
APOL1 | Apolipoprotein L1 |
APOE | Apolipoprotein E |
HD | Hemodialysis |
CAPD | continuous ambulatory peritoneal dialysis |
References
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.-W.; et al. Forecasting Life Expectancy, Years of Life Lost, and All-Cause and Cause-Specific Mortality for 250 Causes of Death: Reference and Alternative Scenarios for 2016–40 for 195 Countries and Territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.I.; Satko, S.G. Genes and Renal Disease. Curr. Opin. Nephrol. Hypertens. 2000, 9, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.F.; Orchard, T.J.; Kasiske, B.L. Effect of Lipid Reduction on the Progression of Renal Disease: A Meta-Analysis. Kidney Int. 2001, 59, 260–269. [Google Scholar] [CrossRef]
- Muntner, P.; Coresh, J.; Smith, J.C.; Eckfeldt, J.; Klag, M.J. Plasma Lipids and Risk of Developing Renal Dysfunction: The Atherosclerosis Risk in Communities Study. Kidney Int. 2000, 58, 293–301. [Google Scholar] [CrossRef]
- Huh, J.H.; Yadav, D.; Kim, J.S.; Son, J.-W.; Choi, E.; Kim, S.H.; Shin, C.; Sung, K.-C.; Kim, J.Y. An Association of Metabolic Syndrome and Chronic Kidney Disease from a 10-Year Prospective Cohort Study. Metabolism 2017, 67, 54–61. [Google Scholar] [CrossRef]
- Fox, C.S.; Larson, M.G.; Leip, E.P.; Culleton, B.; Wilson, P.W.F.; Levy, D. Predictors of New-Onset Kidney Disease in a Community-Based Population. JAMA 2004, 291, 844–850. [Google Scholar] [CrossRef]
- Ruan, X.Z.; Varghese, Z.; Moorhead, J.F. An Update on the Lipid Nephrotoxicity Hypothesis. Nat. Rev. Nephrol. 2009, 5, 713–721. [Google Scholar] [CrossRef]
- Sereni, A.; Sticchi, E.; Gori, A.M.; Magi, A.; Della Latta, D.; Volta, A.; Murri, A.; Jamagidze, G.; Chiappino, D.; Abbate, R.; et al. Genetic and Nutritional Factors Determining Circulating Levels of Lipoprotein(a): Results of the “Montignoso Study”. Intern. Emerg. Med. 2020, 15, 1239–1245. [Google Scholar] [CrossRef]
- Robitaille, J.; Houde, A.; Lemieux, S.; Gaudet, D.; Pérusse, L.; Vohl, M.-C. The Lipoprotein/Lipid Profile Is Modulated by a Gene-Diet Interaction Effect between Polymorphisms in the Liver X Receptor-Alpha and Dietary Cholesterol Intake in French-Canadians. Br. J. Nutr. 2007, 97, 11–18. [Google Scholar] [CrossRef]
- Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Delk, S.C.; Gurgis, F.W.; Reddy, S.T. Mechanisms and Applications of Apolipoproteins and Apolipoprotein Mimetic Peptides: Common Pathways in Cardiovascular Disease and Cancer. Semin. Cancer Biol. 2025, 113, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Borén, J.; Packard, C.J.; Binder, C.J. Apolipoprotein B-Containing Lipoproteins in Atherogenesis. Nat. Rev. Cardiol. 2025, 22, 399–413. [Google Scholar] [CrossRef]
- Prinsen, B.H.; de Koning, E.J.; Koomans, H.A.; Berger, R.; Rabelink, T.J. Hypertriglyceridemia in Patients with Chronic Renal Failure: Possible Mechanisms. Kidney Int. 2003, 63, S121–S124. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, D.; D’Erasmo, L.; Larouche, M.; Brisson, D.; Lauzière, A.; Costanzo, A.D.; Bini, S.; Minicocci, I.; Covino, S.; Baratta, F.; et al. The Vicious Circle of Chronic Kidney Disease and Hypertriglyceridemia: What Is First, the Hen or the Egg? Atherosclerosis 2025, 403, 119146. [Google Scholar] [CrossRef] [PubMed]
- Kirmizis, D.; Koutoupa, E.; Tsiandoulas, A.; Valtopoulou, A.; Niavis, G.; Markou, P.; Barboutis, K. Serum Lipid Profile Constituents as Markers of Cardiovascular Morbidity in Patients on Chronic Hemodialysis. Biomark. Insights 2007, 1, 185–192. [Google Scholar] [CrossRef]
- Saini, M.; Vamne, A.; Kumar, V.; Chandel, M.S. The Study of Pattern of Lipid Profile in Chronic Kidney Disease Patients on Conservative Management and Hemodialysis: A Comparative Study. Cureus 2022, 14, e21506. [Google Scholar] [CrossRef]
- Stepanova, N. Dyslipidemia in Peritoneal Dialysis: Implications for Peritoneal Membrane Function and Patient Outcomes. Biomedicines 2024, 12, 2377. [Google Scholar] [CrossRef]
- Lamprea-Montealegre, J.A.; Staplin, N.; Herrington, W.G.; Haynes, R.; Emberson, J.; Baigent, C.; de Boer, I.H.; SHARP Collaborative Group. Apolipoprotein B, Triglyceride-Rich Lipoproteins, and Risk of Cardiovascular Events in Persons with CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 47–60. [Google Scholar] [CrossRef]
- Goek, O.-N.; Köttgen, A.; Hoogeveen, R.C.; Ballantyne, C.M.; Coresh, J.; Astor, B.C. Association of Apolipoprotein A1 and B with Kidney Function and Chronic Kidney Disease in Two Multiethnic Population Samples. Nephrol. Dial. Transplant. 2012, 27, 2839–2847. [Google Scholar] [CrossRef]
- Sniderman, A.D. ApoB vs Non-HDL-C vs LDL-C as Markers of Cardiovascular Disease. Clin. Chem. 2021, 67, 1440–1442. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.P.; Catapano, A.L. Lipids and Lipoproteins in 2020. JAMA 2020, 324, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, B.; Lin, L.; Lei, F.; Sun, T.; Zhang, X.; Song, X.; Huang, X.; Zeng, Q.; Cai, J.; et al. The Association of Apolipoprotein B with Chronic Kidney Disease in the Chinese Population. Front. Endocrinol. 2023, 14, 1083614. [Google Scholar] [CrossRef] [PubMed]
- McQueen, M.J.; Hawken, S.; Wang, X.; Ounpuu, S.; Sniderman, A.; Probstfield, J.; Steyn, K.; Sanderson, J.E.; Hasani, M.; Volkova, E.; et al. Lipids, Lipoproteins, and Apolipoproteins as Risk Markers of Myocardial Infarction in 52 Countries (the INTERHEART Study): A Case-Control Study. Lancet 2008, 372, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Valado, A.; Cunha, M.; Pereira, L. Biomarkers and Seaweed-Based Nutritional Interventions in Metabolic Syndrome: A Comprehensive Review. Mar. Drugs 2024, 22, 550. [Google Scholar] [CrossRef]
- Sato, Y.; Fujimoto, S.; Toida, T.; Nakagawa, H.; Yamashita, Y.; Iwakiri, T.; Fukuda, A.; Iwatsubo, S. Apoprotein B/Apoprotein A-1 Ratio and Mortality among Prevalent Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2016, 11, 840–846. [Google Scholar] [CrossRef]
- Silbernagel, G.; Genser, B.; Drechsler, C.; Scharnagl, H.; Grammer, T.B.; Stojakovic, T.; Krane, V.; Ritz, E.; Wanner, C.; März, W. HDL Cholesterol, Apolipoproteins, and Cardiovascular Risk in Hemodialysis Patients. J. Am. Soc. Nephrol. 2015, 26, 484–492. [Google Scholar] [CrossRef]
- Rahman, M.; Yang, W.; Akkina, S.; Alper, A.; Anderson, A.H.; Appel, L.J.; He, J.; Raj, D.S.; Schelling, J.; Strauss, L.; et al. Relation of Serum Lipids and Lipoproteins with Progression of CKD: The CRIC Study. Clin. J. Am. Soc. Nephrol. 2014, 9, 1190–1198. [Google Scholar] [CrossRef]
- Lundberg, S.; Gunnarsson, I.; Jacobson, S.H. Impact of the Apolipoprotein B/Apolipoprotein A-I Ratio on Renal Outcome in Immunoglobulin A Nephropathy. Scand. J. Urol. Nephrol. 2012, 46, 148–155. [Google Scholar] [CrossRef]
- Chmielnicka, K.; Heleniak, Z.; Dębska-Ślizień, A. Dyslipidemia in Renal Transplant Recipients. Transplantology 2022, 3, 188–199. [Google Scholar] [CrossRef]
- Castro Cabezas, M.; de Bruin, T.W.; de Valk, H.W.; Shoulders, C.C.; Jansen, H.; Willem Erkelens, D. Impaired Fatty Acid Metabolism in Familial Combined Hyperlipidemia. A Mechanism Associating Hepatic Apolipoprotein B Overproduction and Insulin Resistance. J. Clin. Investig. 1993, 92, 160–168. [Google Scholar] [CrossRef]
- Malyala, R.; Rapi, L.; Nash, M.M.; Prasad, G.V.R. Serum Apolipoprotein B and A1 Concentrations Predict Late-Onset Posttransplant Diabetes Mellitus in Prevalent Adult Kidney Transplant Recipients. Can. J. Kidney Health Dis. 2019, 6, 2054358119850536. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Wang, X.; Dong, H. Association of Apolipoproteins A1 and B with Type 2 Diabetes and Fasting Blood Glucose: A Cross-Sectional Study. BMC Endocr. Disord. 2021, 21, 59. [Google Scholar] [CrossRef]
- Kronenberg, F.; Utermann, G. Lipoprotein(a): Resurrected by Genetics. J. Intern. Med. 2013, 273, 6–30. [Google Scholar] [CrossRef] [PubMed]
- Speer, T.; Zewinger, S.; Fliser, D. Uraemic Dyslipidaemia Revisited: Role of High-Density Lipoprotein. Nephrol. Dial. Transplant. 2013, 28, 2456–2463. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. Dyslipidemia of Chronic Renal Failure: The Nature, Mechanisms, and Potential Consequences. Am. J. Physiol-Ren. Physiol. 2006, 290, F262–F272. [Google Scholar] [CrossRef]
- Quaschning, T.; Krane, V.; Metzger, T.; Wanner, C. Abnormalities in Uremic Lipoprotein Metabolism and Its Impact on Cardiovascular Disease. Am. J. Kidney Dis. 2001, 38, S14–S19. [Google Scholar] [CrossRef]
- Deighan, C.J.; Caslake, M.J.; McConnell, M.; Boulton-Jones, J.M.; Packard, C.J. Atherogenic Lipoprotein Phenotype in End-Stage Renal Failure: Origin and Extent of Small Dense Low-Density Lipoprotein Formation. Am. J. Kidney Dis. 2000, 35, 852–862. [Google Scholar] [CrossRef]
- Hopewell, J.C.; Haynes, R.; Baigent, C. The Role of Lipoprotein (a) in Chronic Kidney Disease: Thematic Review Series: Lipoprotein (a): Coming of Age at Last. J. Lipid Res. 2018, 59, 577–585. [Google Scholar] [CrossRef]
- Barbagallo, C.M.; Averna, M.R.; Scafidi, V.; Galione, A.; Notarbartolo, A. Increased Lipoprotein (a) Levels in Subjects with Chronic Renal Failure on Hemodialysis. Nephron 2008, 62, 471–472. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A. Lipoprotein (a) as a Cause of Cardiovascular Disease: Insights from Epidemiology, Genetics, and Biology. J. Lipid Res. 2016, 57, 1953–1975. [Google Scholar] [CrossRef]
- Bajaj, A.; Damrauer, S.M.; Anderson, A.H.; Xie, D.; Budoff, M.J.; Go, A.S.; He, J.; Lash, J.P.; Ojo, A.; Post, W.S.; et al. Lipoprotein(a) and Risk of Myocardial Infarction and Death in Chronic Kidney Disease. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1971–1978. [Google Scholar] [CrossRef]
- Frischmann, M.E.; Kronenberg, F.; Trenkwalder, E.; Schaefer, J.R.; Schweer, H.; Dieplinger, B.; Koenig, P.; Ikewaki, K.; Dieplinger, H. In Vivo Turnover Study Demonstrates Diminished Clearance of Lipoprotein(a) in Hemodialysis Patients. Kidney Int. 2007, 71, 1036–1043. [Google Scholar] [CrossRef]
- Gruber, I.; Kollerits, B.; Forer, L.; Di Maio, S.; Schachtl-Riess, J.F.; Kheirkhah, A.; Schönherr, S.; Schultheiss, U.T.; Köttgen, A.; Eckardt, K.-U.; et al. Lipoprotein(a) Concentrations and Cardiovascular Disease in Patients with Chronic Kidney Disease: Results from the German Chronic Kidney Disease Study. J. Intern. Med. 2024, 296, 510–526. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, F. Dyslipidemia and Nephrotic Syndrome: Recent Advances. J. Ren. Nutr. 2005, 15, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, N.D. Disorders of Lipid Metabolism in Nephrotic Syndrome: Mechanisms and Consequences. Kidney Int. 2016, 90, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Warwick, G.L.; Caslake, M.J.; Boulton-Jones, J.M.; Dagen, M.; Packard, C.J.; Shepherd, J. Low-Density Lipoprotein Metabolism in the Nephrotic Syndrome. Metabolism 1990, 39, 187–192. [Google Scholar] [CrossRef]
- Liu, S.; Vaziri, N.D. Role of PCSK9 and IDOL in the Pathogenesis of Acquired LDL Receptor Deficiency and Hypercholesterolemia in Nephrotic Syndrome. Nephrol. Dial. Transplant. 2014, 29, 538–543. [Google Scholar] [CrossRef]
- Kronenberg, F.; Utermann, G.; Dieplinger, H. Lipoprotein(a) in Renal Disease. Am. J. Kidney Dis. 1996, 27, 1–25. [Google Scholar] [CrossRef]
- Noto, D.; Barbagallo, C.M.; Cascio, A.L.; Cefalù, A.B.; Cavera, G.; Caldarella, R.; Marino, G.; Travali, S.; Cutaia, I.; Maringhini, S.; et al. Lipoprotein(a) Levels in Relation to Albumin Concentration in Childhood Nephrotic Syndrome. Kidney Int. 1999, 55, 2433–2439. [Google Scholar] [CrossRef]
- Barbagallo, C.M.; Averna, M.R.; Sparacino, V.; Galione, A.; Caputo, E.; Scafidi, V.; Amato, S.; Mancino, C.; Cefalù, A.B.; Notarbartolo, A. Lipoprotein (a) Levels in End-Stage Renal Failure and Renal Transplantation. Nephron 2008, 64, 560–564. [Google Scholar] [CrossRef]
- O’Neal, D.; Lee, P.; Murphy, B.; Best, J. Low-Density Lipoprotein Particle Size Distribution in End-Stage Renal Disease Treated with Hemodialysis or Peritoneal Dialysis. Am. J. Kidney Dis. 1996, 27, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Krediet, R.T.; Balafa, O. Cardiovascular Risk in the Peritoneal Dialysis Patient. Nat. Rev. Nephrol. 2010, 6, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Fortes, P.C.; de Moraes, T.P.; Mendes, J.G.; Stinghen, A.E.; Ribeiro, S.C.; Pecoits-Filho, R. Insulin Resistance and Glucose Homeostasis in Peritoneal Dialysis. Perit. Dial. Int. 2009, 29, 145–148. [Google Scholar] [CrossRef]
- Ambrosch, A.; Domroese, U.; Westphal, S.; Dierkes, J.; Augustin, W.; Neumann, K.H.; Luley, C. Compositional and Functional Changes of Low-Density Lipoprotein during Hemodialysis in Patients with ESRD1. Kidney Int. 1998, 54, 608–617. [Google Scholar] [CrossRef]
- Barbagallo, C.M.; Cefalù, A.B.; Giammanco, A.; Noto, D.; Caldarella, R.; Ciaccio, M.; Averna, M.R.; Nardi, E. Lipoprotein Abnormalities in Chronic Kidney Disease and Renal Transplantation. Life 2021, 11, 315. [Google Scholar] [CrossRef]
- Cassader, M.; Ruiu, G.; Gambino, R.; Alemanno, N.; Triolo, G.; Pagano, G. Lipoprotein-Apolipoprotein Changes in Renal Transplant Recipients: A 2-Year Follow-Up. Metabolism 1991, 40, 922–925. [Google Scholar] [CrossRef]
- Śledziński, M.; Gołębiewska, J.; Mika, A. The Long-Term Effect of Kidney Transplantation on the Serum Fatty Acid Profile. Nutrients 2024, 16, 3319. [Google Scholar] [CrossRef]
- Moore, R.A.; Callahan, M.F.; Cody, M.; Adams, P.L.; Litchford, M.; Buckner, K.; Galloway, J. The Effect of the American Heart Association Step One Diet on Hyperlipidemia Following Renal Transplantation. Transplantation 1990, 49, 60. [Google Scholar] [CrossRef]
- Şener, Y.Z.; Deniz, E.; Koray, N.; Cebrailov, C.; Yildirim, T.; Yilmaz, Ş.R.; Aki, F.T.; Arici, M.; Altun, B.; Erdem, Y.; et al. Effects of Kidney Transplantation on Lipid Profile. Atherosclerosis 2020, 315, e166. [Google Scholar] [CrossRef]
- Luo, B.; Zhong, S.; Wang, X.; Guo, P.; Hou, Y.; Di, W. Management of Blood Lipids in Post-Kidney Transplant Patients: A Systematic Review and Network Meta-Analysis. Front. Pharmacol. 2024, 15, 1440875. [Google Scholar] [CrossRef]
- Olabisi, O.A.; Zhang, J.-Y.; VerPlank, L.; Zahler, N.; DiBartolo, S.; Heneghan, J.F.; Schlöndorff, J.S.; Suh, J.H.; Yan, P.; Alper, S.L.; et al. APOL1 Kidney Disease Risk Variants Cause Cytotoxicity by Depleting Cellular Potassium and Inducing Stress-Activated Protein Kinases. Proc. Natl. Acad. Sci. USA 2016, 113, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Pollak, M.R. APOL1 and Kidney Disease: From Genetics to Biology. Annu. Rev. Physiol. 2020, 82, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Giovinazzo, J.A.; Thomson, R.P.; Khalizova, N.; Zager, P.J.; Malani, N.; Rodriguez-Boulan, E.; Raper, J.; Schreiner, R. Apolipoprotein L-1 Renal Risk Variants Form Active Channels at the Plasma Membrane Driving Cytotoxicity. eLife 2020, 9, e51185. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.J.; Pollak, M.R. APOL1 Nephropathy: From Genetics to Clinical Applications. Clin. J. Am. Soc. Nephrol. 2021, 16, 294–303. [Google Scholar] [CrossRef]
- Gbadegesin, R.A.; Ulasi, I.; Ajayi, S.; Raji, Y.; Olanrewaju, T.; Osafo, C.; Ademola, A.D.; Asinobi, A.; Winkler, C.A.; Burke, D.; et al. APOL1 Bi- and Monoallelic Variants and Chronic Kidney Disease in West Africans. N. Engl. J. Med. 2025, 392, 228–238. [Google Scholar] [CrossRef]
- Grams, M.E.; Surapaneni, A.; Ballew, S.H.; Appel, L.J.; Boerwinkle, E.; Boulware, L.E.; Chen, T.K.; Coresh, J.; Cushman, M.; Divers, J.; et al. APOL1 Kidney Risk Variants and Cardiovascular Disease: An Individual Participant Data Meta-Analysis. J. Am. Soc. Nephrol. 2019, 30, 2027–2036. [Google Scholar] [CrossRef]
- Gao, D.; Yu, P.; Jing, S.; Yan, C.; Ding, D.; Qiao, Y.; Wu, G. miR-193a as a Potential Mediator of WT-1/Synaptopodin in the Renoprotective Effect of Losartan on Diabetic Kidney. Can. J. Physiol. Pharmacol. 2022, 100, 26–34. [Google Scholar] [CrossRef]
- Hong, Y.; Wang, J.; Zhang, L.; Sun, W.; Xu, X.; Zhang, K. Plasma miR-193a-3p Can Be a Potential Biomarker for the Diagnosis of Diabetic Nephropathy. Ann. Clin. Biochem. 2021, 58, 141–148. [Google Scholar] [CrossRef]
- Singhal, P.C.; Skorecki, K. APOL1 Dynamics in Diabetic Kidney Disease and Hypertension. Biomolecules 2025, 15, 205. [Google Scholar] [CrossRef]
- Doshi, M.D.; Ortigosa-Goggins, M.; Garg, A.X.; Li, L.; Poggio, E.D.; Winkler, C.A.; Kopp, J.B. APOL1 Genotype and Renal Function of Black Living Donors. J. Am. Soc. Nephrol. 2018, 29, 1309–1316. [Google Scholar] [CrossRef]
- Freedman, B.I.; Julian, B.A.; Pastan, S.O.; Israni, A.K.; Schladt, D.; Gautreaux, M.D.; Hauptfeld, V.; Bray, R.A.; Gebel, H.M.; Kirk, A.D.; et al. Apolipoprotein L1 Gene Variants in Deceased Organ Donors Are Associated with Renal Allograft Failure. Am. J. Transplant. 2015, 15, 1615–1622. [Google Scholar] [CrossRef]
- Freedman, B.I.; Pastan, S.O.; Israni, A.K.; Schladt, D.; Julian, B.A.; Gautreaux, M.D.; Hauptfeld, V.; Bray, R.A.; Gebel, H.M.; Kirk, A.D.; et al. APOL1 Genotype and Kidney Transplantation Outcomes from Deceased African American Donors. Transplantation 2016, 100, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Tedla, F.M.; Yap, E. Apolipoprotein L1 and Kidney Transplantation. Curr. Opin. Organ Transplant. 2019, 24, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Vasquez-Rios, G.; De Cos, M.; Campbell, K.N. Novel Therapies in APOL1-Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int. Rep. 2023, 8, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Olabisi, O.A.; Barrett, N.J.; Lucas, A.; Smith, M.; Bethea, K.; Soldano, K.; Croall, S.; Sadeghpour, A.; Chakraborty, H.; Wolf, M. Design and Rationale of the Phase 2 Baricitinib Study in Apolipoprotein L1-Mediated Kidney Disease (JUSTICE). Kidney Int. Rep. 2024, 9, 2677–2684. [Google Scholar] [CrossRef]
- Egbuna, O.; Audard, V.; Manos, G.; Tian, S.; Hagos, F.; Chertow, G.M. Safety and Tolerability of the APOL1 Inhibitor, Inaxaplin, Following Single- and Multiple-Ascending Doses in Healthy Adults. Glomerular Dis. 2024, 4, 64–73. [Google Scholar] [CrossRef]
- Mahley, R.W.; Rall, S.C. Apolipoprotein E: Far More than a Lipid Transport Protein. Annu. Rev. Genom. Hum. Genet. 2000, 1, 507–537. [Google Scholar] [CrossRef]
- Araki, S.; Moczulski, D.K.; Hanna, L.; Scott, L.J.; Warram, J.H.; Krolewski, A.S. APOE Polymorphisms and the Development of Diabetic Nephropathy in Type 1 Diabetes: Results of Case-Control and Family-Based Studies. Diabetes 2000, 49, 2190–2195. [Google Scholar] [CrossRef]
- Werle, E.; Fiehn, W.; Hasslacher, C. Apolipoprotein E Polymorphism and Renal Function in German Type 1 and Type 2 Diabetic Patients. Diabetes Care 1998, 21, 994–998. [Google Scholar] [CrossRef]
- Araki, S.-I.; Koya, D.; Makiishi, T.; Sugimoto, T.; Isono, M.; Kikkawa, R.; Kashiwagi, A.; Haneda, M. APOE Polymorphism and the Progression of Diabetic Nephropathy in Japanese Subjects with Type 2 Diabetes: Results of a Prospective Observational Follow-up Study. Diabetes Care 2003, 26, 2416–2420. [Google Scholar] [CrossRef]
- Eto, M.; Horita, K.; Morikawa, A.; Nakata, H.; Okada, M.; Saito, M.; Nomura, M.; Abiko, A.; Iwashima, Y.; Ikoda, A. Increased Frequency of Apolipoprotein Epsilon 2 Allele in Non-Insulin Dependent Diabetic (NIDDM) Patients with Nephropathy. Clin. Genet. 1995, 48, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Eto, M.; Saito, M.; Okada, M.; Kume, Y.; Kawasaki, F.; Matsuda, M.; Yoneda, M.; Matsuki, M.; Takigami, S.; Kaku, K. Apolipoprotein E Genetic Polymorphism, Remnant Lipoproteins, and Nephropathy in Type 2 Diabetic Patients. Am. J. Kidney Dis. 2002, 40, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-C.; Lin, S.-R.; Yang, Y.-C.; Chen, H.-C.; Lin, J.-N.; Shin, S.-J. Higher Frequency of Apolipoprotein E2 Allele in Type 2 Diabetic Patients with Nephropathy in Taiwan. J. Nephrol. 2002, 15, 368–373. [Google Scholar] [PubMed]
- Ha, S.K.; Park, H.S.; Kim, K.W.; Kim, S.J.; Kim, D.H.; Kim, J.H.; Lee, H.Y.; Han, D.S. Association between Apolipoprotein E Polymorphism and Macroalbuminuria in Patients with Non-Insulin Dependent Diabetes Mellitus. Nephrol. Dial. Transplant. 1999, 14, 2144–2149. [Google Scholar] [CrossRef]
- Liberopoulos, E.N.; Miltiadous, G.A.; Cariolou, M.; Kalaitzidis, R.; Siamopoulos, K.C.; Elisaf, M.S. Influence of Apolipoprotein E Polymorphisms on Serum Creatinine Levels and Predicted Glomerular Filtration Rate in Healthy Subjects. Nephrol. Dial. Transplant. 2004, 19, 2006–2012. [Google Scholar] [CrossRef]
- Liberopoulos, E.N.; Miltiadous, G.A.; Cariolou, M.; Tselepis, A.D.; Siamopoulos, K.C.; Elisaf, M.S. The Influence of Serum Apolipoprotein E Concentration and Polymorphism on Serum Lipid Parameters in Hemodialysis Patients. Am. J. Kidney Dis. 2004, 44, 300–308. [Google Scholar] [CrossRef]
- Kimura, H.; Suzuki, Y.; Gejyo, F.; Karasawa, R.; Miyazaki, R.; Suzuki, S.; Arakawa, M. Apolipoprotein E4 Reduces Risk of Diabetic Nephropathy in Patients with NIDDM. Am. J. Kidney Dis. 1998, 31, 666–673. [Google Scholar] [CrossRef]
- Oda, H.; Yorioka, N.; Ueda, C.; Kushihata, S.; Yamakido, M. Apolipoprotein E Polymorphism and Renal Disease. Kidney Int. 1999, 71, S25–S27. [Google Scholar] [CrossRef]
- Schmidt, S.; Klaver, C.; Saunders, A.; Postel, E.; De La Paz, M.; Agarwal, A.; Small, K.; Udar, N.; Ong, J.; Chalukya, M.; et al. A Pooled Case-Control Study of the Apolipoprotein E (APOE) Gene in Age-Related Maculopathy. Ophthalmic Genet. 2002, 23, 209–223. [Google Scholar] [CrossRef]
- Corder, E.H.; Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.E.; Gaskell, P.C.; Small, G.W.; Roses, A.D.; Haines, J.L.; Pericak-Vance, M.A. Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late Onset Families. Science 1993, 261, 921–923. [Google Scholar] [CrossRef]
- Wilson, P.W.; Myers, R.H.; Larson, M.G.; Ordovas, J.M.; Wolf, P.A.; Schaefer, E.J. Apolipoprotein E Alleles, Dyslipidemia, and Coronary Heart Disease. The Framingham Offspring Study. JAMA 1994, 272, 1666–1671. [Google Scholar] [CrossRef]
- Liberopoulos, E.; Siamopoulos, K.; Elisaf, M. Apolipoprotein E and Renal Disease. Am. J. Kidney Dis. 2004, 43, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zeleny, M.; Swertfeger, D.K.; Weisgraber, K.H.; Hui, D.Y. Distinct Apolipoprotein E Isoform Preference for Inhibition of Smooth Muscle Cell Migration and Proliferation. Biochemistry 2002, 41, 11820–11823. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Paka, L.; Kako, Y.; Singhal, P.; Duan, W.; Pillarisetti, S. A Protective Role for Kidney Apolipoprotein E. Regulation of Mesangial Cell Proliferation and Matrix Expansion. J. Biol. Chem. 2001, 276, 49142–49147. [Google Scholar] [CrossRef] [PubMed]
- Morena, M.; Le May, C.; Chenine, L.; Arnaud, L.; Dupuy, A.-M.; Pichelin, M.; Leray-Moragues, H.; Chalabi, L.; Canaud, B.; Cristol, J.-P.; et al. Plasma PCSK9 Concentrations during the Course of Nondiabetic Chronic Kidney Disease: Relationship with Glomerular Filtration Rate and Lipid Metabolism. J. Clin. Lipidol. 2017, 11, 87–93. [Google Scholar] [CrossRef]
- Mikolasevic, I.; Žutelija, M.; Mavrinac, V.; Orlic, L. Dyslipidemia in Patients with Chronic Kidney Disease: Etiology and Management. Int. J. Nephrol. Renov. Dis. 2017, 10, 35–45. [Google Scholar] [CrossRef]
- Charytan, D.M.; Sabatine, M.S.; Pedersen, T.R.; Im, K.; Park, J.-G.; Pineda, A.L.; Wasserman, S.M.; Deedwania, P.; Olsson, A.G.; Sever, P.S.; et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J. Am. Coll. Cardiol. 2019, 73, 2961–2970. [Google Scholar] [CrossRef]
- Schmit, D.; Fliser, D.; Speer, T. Proprotein Convertase Subtilisin/Kexin Type 9 in Kidney Disease. Nephrol. Dial. Transplant. 2019, 34, 1266–1271. [Google Scholar] [CrossRef]
- García-Agudo, R.; Rojas-Fernández, M.Á.; Canllavi-Fiel, E.; Proy-Vega, B.; Tejera-Muñoz, A. Safe and Successful Treatment with Pcsk9 Inhibitors in Hypercholesterolemia and Renal Transplantation: A Case Report. Transplant. Proc. 2023, 55, 1921–1923. [Google Scholar] [CrossRef]
- Warden, B.A.; Kaufman, T.; Minnier, J.; Duell, P.B.; Fazio, S.; Shapiro, M.D. Use of PCSK9 Inhibitors in Solid Organ Transplantation Recipients. JACC Case Rep. 2020, 2, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Tramontano, D.; Bini, S.; Maiorca, C.; Di Costanzo, A.; Carosi, M.; Castellese, J.; Arizaj, I.; Commodari, D.; Covino, S.; Sansone, G.; et al. Renal Safety Assessment of Lipid-Lowering Drugs: Between Old Certainties and New Questions. Drugs 2025, 85, 755–775. [Google Scholar] [CrossRef]
- Cicero, A.F.; Tartagni, E.; Ertek, S. Efficacy and Safety Profile of Evolocumab (AMG145), an Injectable Inhibitor of the Proprotein Convertase Subtilisin/Kexin Type 9: The Available Clinical Evidence. Expert Opin. Biol. Ther. 2014, 14, 863–868. [Google Scholar] [CrossRef]
- Kasichayanula, S.; Grover, A.; Emery, M.G.; Gibbs, M.A.; Somaratne, R.; Wasserman, S.M.; Gibbs, J.P. Clinical Pharmacokinetics and Pharmacodynamics of Evolocumab, a PCSK9 Inhibitor. Clin. Pharmacokinet. 2018, 57, 769–779. [Google Scholar] [CrossRef]
- Lunven, C.; Paehler, T.; Poitiers, F.; Brunet, A.; Rey, J.; Hanotin, C.; Sasiela, W.J. A Randomized Study of the Relative Pharmacokinetics, Pharmacodynamics, and Safety of Alirocumab, a Fully Human Monoclonal Antibody to PCSK9, After Single Subcutaneous Administration at Three Different Injection Sites in Healthy Subjects. Cardiovasc. Ther. 2014, 32, 297–301. [Google Scholar] [CrossRef]
- Lee, E.; Gibbs, J.P.; Emery, M.G.; Block, G.; Wasserman, S.M.; Hamilton, L.; Kasichayanula, S.; Hanafin, P.; Somaratne, R.; Egbuna, O. Influence of Renal Function on Evolocumab Exposure, Pharmacodynamics, and Safety. Clin. Pharmacol. Drug Dev. 2019, 8, 281–289. [Google Scholar] [CrossRef]
- Toth, P.P.; Dwyer, J.P.; Cannon, C.P.; Colhoun, H.M.; Rader, D.J.; Upadhyay, A.; Louie, M.J.; Koren, A.; Letierce, A.; Mandel, J.; et al. Efficacy and Safety of Lipid Lowering by Alirocumab in Chronic Kidney Disease. Kidney Int. 2018, 93, 1397–1408. [Google Scholar] [CrossRef]
- Leiter, L.A.; Cariou, B.; Müller-Wieland, D.; Colhoun, H.M.; Del Prato, S.; Tinahones, F.J.; Ray, K.K.; Bujas-Bobanovic, M.; Domenger, C.; Mandel, J.; et al. Efficacy and Safety of Alirocumab in Insulin-Treated Individuals with Type 1 or Type 2 Diabetes and High Cardiovascular Risk: The ODYSSEY DM-INSULIN Randomized Trial. Diabetes Obes. Metab. 2017, 19, 1781–1792. [Google Scholar] [CrossRef]
- East, C.; Bass, K.; Mehta, A.; Rahimighazikalayed, G.; Zurawski, S.; Bottiglieri, T. Alirocumab and Lipid Levels, Inflammatory Biomarkers, Metabolomics, and Safety in Patients Receiving Maintenance Dialysis: The ALIrocumab in DIALysis Study (A Phase 3 Trial to Evaluate the Efficacy and Safety of Biweekly Alirocumab in Patients on a Stable Dialysis Regimen). Kidney Med. 2022, 4, 100483. [Google Scholar] [CrossRef]
- Warden, B.A.; Duell, P.B. Management of Dyslipidemia in Adult Solid Organ Transplant Recipients. J. Clin. Lipidol. 2019, 13, 231–245. [Google Scholar] [CrossRef]
- Alotaibi, T.; Nagib, A.M.; Denewar, A.; Aboateya, H.; Halim, M.A.; Mahmoud, T.; Abdelmonem, M.; El-Sayed, Z.; Mostafa, M.; Emam, M.; et al. Inhibition of Proprotein Convertase Subtilisin/Kexin-9 After Kidney Transplant: Single-Center Experience Among Patients with High Cardiovascular Risk. Exp. Clin. Transplant. 2024, 22, 315–322. [Google Scholar] [CrossRef]
- Amaro, J.M.; Villanego, F.; Orellana, C.D.; Vigara, L.A.; Alonso, M.; García, T.; Mazuecos, A. Management of Dyslipidemia with Evolocumab in Kidney Transplant Recipients. Transplantation 2024, 108, e74. [Google Scholar] [CrossRef]
- Lv, P.; Li, Y.; Wu, L.; Weng, H.; Chen, M.; Ding, W.; Li, J. PCSK9 Inhibitors in a Renal Transplant Patient Complicated with Hepatitis B: A Case Report and Literature Review. Front. Cardiovasc. Med. 2022, 9, 937474. [Google Scholar] [CrossRef] [PubMed]
- Tuñón, J.; Steg, P.G.; Bhatt, D.L.; Bittner, V.A.; Díaz, R.; Goodman, S.G.; Jukema, J.W.; Kim, Y.-U.; Li, Q.H.; Mueller, C.; et al. Effect of Alirocumab on Major Adverse Cardiovascular Events According to Renal Function in Patients with a Recent Acute Coronary Syndrome: Prespecified Analysis from the ODYSSEY OUTCOMES Randomized Clinical Trial. Eur. Heart J. 2020, 41, 4114–4123. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Harrington, R.A.; Jukema, J.W.; White, H.D.; Zeiher, A.M.; et al. Safety of the PCSK9 Inhibitor Alirocumab: Insights from 47 296 Patient-Years of Observation. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 342–352. [Google Scholar] [CrossRef] [PubMed]
- de Zeeuw, D.; Anzalone, D.A.; Cain, V.A.; Cressman, M.D.; Heerspink, H.J.L.; Molitoris, B.A.; Monyak, J.T.; Parving, H.-H.; Remuzzi, G.; Sowers, J.R.; et al. Renal Effects of Atorvastatin and Rosuvastatin in Patients with Diabetes Who Have Progressive Renal Disease (PLANET I): A Randomised Clinical Trial. Lancet Diabetes Endocrinol. 2015, 3, 181–190. [Google Scholar] [CrossRef]
- Wijesurendra, R.S.; Sardell, R.; Jayaram, R.; Samuel, N.; Chen, Z.; Staplin, N.; Collins, R.; Zheng, Z.; Haynes, R.; Hill, M.; et al. Mechanisms of Rosuvastatin-Related Acute Kidney Injury Following Cardiac Surgery: The STICS Trial. Eur. Heart J. 2024, 45, 629–631. [Google Scholar] [CrossRef]
Lipoproteins | CKD | HD | PD | KT |
---|---|---|---|---|
LDL | ⇔ | ⇔ | ↑ | ⇔ |
HDL | ↓ | ↓ | ↓ | ↑ |
ApoA | ↓ | ↓ | ↓ | ⇔ |
ApoB | ↑ | ↑ | ↑ | ↑ |
Lp(a) | ↑ | ↑ | ↑ | ↓ |
Tryglicerides | ↑ | ↑ | ↑ | ↓ |
Population | Evidence Type (Examples) | ApoB Effect | Renal Safety/eGFR Effect |
---|---|---|---|
Mild-moderate CKD | Large RCTs (FOURIER, ODYSSEY)—subgroup analyses | Marked reduction reported | No clinically meaningful eGFR decline in subgroup analyses |
Advanced CKD/ESRD (dialysis) | Small RCTs, pilot studies, real-world cohorts | ~30–35% reported in small trial | No major nephrotoxicity signal reported but follow-up short; data sparse |
Kidney transplant recipients | Case reports/series; single randomized trial (n = 197) | ApoB reduction reported in small series | No clear graft dysfunction in reports; interactions with immunosuppressants uncommon |
Safety/pharmacokinetics across eGFR | Pharmaco studies & reviews | Not reported | mAbs not renally cleared; no dose adjustment generally required |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Secondulfo, C.; Izzo, C.; Vecchione, N.; Minelli, G.; Russo, D.; Russo, D.; Barra, R.; Molinaro, G.; Apicella, L.; Iacuzzo, C.; et al. Apolipoproteins in Chronic Kidney Disease and Kidney Transplant: A Long Unfinished Story. Int. J. Mol. Sci. 2025, 26, 9664. https://doi.org/10.3390/ijms26199664
Secondulfo C, Izzo C, Vecchione N, Minelli G, Russo D, Russo D, Barra R, Molinaro G, Apicella L, Iacuzzo C, et al. Apolipoproteins in Chronic Kidney Disease and Kidney Transplant: A Long Unfinished Story. International Journal of Molecular Sciences. 2025; 26(19):9664. https://doi.org/10.3390/ijms26199664
Chicago/Turabian StyleSecondulfo, Carmine, Carmine Izzo, Nicoletta Vecchione, Gianmarco Minelli, Dora Russo, Donatella Russo, Rossella Barra, Gabriella Molinaro, Luca Apicella, Candida Iacuzzo, and et al. 2025. "Apolipoproteins in Chronic Kidney Disease and Kidney Transplant: A Long Unfinished Story" International Journal of Molecular Sciences 26, no. 19: 9664. https://doi.org/10.3390/ijms26199664
APA StyleSecondulfo, C., Izzo, C., Vecchione, N., Minelli, G., Russo, D., Russo, D., Barra, R., Molinaro, G., Apicella, L., Iacuzzo, C., Pisani, A., Hamzeh, S., Amicone, M., Cirillo, M., & Bilancio, G. (2025). Apolipoproteins in Chronic Kidney Disease and Kidney Transplant: A Long Unfinished Story. International Journal of Molecular Sciences, 26(19), 9664. https://doi.org/10.3390/ijms26199664