Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels
Abstract
1. Introduction
- (i)
- enhances ISAC sensitivity to mechanical distension;
- (ii)
- regulates the transcriptional expression of MGC- and MSC-related genes; and
- (iii)
- enhances stretch-induced cation conductance.
2. Results
2.1. Alterations in RNA Transcript Levels Under Hypergravity Conditions
2.1.1. Non-Selective Cation MGCs
2.1.2. K+-Selective MGCs
2.1.3. Mechanosensitive Voltage-Gated and Other Channels
2.2. The Impact of Hypergravity Exposure on Sarcomere Length (SL) in the Cardiomyocytes
2.3. The Impact of Hypergravity Exposure on Trpm7 Protein Expression in Cardiomyocytes
2.4. The Impact of Stretch upon Sarcomere Length (SL) in the Cardiomyocytes
2.5. Stretch Sensitivity of ISAC in the Cardiomyocytes
2.5.1. ISAC in the Cardiomyocytes from the Control Rats
2.5.2. ISAC in the Cardiomyocytes from the Hypergravity-Exposed Rats
2.5.3. Comparison of ISAC Sensitivity to Stretch in Cardiomyocytes from Control and Hypergravity-Exposed Rats
3. Discussion
3.1. Mechanosensitive Ion Channel Remodeling and Structural Adaptations Under Hypergravity
Coordinated Ion Channel Remodeling in Mechanically Loaded Cardiomyocytes
- Enhances calcium signaling pathways through Trpm7 and Trpc1, thereby preserving mechanoelectrical integration and transcriptional flexibility.
- Promoted protective electrical stability (via Traak and Kir6.2 overexpression and Trpv2/Piezo2 downregulation) to prevent arrhythmogenic risk.
3.2. Structural Remodeling and Sarcomere Adaptation Under Hypergravity
3.3. Enhanced Sensitivity of ISAC and Mechanotransductive Amplification
4. Materials and Methods
4.1. Animals
4.2. Generation of Hypergravity Conditions
4.3. Solutions
4.4. Isolated Cardiomyocyte Preparation
4.5. RNA Isolation, Sequencing, and Analysis
4.6. Western Blot Analysis
4.7. Mechanical Stretch of the Ventricular Myocytes
4.8. Whole-Cell Patch-Clamp
4.9. Statistics
5. Conclusions and Limitations
5.1. Conclusions
5.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANEPPS | 4-(2-(6-(dioctylamino)-2-naphthalenyl)ethenyl)-1-(3-sulfopropyl)-pyridinium |
ATP | Adenosine Triphosphate |
BKCa | Big Potassium (Large Conductance Ca2+-Activated K+) Channel |
Ca2+ | Calcium ion |
CaV1.2/CaV1.3/CaV2.1/CaV2.2 | Voltage-gated calcium channel subtypes |
Cs+in/Cs+out | Intracellular/extracellular cesium ion configuration |
g | Gravitational acceleration |
IL | Late Membrane Current |
ISAC | Stretch-Activated Current |
K+in/K+out | Intracellular/extracellular potassium ion configuration |
KATP | ATP-sensitive potassium channel |
KB | Kraftbrühe solution (storage medium) |
Kir | Inward Rectifier Potassium Channel |
KV | Voltage-Gated Potassium Channel |
L | Number of measured sarcomeres |
MGCs | Mechanically Gated Channels |
MGCK | K+-selective Mechanically Gated Channels |
MSC | Mechanosensitive Channel |
NaV | Voltage-gated Sodium Channel |
P | Patch pipette |
PCa/PNa | Relative permeability of Ca2+ vs. Na+ |
PKD1/PKD2 (TRPP1/TRPP2) | Polycystin-1 and Polycystin-2 (mechanosensitive TRP channels) |
RNA-seq | RNA Sequencing |
S | Stylus (glass stylus for mechanical stimulation) |
SAKCA | Stretch-Activated, Ca2+-activated K+ channel (alternative for BKCa) |
SCN2A | Gene encoding NaV1.2 |
SHR | Spontaneously Hypertensive Rat |
SL | Sarcomere Length |
TPM | Transcripts per Kilobase Million |
TRP | Transient Receptor Potential channel |
TRPC/TRPV/TRPM/TRPA/TRPP/TMEM63 | Subtypes of TRP ion channels |
TREK/TRAAK | Two-pore-domain K+ channels (K2P family) |
TWIK-1 | Tandem of P domains in a Weak Inward rectifying K+ channel |
VGCs | Voltage-Gated Channels |
VGCMS | Voltage-Gated Channels with Mechanosensitivity |
V0 | Zero current potential (resting membrane potential) |
WKY | Wistar-Kyoto Rat |
References
- Kaufmann, R.; Theophile, U. Autonomously promoted extension effect in Purkinje fibers, papillary muscles, and trabeculae carnage of rhesus monkeys. Pflügers Arch. Gesamte Physiol. Menschen Tiere 1967, 297, 174–189. [Google Scholar] [CrossRef]
- Lab, M.J. Is there mechano-electric transduction in cardiac muscle? The monophasic action potential of the frog ventricle during isometric and isotonic contraction with calcium-deficient perfusions. S. Afr. J. Med. Sci. 1968, 33, 60. [Google Scholar]
- Ravens, U. Mechano-electric feedback and arrhythmias. Prog. Biophys. Mol. Biol. 2003, 82, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Craelius, W.; Chen, V.; El-Sherif, N. Stretch-activated ion channels in ventricular myocytes. Biosci. Rep. 1988, 8, 407–414. [Google Scholar] [CrossRef]
- Kamkin, A.; Kiseleva, I.; Wagner, K.D.; Leiterer, K.P.; Theres, H.; Scholz, H.; Günther, J.; Lab, M.J. Mechano-electric feedback in right atrium after left ventricular infarction in rats. J. Mol. Cell. Cardiol. 2000, 32, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, I.; Kamkin, A.; Wagner, K.D.; Theres, H.; Ladhoff, A.; Scholz, H.; Günther, J.; Lab, M.J. Mechanoelectric feedback after left ventricular infarction in rats. Cardiovasc. Res. 2000, 45, 370–378. [Google Scholar] [CrossRef]
- Kamkin, A.; Kiseleva, I.; Isenberg, G. Stretch-activated currents in ventricular myocytes: Amplitude and arrhythmogenic effects increase with hypertrophy. Cardiovasc. Res. 2000, 48, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Kamkin, A.; Kiseleva, I.; Isenberg, G. Ion selectivity of stretch-activated cation currents in mouse ventricular myocytes. Pflügers Arch. 2003, 446, 220–231. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Youm, J.B.; Sung, H.K.; Lee, S.H.; Ryu, S.Y.; Ho, W.K.; Earm, Y.E. Stretch-activated and background non-selective cation channels in rat atrial myocytes. J. Physiol. 2000, 523, 607–619. [Google Scholar] [CrossRef]
- Kamkin, A.; Kiseleva, I.; Wagner, K.D.; Böhm, J.; Theres, H.; Günther, J.; Scholz, H. Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflügers Arch. 2003, 446, 339–346. [Google Scholar] [CrossRef]
- Kamkin, A.; Kirischuk, S.; Kiseleva, I. Single mechano-gated channels activated by mechanical deformation of acutely isolated cardiac fibroblasts from rats. Acta Physiol. (Oxf.) 2010, 199, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Lyford, G.L.; Strege, P.R.; Shepard, A.; Ou, Y.; Ermilov, L.; Miller, S.M.; Gibbons, S.J.; Rae, J.L.; Szurszewski, J.H.; Farrugia, G. α(1C) (CaV1.2) L-type calcium channel mediates mechanosensitive calcium regulation. Am. J. Physiol. Cell Physiol. 2002, 283, C1001–C1008. [Google Scholar] [CrossRef]
- Vincent, P.F.; Bouleau, Y.; Petit, C.; Dulon, D. A synaptic F-actin network controls otoferlin-dependent exocytosis in auditory inner hair cells. eLife 2015, 4, e10988. [Google Scholar] [CrossRef]
- Kamkin, A.G.; Kamkina, O.V.; Kazansky, V.E.; Mitrokhin, V.M.; Bilichenko, A.; Nasedkina, E.A.; Shileiko, S.A.; Rodina, A.S.; Zolotareva, A.D.; Zolotarev, V.I.; et al. Identification of RNA reads encoding different channels in isolated rat ventricular myocytes and the effect of cell stretching on L-type Ca2+ current. Biol. Direct 2023, 18, 70. [Google Scholar] [CrossRef]
- Kamkin, A.G.; Kamkina, O.V.; Shim, A.L.; Bilichenko, A.; Mitrokhin, V.M.; Kazansky, V.E.; Filatova, T.S.; Abramochkin, D.V.; Mladenov, M.I. The role of activation of two different sGC binding sites by NO-dependent and NO-independent mechanisms in the regulation of SACs in rat ventricular cardiomyocytes. Physiol. Rep. 2022, 10, e15246. [Google Scholar] [CrossRef]
- Kamkin, A.; Kiseleva, I.; Wagner, K.D.; Scholz, H. Mechano-electric feedback in the heart: Evidence from intracellular microelectrode recordings on multicellular preparations and single cells from healthy and diseased tissue. In Mechanosensitivity in Cells and Tissues; Kamkin, A., Kiseleva, I., Eds.; Academia: Moscow, Russia, 2005; pp. 165–202. [Google Scholar]
- Liu, C.; Zhong, G.; Zhou, Y.; Yang, Y.; Tan, Y.; Li, Y.; Gao, X.; Sun, W.; Li, J.; Jin, X.; et al. Alteration of calcium signalling in cardiomyocyte induced by simulated microgravity and hypergravity. Cell Prolif. 2020, 53, e12783. [Google Scholar] [CrossRef]
- Frey, M.; von Känel-Christen, R.; Stalder-Navarro, V.; Duke, P.J.; Weibel, E.R.; Hoppeler, H. Effects of long-term hypergravity on muscle, heart and lung structure of mice. J. Comp. Physiol. B 1997, 167, 494–501. [Google Scholar] [CrossRef]
- Ma, X.; Wehland, M.; Aleshcheva, G.; Hauslage, J.; Waßer, K.; Hemmersbach, R.; Infanger, M.; Bauer, J.; Grimm, D. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells. PLoS ONE 2013, 8, e68140. [Google Scholar] [CrossRef]
- Shattock, M.J.; Ottolia, M.; Bers, D.M.; Blaustein, M.P.; Boguslavskyi, A.; Bossuyt, J.; Bridge, J.H.B.; Chen-Izu, Y.; Clancy, C.E.; Edwards, A.; et al. Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J. Physiol. 2015, 593, 1361–1382. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Park, S.; Shcheynikov, N.; Muallem, S. Mechanism and synergism in epithelial fluid and electrolyte secretion. Pflügers Arch. 2014, 466, 1487–1499. [Google Scholar] [CrossRef] [PubMed]
- Numata, T.; Shimizu, T.; Okada, Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am. J. Physiol. Cell Physiol. 2007, 292, C460–C467. [Google Scholar] [CrossRef] [PubMed]
- Numata, T.; Shimizu, T.; Okada, Y. Direct mechano-stress sensitivity of TRPM7 channel. Cell Physiol. Biochem. 2007, 19, 1–8. [Google Scholar] [CrossRef]
- Bessac, B.F.; Fleig, A. TRPM7 channel is sensitive to osmotic gradients in human kidney cells. J. Physiol. 2007, 582, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Oancea, E.; Wolfe, J.T.; Clapham, D.E. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ. Res. 2006, 98, 245–253. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Liu, P.; Jiang, Y.; Zhao, Y.; Wei, H.; Niu, W. TRPC1 expression and distribution in rat hearts. Eur. J. Histochem. 2009, 53, e26. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Brayden, J.E.; Earley, S.; Nelson, M.T.; Reading, S. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin. Exp. Pharmacol. Physiol. 2008, 35, 1116–1120. [Google Scholar] [CrossRef]
- Earley, S.; Waldron, B.J.; Brayden, J.E. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 2004, 95, 922–929. [Google Scholar] [CrossRef]
- Morita, H.; Honda, A.; Inoue, R.; Ito, Y.; Abe, K.; Nelson, M.T.; Brayden, J.E. Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J. Pharmacol. Sci. 2007, 103, 417–426. [Google Scholar] [CrossRef]
- Muraki, K.; Iwata, Y.; Katanosaka, Y.; Ito, T.; Ohya, S.; Shigekawa, M.; Imaizumi, Y. TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 2003, 93, 829–838. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Iribe, G.; Kaneko, T.; Takahashi, K.; Numaga-Tomita, T.; Nishida, M.; Birnbaumer, L.; Naruse, K. TRPC3 participates in angiotensin II type 1 receptor-dependent stress-induced slow increase in intracellular Ca2+ concentration in mouse cardiomyocytes. J. Physiol. Sci. 2018, 68, 153–164. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Iribe, G.; Nishida, M.; Naruse, K. Role of TRPC3 and TRPC6 channels in the myocardial response to stretch: Linking physiology and pathophysiology. Prog. Biophys. Mol. Biol. 2017, 130, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Li, J. Canonical transient receptor potential 3 channels in atrial fibrillation. Eur. J. Pharmacol. 2018, 837, 1–7. [Google Scholar] [CrossRef]
- Quick, K.; Zhao, J.; Eijkelkamp, N.; Linley, J.E.; Rugiero, F.; Cox, J.J.; Raouf, R.; Gringhuis, M.; Sexton, J.E.; Abramowitz, J.; et al. TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol. 2012, 2, 120068. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, H.; Jiang, Y.; Wei, H.; Liu, P.; Wang, W.; Niu, W. Unusual localization and translocation of TRPV4 protein in cultured ventricular myocytes of the neonatal rat. Eur. J. Histochem. 2012, 56, e32. [Google Scholar] [CrossRef]
- Loukin, S.; Zhou, X.; Su, Z.; Saimi, Y.; Kung, C. Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J. Biol. Chem. 2010, 285, 27176–27181. [Google Scholar] [CrossRef]
- Suzuki, M.; Mizuno, A.; Kodaira, K.; Imai, M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 2003, 278, 22664–22668. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Sato, J.; Kutsuwada, K.; Ooki, G.; Imai, M. Cloning of a stretch-inhibitable nonselective cation channel. J. Biol. Chem. 1999, 274, 6330–6335. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.A.; Nakamura, Y.; Kiss, S.; Nealen, M.L.; Barrick, S.; Kanai, A.J.; Wang, E.; Ruiz, G.; De Groat, W.C.; Apodaca, G.; et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 2002, 5, 856–860. [Google Scholar] [CrossRef]
- Grimm, C.; Kraft, R.; Sauerbruch, S.; Schultz, G.; Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 2003, 278, 21493–21501. [Google Scholar] [CrossRef]
- Gomis, A.; Soriano, S.; Belmonte, C.; Viana, F. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J. Physiol. 2008, 586, 5633–5649. [Google Scholar] [CrossRef]
- Sénatore, S.; Rami Reddy, V.; Sémériva, M.; Perrin, L.; Lalevée, N. Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet. 2010, 6, e1001088. [Google Scholar] [CrossRef]
- Corey, D.P.; García-Añoveros, J.; Holt, J.R.; Kwan, K.Y.; Lin, S.-Y.; Vollrath, M.A.; Amalfitano, A.; Cheung, E.L.-M.; Derfler, B.H.; Duggan, A.; et al. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 2004, 432, 723–730. [Google Scholar] [CrossRef]
- Christensen, A.P.; Corey, D.P. TRP channels in mechanosensation: Direct or indirect activation? Nat. Rev. Neurosci. 2007, 8, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Kindt, K.S.; Viswanath, V.; Macpherson, L.; Quast, K.; Hu, H.; Patapoutian, A.; Schafer, W.R. Caenorhabditis elegans TRPA-1 functions in mechanosensation. Nat. Neurosci. 2007, 10, 568–577. [Google Scholar] [CrossRef]
- Spassova, M.A.; Hewavitharana, T.; Xu, W.; Soboloff, J.; Gill, D.L. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl. Acad. Sci. USA 2006, 103, 16586–16591. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Kakimoto, Y.; Toda, K.; Naruse, K. Mechanobiology in cardiac physiology and diseases. J. Cell. Mol. Med. 2013, 17, 225–232. [Google Scholar] [CrossRef]
- Sharif-Naeini, R.; Folgering, J.H.A.; Bichet, D.; Duprat, F.; Lauritzen, I.; Arhatte, M.; Jodar, M.; Dedman, A.; Chatelain, F.C.; Schulte, U.; et al. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 2009, 139, 587–596. [Google Scholar] [CrossRef]
- Foster, D.B.; Gu, J.M.; Kim, E.H.; Wolfson, D.W.; O’Meally, R.; Cole, R.N.; Cho, H.C. Tbx18 orchestrates cytostructural transdifferentiation of cardiomyocytes to pacemaker cells by recruiting the epithelial-mesenchymal transition program. J. Proteome Res. 2022, 21, 2277–2292. [Google Scholar] [CrossRef]
- Watanabe, H.; Murakami, M.; Ohba, T.; Ono, K.; Ito, H. The pathological role of transient receptor potential channels in heart disease. Circ. J. 2009, 73, 419–427. [Google Scholar] [CrossRef]
- Gottlieb, P.A.; Bae, C.; Sachs, F. Gating the mechanical channel Piezo1: A comparison between whole-cell and patch recording. Channels 2012, 6, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Bae, C.; Gottlieb, P.A.; Sachs, F. Human PIEZO1: Removing inactivation. Biophys. J. 2013, 105, 880–886. [Google Scholar] [CrossRef]
- Bae, C.; Sachs, F.; Gottlieb, P.A. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 2011, 50, 6295–6300. [Google Scholar] [CrossRef]
- Wong, T.-Y.; Juang, W.-C.; Tsai, C.-T.; Tseng, C.-J.; Lee, W.-H.; Chang, S.-N.; Cheng, P.-W. Mechanical stretching simulates cardiac physiology and pathology through mechanosensor Piezo1. J. Clin. Med. 2018, 7, 410. [Google Scholar] [CrossRef] [PubMed]
- Copp, S.W.; Kim, J.S.; Ruiz-Velasco, V.; Kaufman, M.P. The mechano-gated channel inhibitor GsMTx4 reduces the exercise pressor reflex in decerebrate rats. J. Physiol. 2016, 594, 641–655. [Google Scholar] [CrossRef]
- Zeng, W.-Z.; Marshall, K.L.; Min, S.; Daou, I.; Chapleau, M.W.; Abboud, F.M.; Liberles, S.D.; Patapoutian, A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 2018, 362, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Li, X.T.; Dyachenko, V.; Zuzarte, M.; Putzke, C.; Preisig-Müller, R.; Isenberg, G.; Daut, J. The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc. Res. 2006, 69, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.H.C.; Liu, W.; Saint, D.A. Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. Exp. Physiol. 2004, 89, 237–242. [Google Scholar] [CrossRef]
- Schmidt, C.; Wiedmann, F.; Kallenberger, S.M.; Ratte, A.; Schulte, J.S.; Scholz, B.; Müller, F.U.; Voigt, N.; Zafeiriou, M.-P.; Ehrlich, J.R.; et al. Stretch-activated two-pore-domain (K2P) potassium channels in the heart: Focus on atrial fibrillation and heart failure. Prog. Biophys. Mol. Biol. 2017, 130, 233–243. [Google Scholar] [CrossRef]
- Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honoré, E. Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J. Biol. Chem. 1999, 274, 26691–26696. [Google Scholar] [CrossRef]
- Maingret, F.; Patel, A.J.; Lesage, F.; Lazdunski, M.; Honoré, E. Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J. Biol. Chem. 2000, 275, 10128–10133. [Google Scholar] [CrossRef]
- Takahashi, K.; Naruse, K. Stretch-activated BK channel and heart function. Prog. Biophys. Mol. Biol. 2012, 110, 239–244. [Google Scholar] [CrossRef]
- Sokabe, M.; Naruse, K.; Tang, Q.-Y. A new mechanosensitive channel SAKCA and a new MS channel blocker GsTMx-4. Nihon Yakurigaku Zasshi 2004, 124, 301–310. [Google Scholar] [CrossRef]
- Beyder, A.; Rae, J.L.; Bernard, C.; Strege, P.R.; Sachs, F.; Farrugia, G. Mechanosensitivity of Nav1.5, a voltage-sensitive sodium channel. J. Physiol. 2010, 588, 4969–4985. [Google Scholar] [CrossRef]
- Morris, C.E.; Juranka, P.F. Nav channel mechanosensitivity: Activation and inactivation accelerate reversibly with stretch. Biophys. J. 2007, 93, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.A.; Lin, W.; Morris, T.; Banderali, U.; Juranka, P.F.; Morris, C.E. Membrane trauma and Na+ leak from Nav1.6 channels. Am. J. Physiol. Cell Physiol. 2009, 297, C823–C834. [Google Scholar] [CrossRef]
- Calabrese, B.; Tabarean, I.V.; Juranka, P.; Morris, C.E. Mechanosensitivity of N-type calcium channel currents. Biophys. J. 2002, 83, 2560–2574. [Google Scholar] [CrossRef]
- Hammami, S.; Willumsen, N.J.; Olsen, H.L.; Morera, F.J.; Latorre, R.; Klaerke, D.A. Cell volume and membrane stretch independently control K+ channel activity. J. Physiol. 2009, 587, 2225–2231. [Google Scholar] [CrossRef]
- Grunnet, M.; Jespersen, T.; MacAulay, N.; Jørgensen, N.K.; Schmitt, N.; Pongs, O.; Olesen, S.-P.; Klaerke, D.A. KCNQ1 channels sense small changes in cell volume. J. Physiol. 2003, 549, 419–427. [Google Scholar] [CrossRef]
- Fatehi, M.; Carter, C.C.; Youssef, N.; Light, P.E. The mechano-sensitivity of cardiac ATP-sensitive potassium channels is mediated by intrinsic MgATPase activity. J. Mol. Cell. Cardiol. 2017, 108, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Al-Shammari, H.; Latif, N.; Sarathchandra, P.; McCormack, A.; Rog-Zielinska, E.A.; Raja, S.; Kohl, P.; Yacoub, M.H.; Peyronnet, R.; Chester, A.H. Expression and function of mechanosensitive ion channels in human valve interstitial cells. PLoS ONE 2020, 15, e0240532. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Li, M.; Han, F.; Zhang, Q.; Zeng, Y.; Zhang, W.; Cheng, X. Role of TRPM7 in Cardiac Fibrosis: A Potential Therapeutic Target (Review). Exp. Ther. Med. 2021, 21, 173. [Google Scholar] [CrossRef]
- Nakayama, H.; Wilkin, B.J.; Bodi, I.; Molkentin, J.D. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J. 2006, 20, 1660–1670. [Google Scholar] [CrossRef]
- Molkentin, J.D. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc. Res. 2004, 63, 467–475. [Google Scholar] [CrossRef]
- Molkentin, J.D.; Lu, J.R.; Antos, C.L.; Markham, B.; Richardson, J.; Robbins, J.; Grant, S.R.; Olson, E.N. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998, 93, 215–228. [Google Scholar] [CrossRef]
- Yang, C.T.; Zeng, X.H.; Xia, X.M.; Lingle, C.J. Interactions between beta subunits of the KCNMB family and Slo3: Beta4 selectively modulates Slo3 expression and function. PLoS ONE 2009, 4, e6135. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, G.; Rosen, R.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Iny Stein, T.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Brohawn, S.G.; del Mármol, J.; MacKinnon, R. Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel. Science 2012, 335, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Brohawn, S.G.; Su, Z.; MacKinnon, R. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc. Natl. Acad. Sci. USA 2014, 111, 3614–3619. [Google Scholar] [CrossRef] [PubMed]
- Serizawa, T.; Terui, T.; Kagemoto, T.; Mizuno, A.; Shimozawa, T.; Kobirumaki, F.; Ishiwata, S.; Kurihara, S.; Fukuda, N. Real-time measurement of the length of a single sarcomere in rat ventricular myocytes: A novel analysis with quantum dots. Am. J. Physiol. Cell Physiol. 2011, 301, C1116–C1127. [Google Scholar] [CrossRef]
- Bub, G.; Camelliti, P.; Bollensdorff, C.; Stuckey, D.J.; Picton, G.; Burton, R.A.; Clarke, K.; Kohl, P. Measurement and analysis of sarcomere length in rat cardiomyocytes in situ and in vitro. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H1616–H1625. [Google Scholar] [CrossRef]
- Schlüter, K.D.; Piper, H.M. Regulation of growth in the adult cardiomyocytes. FASEB J. 1999, 13, S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Hanft, L.M.; Korte, F.S.; McDonald, K.S. Cardiac function and modulation of sarcomeric function by length. Cardiovasc. Res. 2008, 77, 627–636. [Google Scholar] [CrossRef]
- Pye, M.P.; Cobbe, S.M. Mechanisms of ventricular arrhythmias in cardiac failure and hypertrophy. Cardiovasc. Res. 1992, 26, 740–750. [Google Scholar] [CrossRef]
- Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D.E.; Zile, M.R.; Cooper, G. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ. Res. 1997, 80, 281–289. [Google Scholar] [CrossRef]
- Hansen, D.E.; Craig, C.S.; Hondeghem, L.M. Stretch-induced arrhythmias in the isolated canine ventricle: Evidence for the importance of mechanoelectrical feedback. Circulation 1990, 81, 1094–1105. [Google Scholar] [CrossRef]
- Taggart, P.; Sutton, P.; Lab, M.; Runnalls, M.; O’Brien, W.; Treasure, T. Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am. J. Physiol. Heart Circ. Physiol. 1992, 263, H816–H823. [Google Scholar] [CrossRef]
- Ji, M.; Kim, H.J.; Ahn, C.B.; Son, K.H.; Hong, J.H. Cellular channelopathy mediated by hypergravity: IL-6-mediated Nkcc1 activation and enhanced Trpm2 expression in rat atrium. Cell Tissue Res. 2021, 383, 1017–1024. [Google Scholar] [CrossRef]
- Bilichenko, A.S.; Zolotareva, A.D.; Kamkina, O.V.; Zolotarev, V.I.; Rodina, A.S.; Kazansky, V.E.; Mitrokhin, V.M.; Mladenov, M.I.; Kamkin, A.G. Simulated Microgravity Attenuates Stretch Sensitivity of Mechanically Gated Channels in Rat Ventricular Myocytes. Int. J. Mol. Sci. 2025, 26, 6653. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FASTQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 24 May 2025).
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, J.; Despa, S.; Han, F.; Hou, Z.; Robia, S.L.; Lingrel, J.B.; Bers, D.M. Isoform specificity of the Na+/K+-ATPase in cardiac myocytes: α1 and α2 have distinct roles in contractility and [Na+]i regulation. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1424–H1431. [Google Scholar]
- Dyachenko, V.; Christ, A.; Gubanov, R.; Isenberg, G. Bending of z-lines by mechanical stimuli: An input signal for integrin dependent modulation of ion channels? Prog. Biophys. Mol. Biol. 2008, 97, 196–216. [Google Scholar] [CrossRef]
- Lookin, O.; de Tombe, P.; Boulali, N.; Gergely, C.; Cloitre, T.; Cazorla, O. Cardiomyocyte sarcomere length variability: Membrane fluorescence versus second harmonic generation myosin imaging. J. Gen. Physiol. 2023, 155, e202213289. [Google Scholar] [CrossRef]
- Lozinsky, I.; Kamkin, A. Mechanosensitive alterations of action potentials and membrane currents in healthy and diseased cardiomyocytes: Cardiac tissue and isolated cell. In Mechanosensitivity in Cells and Tissues, N 3, Mechanosensitivity of the Heart; Kamkin, A., Kiseleva, I., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2010; pp. 185–238. [Google Scholar]
- Gillis, K.D. Techniques for membrane capacitance measurement. In Single-Channel Recording, 2nd ed.; Sakmann, B., Neher, E., Eds.; Plenum Press: New York, NY, USA, 1995; pp. 155–198. [Google Scholar]
Mechanically Gated Channels (MGCs) | References | Control | Hypergravity | % of Change | p |
---|---|---|---|---|---|
Trpm7 | [22,23,24,25] | 0.2362 ± 0.0214 | 0.3336 ± 0.0249 | 41.23% | 0.0073 |
Trpc1 | [26] | 0.2049 ± 0.0240 | 0.3447 ± 0.0317 | 68.23% | 0.0026 |
Trpm4 | [27,28,29] | 0.2699 ± 0.0083 | 0.2380 ± 0.0132 | −11.80% | 0.0562 |
Trpv2 | [30] | 0.0679 ± 0.0108 | 0.0257 ± 0.0067 | −62.19% | 0.0044 |
Trpc3 | [31,32,33,34] | 0.0151 ± 0.0051 | 0.0069 ± 0.0007 | −54.06% | 0.1392 |
Trpv4 | [35,36,37] | 0.0111 ± 0.0028 | 0.0086 ± 0.0029 | −22.77% | 0.5100 |
Trpv1 | [38,39] | 0.0053 ± 0.0012 | 0.0063 ± 0.0006 | 18.24% | 0.4609 |
Trpm3 | [40] | 0.0001 ± 0.0001 | 0.0001 ± 0.0001 | N/A | N/A |
Trpc5 | [41] | 0.0002 ± 0.0001 | 0.0003 ± 0.0001 | 55.56% | 0.1663 |
Trpa1 | [42,43,44,45] | 0.0009 ± 0.0009 | 0.0003 ± 0.0002 | −62.96% | 0.5306 |
Trpc6 | [27,46,47] | 0 | 0 | N/A | N/A |
Pkd1 (TRPP1) | [48] | 0.6161 ± 0.1106 | 0.6562 ± 0.0315 | 6.50% | 0.5884 |
Pkd2 (TRPP2) | [49,50] | 0.2889 ± 0.0486 | 0.2887 ± 0.0447 | −0.07% | 0.9796 |
Piezo1 | [51,52,53,54,55] | 0.1630 ± 0.0484 | 0.1064 ± 0.0161 | −34.73% | 0.2954 |
Piezo2 | [55,56] | 0.0028 ± 0.0005 | 0.0012 ± 0.0001 | −57.58% | 0.0079 |
Tmem63a | 0.0960 ± 0.0253 | 0.1234 ± 0.0330 | 28.50% | 0.4695 | |
Tmem63b | 2.5330 ± 0.3292 | 2.9867 ± 0.4486 | 17.91% | 0.5046 | |
Kcnk2 (Trek1/K2P2.1) | [57,58,59,60] | 0.0868 ± 0.0150 | 0.1061 ± 0.0074 | 22.14% | 0.2372 |
Kcnk4 (Traak/K2P4.1) | [59,61] | 0.0035 ± 0.0003 | 0.0118 ± 0.0022 | 239.48% | 0.0092 |
Kcnk10 (Trek2/K2P10.1) | [59] | 0 | 0.0002 ± 0.0001 | N/A | N/A |
Kcnma1 (BKCa subunit) | 0.0001 ± 0.0001 | 0.0001 ± 0.0001 | N/A | N/A | |
Kcnmb1 (BKCa subunit) | [62,63] | 0.0120 ± 0.0039 | 0.0063 ± 0.0034 | −47.84% | 0.0203 |
Kcnmb2 (BKCa subunit) | [62,63] | 0.0107 ± 0.0013 | 0.0124 ± 0.0025 | 16.20% | 0.5206 |
Kcnmb4 (BKCa subunit) | [62,63] | 0.0111 ± 0.0035 | 0.0053 ± 0.0012 | −52.29% | 0.1291 |
Scn5a (NaV1.5) | [64,65] | 3.3240 ± 0.5076 | 3.9881 ± 0.6835 | 19.98% | 0.7391 |
Scn8a (NaV1.6) | [66] | 0 | 0 | N/A | N/A |
Cacna1c (CaV1.2, L-type) | [12] | 0.1850 ± 0.0242 | 0.2865 ± 0.0530 | 54.85% | 0.0868 |
Cacna1d (CaV1.3, L-type) | [13] | 0.0016 ± 0.0002 | 0.0016 ± 0.0001 | −1.92% | 0.8910 |
Cacna1b (CaV2.2, N-type) | [67] | 0 | 0.0001 ± 0.0001 | N/A | N/A |
Kcnq1 (Kv7.1/KCNQ1) | [47,68,69] | 0.2237 ± 0.0296 | 0.2666 ± 0.0346 | 19.15% | 0.3380 |
Kcnj11 (Kir6.2) | [70] | 35.2505 ± 4.0662 | 48.8510 ± 4.2813 | 38.58% | 0.0317 |
Kcnj8 (Kir6.1) | [71] | 2.7115 ± 0.9426 | 0.6555 ± 0.1284 | −75.83% | 0.0085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamkin, A.G.; Zolotarev, V.I.; Kamkina, O.; Mitrokhin, V.M.; Kazansky, V.E.; Bilichenko, A.; Rodina, A.S.; Zolotareva, A.D.; Mladenov, M. Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels. Int. J. Mol. Sci. 2025, 26, 9284. https://doi.org/10.3390/ijms26199284
Kamkin AG, Zolotarev VI, Kamkina O, Mitrokhin VM, Kazansky VE, Bilichenko A, Rodina AS, Zolotareva AD, Mladenov M. Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels. International Journal of Molecular Sciences. 2025; 26(19):9284. https://doi.org/10.3390/ijms26199284
Chicago/Turabian StyleKamkin, Andre G., Valentin I. Zolotarev, Olga Kamkina, Vadim M. Mitrokhin, Viktor E. Kazansky, Andrey Bilichenko, Anastasia S. Rodina, Alexandra D. Zolotareva, and Mitko Mladenov. 2025. "Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels" International Journal of Molecular Sciences 26, no. 19: 9284. https://doi.org/10.3390/ijms26199284
APA StyleKamkin, A. G., Zolotarev, V. I., Kamkina, O., Mitrokhin, V. M., Kazansky, V. E., Bilichenko, A., Rodina, A. S., Zolotareva, A. D., & Mladenov, M. (2025). Hypergravity Enhances Stretch Sensitivity in Rat Cardiomyocytes via Increased Expression and Activity of Stretch-Activated Channels. International Journal of Molecular Sciences, 26(19), 9284. https://doi.org/10.3390/ijms26199284