NanoDeNovo: De Novo Design of Anti-Poliovirus I Sabin Strain Nanobodies by Semi-Automated Computational Pipeline
Abstract
1. Introduction
2. Results
2.1. Sequence Sampling and Structural Quality Control
2.2. Nanobody–VP3 Complex Virtual Screening
2.3. Antigen-Specific CDR-Loop Design
2.4. Multistep Molecular Docking Cross-Validation
2.5. Nanobody Humanization and Pipeline Re-Assembly
- Preprocess step: Humanized sequences were folded with NB2 to estimate errors in CDR and framework regions.
- Input complex generation: Complexes were folded with the Chai-1 [29] webserver (https://lab.chaidiscovery.com/ (accessed on 15 July 2025)) utilizing MMSeqs2 MSA and template-based modeling. At this step, we selected the Chai-1 webserver for this task, as it provides rapid, automated complex prediction based on the AlphaFold3 (AF3) architecture. Chai-1 has demonstrated near state-of-the-art performance and accuracy in protein–protein interactions prediction, particularly antibody-antigen complexes, comparable to AF3 and Boltz-1 [30], as evidenced in user-case benchmarks [31] and the Boltz-1 technical report [32]. Chai-1 also serves as a replication for RFantibody’s docking step in providing inputs for Rosetta3 global docking with post-humanized sequences, possessing a higher accuracy when compared to tFold’s models. Both web-based and local availability favored Chai-1 over Boltz-1 (which requires only local installation), though both are completely viable for that use case; Protenix was also tested for this task, but technical issues precluded its use (errors during folding).
- Global docking (ClusPro2): Humanized nanobody structures predicted by either NB2 or Chai-1 and trimmed VP3 (used before) structure were submitted to the ClusPro2 server to screen potential binding shifts, compared to the WT complexes. Using two different nanobody models is justified at this step, because we noticed that rigid body placement in ClusPro2 is very sensitive to the input structure of a particular nanobody, and it would let us cover as many possible binding shifts in humanized nanobodies as possible. Predictions were aligned against a relaxed WT complex with the lowest dG cross to estimate the DockQ score.
- Global docking (Rosetta3): The best complex, based on DockQ score, obtained by previous step was submitted to Rosetta3 global docking.
- Post-docking analysis: The best complex, based on interface score, obtained by Rosetta3 global docking was vastly FastRelaxed with 50 output structures to capture more possible local minima and calculate the average dG cross. Due to the fact that the humanization of nanobodies, potentially resulting in conformational changes of CDR-loops, could affect the original binding pose by rotating the binder along the desired site, while preserving a native-like interaction profile, at this step, it would be wise to rely on the thermodynamic properties of binding rather than structural reproducibility. Nevertheless, interaction profiles were built for the set of 50 relaxed complexes and top-100 docked complexes, as well, and compared with the native (WT) complex profiles.
- Molecular dynamics: The complex with the lowest dG cross was prepared with CHARMM-GUI and underwent 100 ns molecular dynamics simulation to compare mutation effects on nanobody flexibility, binding capability, and binding free energy.
2.6. Molecular Dynamics Simulations and Binding Free Energy Calculations
2.7. Physicochemical Evaluation of Nanobodies
3. Discussion
4. Materials and Methods
4.1. Antigen Structure Preparation
4.2. Nanobody Structure and Sequence Design and Optimization
4.3. Nanobody–Antigen Complex Virtual Screening via Deep Learning Approach
4.4. CDR-H Loop Design by RFantibody Pipeline
4.5. Molecular Docking and Structural Cross-Validation of Designed Nanobodies
4.6. Molecular Dynamics of Nanobody–Antigen Complexes
4.7. MM/GBSA and MM/PBSA Binding Energy Estimation
4.8. Nanobody Humanization
4.9. Physicochemical Properties Prediction
- Antibody/nanobody mode—yes;
- Alignment frequency strong filter—yes;
- Use frequency PSSM (PWM)—yes;
- Exclude these potential substitution target residues—M, C, N;
- Residues that cannot be changed—proprietary for each nanobody;
- Automated Chain Similarity Check—yes;
- Maximum Simultaneous Mutations in Combinations—8.
4.10. Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez Cavestany, R.; Eisenhawer, M.; Diop, O.M.; Verma, H.; Quddus, A.; Mach, O. The Last Mile in Polio Eradication: Program Challenges and Perseverance. Pathogens 2024, 13, 323. [Google Scholar] [CrossRef]
- Global Wild AFP Cases and Environmental Samples 2018–2025. Available online: https://polioeradication.org/wild-poliovirus-count/ (accessed on 1 September 2025).
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Bajyana Songa, E.; Bendahman, N.; Hammers, R. Naturally Occurring Antibodies Devoid of Light Chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Greenberg, A.S.; Avila, D.; Hughes, M.; Hughes, A.; McKinney, E.C.; Flajnik, M.F. A New Antigen Receptor Gene Family That Undergoes Rearrangement and Extensive Somatic Diversification in Sharks. Nature 1995, 374, 168–173. [Google Scholar] [CrossRef]
- Pillay, T.S.; Muyldermans, S. Application of Single-Domain Antibodies (“Nanobodies”) to Laboratory Diagnosis. Ann. Lab. Med. 2021, 41, 549–558. [Google Scholar] [CrossRef]
- Vincke, C.; Muyldermans, S. Introduction to Heavy Chain Antibodies and Derived Nanobodies. Methods Mol. Biol. 2012, 911, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Jovčevska, I.; Muyldermans, S. The Therapeutic Potential of Nanobodies. BioDrugs 2019, 34, 11–26. [Google Scholar] [CrossRef]
- De Vos, J.; Devoogdt, N.; Lahoutte, T.; Muyldermans, S. Camelid Single-Domain Antibody-Fragment Engineering for (Pre)Clinical In Vivo Molecular Imaging Applications: Adjusting the Bullet to Its Target. Expert Opin. Biol. Ther. 2013, 13, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Bannas, P.; Hambach, J.; Koch-Nolte, F. Nanobodies and Nanobody-Based Human Heavy Chain Antibodies as Antitumor Therapeutics. Front. Immunol. 2017, 8, 1603. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, L.; Voltà-Durán, E.; Parladé, E.; Mazzega, E.; Sánchez-Chardi, A.; Serna, N.; López-Laguna, H.; Mitstorfer, M.; Unzueta, U.; Vázquez, E.; et al. Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS Appl. Mater. Interfaces 2021, 13, 29406–29415. [Google Scholar] [CrossRef]
- Rizk, S.S.; Moustafa, D.M.; ElBanna, S.A.; Nour El-Din, H.T.; Attia, A.S. Nanobodies in the Fight against Infectious Diseases: Repurposing Nature’s Tiny Weapons. World J. Microbiol. Biotechnol. 2024, 40, 190. [Google Scholar] [CrossRef]
- Vanlandschoot, P.; Rout, M.P.; Ketaren, N.E. Nanobodies®: New Ammunition to Battle Viruses. Antivir. Res. 2011, 92, 389–407. [Google Scholar] [CrossRef]
- Thys, B.; Schotte, L.; Muyldermans, S.; Wernery, U.; Hassanzadeh-Ghassabeh, G.; Rombaut, B. In Vitro Antiviral Activity of Single Domain Antibody Fragments against Poliovirus. Antivir. Res. 2010, 87, 257–264. [Google Scholar] [CrossRef]
- Schotte, L.; Thys, B.; Strauss, M.; Filman, D.J.; Rombaut, B.; Hogle, J.M. Characterization of Poliovirus Neutralization Escape Mutants of Single-Domain Antibody Fragments (VHHS). Antimicrob. Agents Chemother. 2015, 59, 4695–4706. [Google Scholar] [CrossRef] [PubMed]
- Muyldermans, S. A Guide to: Generation and Design of Nanobodies. FEBS J. 2020, 288, 2084–2102. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, L.; Xie, A.; Liu, W.; He, Z.; Wan, Y.; Mao, W. Unveiling the New Chapter in Nanobody Engineering: Advances in Traditional Construction and AI-Driven Optimization. J. Nanobiotechnol. 2025, 23, 87. [Google Scholar] [CrossRef] [PubMed]
- El Salamouni, N.S.; Cater, J.H.; Spenkelink, L.M.; Yu, H. Nanobody Engineering: Computational Modelling and Design for Biomedical and Therapeutic Applications. FEBS Open Bio 2024, 15, 236–253. [Google Scholar] [CrossRef]
- Albanese, K.I.; Barbe, S.; Tagami, S.; Woolfson, D.N.; Schiex, T. Computational Protein Design. Nat. Rev. Methods Primers 2025, 5, 13. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, J.; Kang, G.; Hu, M.; Yuan, B.; Zhang, Y.; Huang, H. Homology Modeling-Based In Silico Affinity Maturation Improves the Affinity of a Nanobody. Int. J. Mol. Sci. 2019, 20, 4187. [Google Scholar] [CrossRef]
- Yu, H.; Mao, G.; Pei, Z.; Cen, J.; Meng, W.; Wang, Y.; Zhang, S.; Li, S.; Xu, Q.; Sun, M.; et al. In Vitro Affinity Maturation of Nanobodies against Mpox Virus A29 Protein Based on Computer-Aided Design. Molecules 2023, 28, 6838. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv 2022. [Google Scholar] [CrossRef]
- Düsterhöft, S.; Greve, J.N.; Garbers, C. Investigating Plasticity within the Interleukin-6 Family with AlphaFold-Multimer. Comput. Struct. Biotechnol. J. 2025, 27, 946–959. [Google Scholar] [CrossRef] [PubMed]
- Genz, L.R.; Nair, S.; Nagar, N.; Topf, M. Assessing Scoring Metrics for AlphaFold2 and AlphaFold3 Protein Complex Predictions. bioRxiv 2025. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Li, X.; Batingana, A.R.; Liu, C.; Jiang, H.; Shannon, K.; Huang, B.J.; Wu, K.; Baker, D. De Novo Design of Ras Isoform Selective Binders. bioRxiv 2024. [Google Scholar] [CrossRef]
- Mena-Ulecia, K.; Tiznado, W.; Caballero, J. Study of the Differential Activity of Thrombin Inhibitors Using Docking, QSAR, Molecular Dynamics, and MM-GBSA. PLoS ONE 2015, 10, e0142774. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Liang, Z.; Wu, Z.; Huang, F.; Wang, X.; Tan, Z.; He, R.; Lu, Z.; Cai, Y.; Huang, B.; et al. A Benchmark Study of Protein Folding Algorithms on Nanobodies. bioRxiv 2022. [Google Scholar] [CrossRef]
- Boitreaud, J.; Dent, J.; McPartlon, M.; Meier, J.; Reis, V.; Rogozhnikov, A.; Wu, K. Chai-1: Decoding the Molecular Interactions of Life. bioRxiv 2024, 2024.10.10.615955. [Google Scholar] [CrossRef]
- Wohlwend, J.; Corso, G.; Passaro, S.; Reveiz, M.; Leidal, K.; Swiderski, W.; Portnoi, T.; Chinn, I.; Silterra, J.; Jaakkola, T.; et al. Boltz-1 Democratizing Biomolecular Interaction Modeling. bioRxiv 2024, 2024.11.19.624167. [Google Scholar] [CrossRef]
- The ABCs of AlphaFold3, Boltz-1, and Chai-1. Available online: https://blog.booleanbiotech.com/alphafold3-boltz-chai1 (accessed on 7 September 2025).
- Introducing Boltz-1: Democratizing Biomolecular Interaction Modeling. Available online: https://jclinic.mit.edu/boltz-1/ (accessed on 7 September 2025).
- Frost, S.D.; Magalis, B.R.; Kosakovsky Pond, S.L. Neutral Theory and Rapidly Evolving Viral Pathogens. Mol. Biol. Evol. 2018, 35, 1348–1354. [Google Scholar] [CrossRef]
- Cobey, S. Vaccination against Rapidly Evolving Pathogens and the Entanglements of Memory. Nat. Immunol. 2024, 25, 2015–2023. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.R.; Watson, J.L.; Ragotte, R.J.; Borst, A.J.; See, D.L.; Weidle, C.; Biswas, R.; Yu, Y.; Shrock, E.L.; Ault, R.; et al. Atomically Accurate De Novo Design of Antibodies with RFdiffusion. bioRxiv 2024, 2024.03.14.585103. [Google Scholar] [CrossRef]
- Schneider, C.; Raybould, M.I.J.; Taddese, B.; West, A.P.; Dunbar, J.; Leem, J.; Georges, G.; Deane, C.M. DLAB: Deep Learning Methods for Structure-Based Virtual Screening of Antibodies. Bioinformatics 2021, 38, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Ruffolo, J.A.; Gray, J.J.; Sulam, J. Deciphering Antibody Affinity Maturation with Language Models and Weakly Supervised Learning. arXiv 2021, arXiv:2112.07782. [Google Scholar] [CrossRef]
- Hadsund, J.T.; Satława, T.; Janusz, B.; Shan, L.; Zhou, L.; Röttger, R.; Krawczyk, K. NanoBERT: A Deep Learning Model for Gene Agnostic Navigation of the Nanobody Mutational Space. Bioinform. Adv. 2024, 4, vbae033. [Google Scholar] [CrossRef]
- Shuai, R.W.; Ruffolo, J.A.; Gray, J.J. IgLM: Infilling Language Modeling for Antibody Sequence Design. Cell Syst. 2023, 14, 1095–1107. [Google Scholar] [CrossRef]
- Jin, W.; Wohlwend, J. Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-Design. arXiv 2021, arXiv:2110.04624. [Google Scholar]
- Poustforoosh, A.; Faramarz, S.; Negahdaripour, M.; Hashemipour, H. Modeling and Affinity Maturation of an Anti-CD20 Nanobody: A Comprehensive In-Silico Investigation. Sci. Rep. 2023, 13, 582. [Google Scholar] [CrossRef]
- Ferguson, M.; Wood, D.J.; Minor, P.D. Antigenic Structure of Poliovirus in Inactivated Vaccines. J. Gen. Virol. 1993, 74, 685–690. [Google Scholar] [CrossRef]
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.-P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; et al. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol. 2017, 13, e1005659. [Google Scholar] [CrossRef]
- Eguchi, R.R.; Choe, C.A.; Huang, P.-S. Ig-VAE: Generative Modeling of Protein Structure by Direct 3D Coordinate Generation. PLoS Comput. Biol. 2022, 18, e1010271. [Google Scholar] [CrossRef]
- Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R.J.; Milles, L.F.; Wicky, B.I.M.; Courbet, A.; de Haas, R.J.; Bethel, N.; et al. Robust Deep Learning-Based Protein Sequence Design Using ProteinMPNN. Science 2022, 378, 49–56. [Google Scholar] [CrossRef]
- Wu, J.; Wu, F.; Jiang, B.; Liu, W.; Zhao, P. TFold-AB: Fast and Accurate Antibody Structure Prediction without Sequence Homologs. bioRxiv 2022, 2022.11.10.515918. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shine, M.; Pyle, A.M.; Zhang, Y. US-align: Universal Structure Alignments of Proteins, Nucleic Acids, and Macromolecular Complexes. Nat. Methods 2022, 19, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Zhao, Y.; Wu, J.; Jiang, B.; He, B.; Huang, L.; Qin, C.; Yang, F.; Huang, N.; Xiao, Y.; et al. Fast and Accurate Modeling and Design of Antibody-Antigen Complex Using TFold. bioRxiv 2024, 2024.02.05.578892. [Google Scholar] [CrossRef]
- Strauss, M.; Schotte, L.; Thys, B.; Filman, D.J.; Hogle, J.M. Five of Five VHHS Neutralizing Poliovirus Bind the Receptor-Binding Site. J. Virol. 2016, 90, 3496–3505. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMSEQS2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef]
- Eastman, P.; Galvelis, R.; Peláez, R.P.; Abreu, C.R.A.; Farr, S.E.; Gallicchio, E.; Gorenko, A.; Henry, M.M.; Hu, F.; Huang, J.; et al. OpenMM 8: Molecular Dynamics Simulation with Machine Learning Potentials. J. Phys. Chem. B 2023, 128, 109–116. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. FF14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99sb. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
- Dunbar, J.; Deane, C.M. ANARCI: Antigen Receptor Numbering and Receptor Classification. Bioinformatics 2015, 32, 298–300. [Google Scholar] [CrossRef]
- Greenshields-Watson, A.; Agarwal, P.; Robinson, S.A.; Williams, B.H.; Gordon, G.L.; Capel, H.L.; Li, Y.; Spoendlin, F.C.; Aguilar-Sanjuan, B.; Boyles, F.; et al. ANARCII: A Generalised Language Model for Antigen Receptor Numbering. bioRxiv 2025, 2025.04.16.648720. [Google Scholar] [CrossRef]
- Abanades, B.; Wong, W.K.; Boyles, F.; Georges, G.; Bujotzek, A.; Deane, C.M. ImmuneBuilder: Deep-Learning Models for Predicting the Structures of Immune Proteins. Commun. Biol. 2023, 6, 575. [Google Scholar] [CrossRef]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein-Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W434–W439. [Google Scholar] [CrossRef]
- Rohl, C.A.; Strauss, C.E.M.; Misura, K.M.S.; Baker, D. Protein Structure Prediction Using Rosetta. Methods Enzymol. 2004, 383, 66–93. [Google Scholar] [CrossRef] [PubMed]
- Lyskov, S.; Gray, J.J. The Rosettadock Server for Local Protein-Protein Docking. Nucleic Acids Res. 2008, 36, W233–W238. [Google Scholar] [CrossRef]
- Harmalkar, A.; Lyskov, S.; Gray, J.J. Reliable Protein-Protein Docking with AlphaFold, Rosetta, and Replica Exchange. eLife 2025, 13, e94029. [Google Scholar] [CrossRef]
- Collins, K.W.; Copeland, M.M.; Brysbaert, G.; Wodak, S.J.; Bonvin, A.M.J.J.; Kundrotas, P.J.; Vakser, I.A.; Lensink, M.F. Capri-Q: The Capri Resource Evaluating the Quality of Predicted Structures of Protein Complexes. J. Mol. Biol. 2024, 436, 168540. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Giese, T.J.; Shirts, M.R.; Simmerling, C. FF19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Bo, Z.; Xu, T.; Xu, B.; Wang, D.; Zheng, H. Uni-GBSA: An Open-Source and Web-Based Automatic Workflow to Perform MM/GB(PB)SA Calculations for Virtual Screening. Brief. Bioinform. 2023, 24, bbad218. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. GMX_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Xiang, Y.; Bahar, I.; Shi, Y. Llamanade: An Open-Source Computational Pipeline for Robust Nanobody Humanization. Structure 2022, 30, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Ramon, A.; Ali, M.; Atkinson, M.; Saturnino, A.; Didi, K.; Visentin, C.; Ricagno, S.; Xu, X.; Greenig, M.; Sormanni, P. Assessing Antibody and Nanobody Nativeness for Hit Selection and Humanization with Abnativ. Nat. Mach. Intell. 2024, 6, 74–91. [Google Scholar] [CrossRef]
- Ramon, A.; Didi, K.; Saturnino, A.; Ali, M.; Sormanni, P. Prediction of Protein Biophysical Traits from Limited Data: A Case Study on Nanobody Thermostability through NanoMelt. mAbs 2025, 17, 2442750. [Google Scholar] [CrossRef]
- Walker, J.M. The Proteomics Protocols Handbook; Humana Press: Totowa, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Sormanni, P.; Aprile, F.A.; Vendruscolo, M. The CAMSOL Method of Rational Design of Protein Mutants with Enhanced Solubility. J. Mol. Biol. 2015, 427, 478–490. [Google Scholar] [CrossRef]
- Sormanni, P.; Amery, L.; Ekizoglou, S.; Vendruscolo, M.; Popovic, B. Rapid and Accurate In Silico Solubility Screening of a Monoclonal Antibody Library. Sci. Rep. 2017, 7, 8200. [Google Scholar] [CrossRef]
- Sharma, N.; Patiyal, S.; Dhall, A.; Pande, A.; Arora, C.; Raghava, G.P.S. AlgPred 2.0: An Improved Method for Predicting Allergenic Proteins and Mapping of IgE Epitopes. Brief. Bioinform. 2020, 22, bbaa294. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2020, 30, 70–82. [Google Scholar] [CrossRef]
Scaffold | Design IDs | ipAE | pAE | Framework-Aligned RMSD of, Å | Mean dG_cross 1 | ANARCII Score | ||||
---|---|---|---|---|---|---|---|---|---|---|
Nanobody | CDRs | H1 | H2 | H3 | ||||||
ScFv-0389 | 304-6 | 2.29 | 3.12 | 0.9 | 1.29 | 1.08 | 0.61 | 1.76 | −57.93 | 29.19 |
459-5 | 2.44 | 3.13 | 1.03 | 1.4 | 1.35 | 1.15 | 1.6 | −48.68 | 29.42 | |
ScFv-0743 | 52-4 | 1.84 | 2.95 | 1.04 | 1.67 | 1.55 | 1.61 | 1.82 | −41.86 | 27.20 |
183-2 | 2.12 | 3.31 | 1.04 | 1.68 | 1.14 | 1.84 | 1.98 | −33.07 | 27.11 | |
332-0 | 2.07 | 3.47 | 1.03 | 1.61 | 1.83 | 1.33 | 1.54 | −51.75 | 28.11 2 | |
479-7 | 2.33 | 3.91 | 0.8 | 1.03 | 0.7 | 1.24 | 1.13 | −46.35 | 27.21 |
Nanobody/ Scaffold | Number of Total Complexes/Clusters | Mean Interface Score for Rosetta3 1 | Rosetta3 CAPRI Rank Mode 1 | Mean Interface Score for RD2 | RD2 CAPRI Rank Mode 1 | Lowest CP2 score 2/ Cluster Rank | Highest CP2 DockQ Score 2 (Classification) | |
---|---|---|---|---|---|---|---|---|
Rosetta3 | CP2 | |||||||
ScFv-0389-304-6 | 8079 (80.79%) | 30 | −56.02 | 2 | −47.03 | 3 | −227.0/13 | 0.6406 (medium) |
ScFv-0389-459-5 | 7351 (73.51%) | 30 | −20.43 | 2 | −29.66 | 3 | −283.2/1 | 0.6792 (medium) |
ScFv-0743-52-4 | 6915 (69.15%) | 30 | −17.53 | 2 | −21.37 | 2 | −256.0/5 | 0.3894 (acceptable) |
ScFv-0743-183-2 | 7312 (73.12%) | 30 | −15.85 | 1 | −17.71 | 0 | No match | N/A |
ScFv-0743-332-0 | 7737 (77.37%) | 24 | −31.93 | 3 | −27.07 | 2 | −237.1/9 | 0.3438 (acceptable) |
ScFv-0743-479-7 | 7659 (76.59%) | 30 | −20.73 | 2 | −17.84 | 0 | −203.5/18 | 0.2607 (acceptable) |
Nanobody/ Scaffold | Number of Total Complexes/Clusters | Mean Interface Score for Rosetta3 1 | Rosetta3 CAPRI Rank Mode 1 | Mean dG Cross 3 | Lowest CP2 Score 2/ Cluster Rank | Highest CP2 DockQ Score/Folder 2 (Classification) | |
---|---|---|---|---|---|---|---|
Rosetta3 | CP2 | ||||||
ScFv-0389-304-6H | 7396 | 30 | −25.50 | 3 | −55.18 | −239.6/0 | 0.3789/Chai-1 (acceptable) |
ScFv-0389-459-5H | 7606 | 26 | −21.6 | 2 | −52.82 | −184.1/28 | 0.2895/NB2 (acceptable) |
Nanobody | Sequence 1 | Solubility Estimation | Allergenicity Estimation | Nativeness | Tm, °C | ||||
---|---|---|---|---|---|---|---|---|---|
CamSol Struct. Score 2 | CamSol Comb. Mutations (Single Letter) 3 | AlgPred2 Score 4 | AlgPred2 Mutations (Single Letter) 5 | VH-ness | VHH-ness | Llamanade | NanoMelt | ||
VH-0389-304-6 | SVTLTQSSSGTVRPGGSFTLSCKVSGLPEKAKENGTVRWVKQPPGGGPVWVASNDFAHPSGTTVHPEFAGRVTVSTDPAKSTSFLHISSLTPEDTATYYCVYNDLAGKNKPGWGQGALVTVTS (Serine (S) was appended as a terminal residue to prevent side-chain packing error on the NB2 webserver. Originally, proline (P) persisted in the scFv-0389 framework, but was trimmed by RFantibody. During MSA comparison, we manually substituted proline on serine, as it appears in almost all nanobodies (also see Figure 3F).) | 0.29/1.85 | N/A | 0.431 | N/A | 0.435 | 0.27 | 56.8 | 63.44 |
VH-0389-304-6H | HVHLVESGSGLVRPGGSLTLSCTVSGLPEKAKENGTVRWVRQAPGKGPEWVASNDFAHPSGTTYAPSFKGRFTVSRDTAKDTVYLHLNSLTPEDTATYYCVYNDLAGKNKPGWGQGALVTVSS | 0.66/1.91 | H1E, H3Q, T23K, T63R, A79S | 0.464/0.367 | N34R, N54R, D55, D77R, D81R, N88R, D94R, N103R, D104R, N109R | 0.725 | 0.531 | 74.29 | 63.23 |
VH-0389-459-5 | SVTLTQSSSGTVRPGGSFTLSCKVSGLSESDKKHGTVRWVKQPPGGGPVWVASTNLSNNSGTTVHPEFAGRVTVSTDPAKSTSFLHISSLTPEDTATYYCVLVNNPGADGVGWGQGALVTVTS | −0.02/1.74 | N/A | 0.382 | N/A | 0.412 | 0.281 | 56.6 | 63.69 |
VH-0389-459-5H | EVQLLQSGGGTVRPGGSLTLSCAVSGLSESDKKHGTVRWVRQPPGKGPEWVASTNLSNNSGTTYAPSFEGRVTISRDKSKNTLFLHLSSLRPEDTALYYCVLVNNPGADGVGWGQGALVTVSS | 0.67/2.01 | P48R, H86R | 0.278/0.171 | T11M, T19M, T36, T54M, T62M, T63M, T73M, T82M, T95M, T120M | 0.683 | 0.548 | 76.36 | 62.64 |
VH-0743-166-7 | SVQLVESGGGLVQPGGSLRLSCAASGVNINSNGGRVAWVRQAPGKGLEWVSSISHDGGETTIADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVDNSGKPYHGGQGTTVTVSS | 0.96/1.89 | L47R, I62Y, A90P, V101R, T115P | 0.377/0.304 | C22E/K, C98E/K, N28M, N30M, N32M, N76M, N79M, N86M | 0.783 | 0.708 | 96.03 | 62.34 |
VH-0743-166-7H | EVQLVESGGGLVQPGGSLRLSCAASGVNINSNGGRVAWVRQAPGKGLEWVSSISHDGGETTYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARVDNSGKPYHWGQGTLVTVSS | 1.09/1.94 | No mutations proposed | 0.376/0.27 | C22L, C98L, N28L, N30L, N32L, N76L, N79L, N86L, N103L, Y62L | 0.831 | 0.754 | 98.47 | 62.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotelnikov, D.D.; Tatarinova, K.S.; Zhdanov, D.D. NanoDeNovo: De Novo Design of Anti-Poliovirus I Sabin Strain Nanobodies by Semi-Automated Computational Pipeline. Int. J. Mol. Sci. 2025, 26, 9262. https://doi.org/10.3390/ijms26199262
Kotelnikov DD, Tatarinova KS, Zhdanov DD. NanoDeNovo: De Novo Design of Anti-Poliovirus I Sabin Strain Nanobodies by Semi-Automated Computational Pipeline. International Journal of Molecular Sciences. 2025; 26(19):9262. https://doi.org/10.3390/ijms26199262
Chicago/Turabian StyleKotelnikov, Danil D., Katerina S. Tatarinova, and Dmitry D. Zhdanov. 2025. "NanoDeNovo: De Novo Design of Anti-Poliovirus I Sabin Strain Nanobodies by Semi-Automated Computational Pipeline" International Journal of Molecular Sciences 26, no. 19: 9262. https://doi.org/10.3390/ijms26199262
APA StyleKotelnikov, D. D., Tatarinova, K. S., & Zhdanov, D. D. (2025). NanoDeNovo: De Novo Design of Anti-Poliovirus I Sabin Strain Nanobodies by Semi-Automated Computational Pipeline. International Journal of Molecular Sciences, 26(19), 9262. https://doi.org/10.3390/ijms26199262