Mechanistic Insights into SAM-Dependent Methyltransferases: A Review of Computational Approaches
Abstract
1. Introduction
1.1. Catalytic Mechanisms of SAM-Dependent Methyltransferases
1.2. Why Use Computational Approaches?
1.3. Computational Approaches for Enzyme Mechanism Modeling
1.3.1. QM-Cluster and QM/MM Approaches
1.3.2. What About Protein Dynamics? MD Simulations and QM/MM MD
1.3.3. Common Pitfalls and Limitations of QM/MM Approaches
1.3.4. Mechanism-Guided Inhibitor Design in SAM-Dependent Methyltransferases
2. Computational Strategies in Methyltransferase Mechanism Studies
2.1. Investigating Catalytic Mechanisms Using Computational Models
2.2. Water Molecules as Catalytic and Structural Components
2.3. Functional Role of Metal Ions in Methylation Reactions
2.4. Computational Insights into Substrate Specificity
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richter, M. Functional diversity of organic molecule enzyme cofactors. Nat. Prod. Rep. 2013, 30, 1324–1345. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.C.; Ibrahim, R.K.; Behdad, B.; Dayanandan, S. Structure, function, and evolution of plant O-methyltransferases. Genome 2007, 50, 1001–1013. [Google Scholar] [CrossRef]
- Turek-Plewa, J.; Jagodzinski, P.P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell. Mol. Biol. Lett. 2005, 10, 631. [Google Scholar]
- Zubieta, C.; Ross, J.R.; Koscheski, P.; Yang, Y.; Pichersky, E.; Noel, J.P. Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 2003, 15, 1704–1716. [Google Scholar] [CrossRef]
- Tominaga, Y.; Tsuzuki, T.; Shiraishi, A.; Kawate, H.; Sekiguchi, M. Alkylation-induced apoptosis of embryonic stem cells in which the gene for DNA-repair, methyltransferase, had been disrupted by gene targeting. Carcinogenesis 1997, 18, 889–896. [Google Scholar] [CrossRef]
- Shichi, H. Biotransformation and drug metabolism. In Pharmacology of the Eye; Springer: Berlin/Heidelberg, Germany, 1984; pp. 117–148. [Google Scholar]
- Cantoni, G. Methylation of nicotinamide with a soluble enzyme system from rat liver. J. Biol. Chem. 1951, 189, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Cantoni, G. The nature of the active methyl donor formed enzymatically from l-methionine and adenosinetriphosphate. J. Am. Chem. Soc. 1952, 74, 2942–2943. [Google Scholar] [CrossRef]
- Schubert, H.L.; Blumenthal, R.M.; Cheng, X. Many paths to methyltransfer: A chronicle of convergence. Trends Biochem. Sci. 2003, 28, 329–335. [Google Scholar] [CrossRef]
- Chen, D.; Dong, C.; Dong, G.; Srinivasan, K.; Min, J.; Noinaj, N.; Huang, R. Probing the Plasticity in the Active Site of Protein N-terminal Methyltransferase 1 Using Bisubstrate Analogues. J. Med. Chem. 2020, 63, 8419–8431. [Google Scholar] [CrossRef]
- O’Hagan, D.; Schmidberger, J.W. Enzymes that catalyse SN 2 reaction mechanisms. Nat. Prod. Rep. 2010, 27, 900–918. [Google Scholar] [CrossRef]
- Liscombe, D.K.; Louie, G.V.; Noel, J.P. Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat. Prod. Rep. 2012, 29, 1238–1250. [Google Scholar] [CrossRef]
- Couture, J.-F.; Hauk, G.; Thompson, M.J.; Blackburn, G.M.; Trievel, R.C. Catalytic Roles for Carbon-Oxygen Hydrogen Bonding in SET Domain Lysine Methyltransferases. J. Biol. Chem. 2006, 281, 19280–19287. [Google Scholar] [CrossRef]
- Horowitz, S.; Yesselman, J.D.; Al-Hashimi, H.M.; Trievel, R.C. Direct Evidence for Methyl Group Coordination by Carbon-Oxygen Hydrogen Bonds in the Lysine Methyltransferase SET7/9. J. Biol. Chem. 2011, 286, 18658–18663. [Google Scholar] [CrossRef]
- Schapira, M. Structural Chemistry of Human SET Domain Protein Methyltransferases. Curr. Chem. Genom. 2011, 5, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Abdelraheem, E.; Thair, B.; Varela, R.F.; Jockmann, E.; Popadić, D.; Hailes, H.C.; Ward, J.M.; Iribarren, A.M.; Lewkowicz, E.S.; Andexer, J.N.; et al. Methyltransferases: Functions and Applications. ChemBioChem 2022, 23, e202200212. [Google Scholar] [CrossRef]
- Jedrzejewski, M.; Belza, B.; Lewandowska, I.; Sadlej, M.; Perlinska, A.P.; Augustyniak, R.; Christian, T.; Hou, Y.-M.; Kalek, M.; Sulkowska, J.I. Nucleolar Essential Protein 1 (Nep1): Elucidation of enzymatic catalysis mechanism by molecular dynamics simulation and quantum mechanics study. Comput. Struct. Biotechnol. J. 2023, 21, 3999–4008. [Google Scholar] [CrossRef]
- Taylor, A.B.; Meyer, B.; Leal, B.Z.; Kötter, P.; Schirf, V.; Demeler, B.; Hart, P.J.; Entian, K.-D.; Wöhnert, J. The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site. Nucleic Acids Res. 2008, 36, 1542–1554. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.-L.; Zubieta, C.; Dixon, R.A.; Noel, J.P. Crystal structures of alfalfa caffeoyl coenzyme A 3-O-methyltransferase. Plant Physiol. 2005, 137, 1009–1017. [Google Scholar] [CrossRef]
- Ibrahim, R.K.; Bruneau, A.; Bantignies, B. Plant O-methyltransferases: Molecular analysis, common signature and classification. Plant Mol. Biol. 1998, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kopycki, J.G.; Rauh, D.; Chumanevich, A.A.; Neumann, P.; Vogt, T.; Stubbs, M.T. Biochemical and structural analysis of substrate promiscuity in plant Mg2+-dependent O-methyltransferases. J. Mol. Biol. 2008, 378, 154–164. [Google Scholar] [CrossRef]
- Wagner, C.; Benkovic, S. Site directed mutagenesis: A tool for enzyme mechanism dissection. Trends Biotechnol. 1990, 8, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Cleland, W. The use of isotope effects to determine enzyme mechanisms. Arch. Biochem. Biophys. 2005, 433, 2–12. [Google Scholar] [CrossRef]
- Islamoğlu, F. Molecular docking, bioactivity, adme, toxicity risks, and quantum mechanical parameters of some 1,2-dihydroquinoline derivatives were calculated theoretically for investigation of its use as a pharmaceutical active ingredient in the treatment of multiple sclerosis (MS). Prospect. Pharm. Sci. 2024, 22, 168–187. [Google Scholar] [CrossRef]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J. Chem. Theory Comput. 2019, 16, 528–552. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003, 24, 1999–2012. [Google Scholar] [CrossRef]
- Lee, M.C.; Duan, Y. Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins Struct. Funct. Bioinform. 2004, 55, 620–634. [Google Scholar] [CrossRef]
- Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 2006, 65, 712–725. [Google Scholar] [CrossRef]
- MacKerell, A.D., Jr.; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr.; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 1998, 102, 3586–3616. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; De Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; MacKerell, A.D., Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef]
- Mackerell, A.D., Jr.; Feig, M.; Brooks, C.L., III. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef]
- Hart, K.; Foloppe, N.; Baker, C.M.; Denning, E.J.; Nilsson, L.; MacKerell, A.D., Jr. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2012, 8, 348–362. [Google Scholar] [CrossRef] [PubMed]
- Denning, E.J.; Priyakumar, U.D.; Nilsson, L.; Mackerell, A.D., Jr. Impact of 2′-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA. J. Comput. Chem. 2011, 32, 1929–1943. [Google Scholar] [CrossRef]
- Foloppe, N.; MacKerell, J.; Alexander, D. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 2000, 21, 86–104. [Google Scholar] [CrossRef]
- MacKerell, A.D., Jr.; Banavali, N.K. All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J. Comput. Chem. 2000, 21, 105–120. [Google Scholar] [CrossRef]
- Klauda, J.B.; Venable, R.M.; Freites, J.A.; O’Connor, J.W.; Tobias, D.J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A.D., Jr.; Pastor, R.W. Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. J. Phys. Chem. B 2010, 114, 7830–7843. [Google Scholar] [CrossRef] [PubMed]
- Schlenkrich, M.; Brickmann, J.; MacKerell, A.D., Jr.; Karplus, M. An empirical potential energy function for phospholipids: Criteria for parameter optimization and applications. In Biological Membranes: A Molecular Perspective from Computation and Experiment; Springer: Berlin/Heidelberg, Germany, 1996; pp. 31–81. [Google Scholar]
- Feller, S.E.; Yin, D.; Pastor, R.W.; MacKerell, A. Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: Parameterization and comparison with diffraction studies. Biophys. J. 1997, 73, 2269–2279. [Google Scholar] [CrossRef]
- Guvench, O.; Mallajosyula, S.S.; Raman, E.P.; Hatcher, E.; Vanommeslaeghe, K.; Foster, T.J.; Jamison, F.W., II; MacKerell, A.D., Jr. CHARMM Additive All-Atom Force Field for Carbohydrate Derivatives and Its Utility in Polysaccharide and Carbohydrate–Protein Modeling. J. Chem. Theory Comput. 2011, 7, 3162–3180. [Google Scholar] [CrossRef]
- Mallajosyula, S.S.; Guvench, O.; Hatcher, E.; MacKerell, A.D., Jr. CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. J. Chem. Theory Comput. 2012, 8, 759–776. [Google Scholar] [CrossRef]
- Raman, E.P.; Guvench, O.; MacKerell, A.D., Jr. CHARMM Additive All-Atom Force Field for Glycosidic Linkages in Carbohydrates Involving Furanoses. J. Phys. Chem. B 2010, 114, 12981–12994. [Google Scholar] [CrossRef]
- Guvench, O.; Hatcher, E.; Venable, R.M.; Pastor, R.W.; MacKerell, A.D., Jr. CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. J. Chem. Theory Comput. 2009, 5, 2353–2370. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing. J. Chem. Inf. Model. 2012, 52, 3144–3154. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Raman, E.P.; MacKerell, A.D., Jr. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012, 52, 3155–3168. [Google Scholar] [CrossRef]
- Yu, W.; He, X.; Vanommeslaeghe, K.; MacKerell, A.D., Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 2012, 33, 2451–2468. [Google Scholar] [CrossRef]
- Gutiérrez, I.S.; Lin, F.-Y.; Vanommeslaeghe, K.; Lemkul, J.A.; Armacost, K.A.; Brooks, C.L., III; MacKerell, A.D., Jr. Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand–protein interactions. Bioorg. Med. Chem. 2016, 24, 4812–4825. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988, 110, 1657–1666. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Berendsen, H.J.; Postma, J.P.; van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces, Proceedings of the Fourteenth Jerusalem Symposia on Quantum Chemistry and Biochemistry, Jerusalem, Israel, 13–16 April 1981; Springer: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Unke, O.T.; Chmiela, S.; Sauceda, H.E.; Gastegger, M.; Poltavsky, I.; Schütt, K.T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186. [Google Scholar] [CrossRef]
- Galvelis, R.; Varela-Rial, A.; Doerr, S.; Fino, R.; Eastman, P.; Markland, T.E.; Chodera, J.D.; De Fabritiis, G. NNP/MM: Accelerating molecular dynamics simulations with machine learning potentials and molecular mechanics. J. Chem. Inf. Model. 2023, 63, 5701–5708. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J. Chem. Phys. 1992, 97, 9173–9177. [Google Scholar] [CrossRef]
- Raghavachari, K. Perspective on “Density functional thermochemistry. III. The role of exact exchange” Becke AD (1993) J Chem Phys 98: 5648–52. Theor. Chem. Acc. 2000, 103, 361–363. [Google Scholar] [CrossRef]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, H.; York, D.; Cui, Q.; Elstner, M. Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method: Third-Order Expansion of the Density Functional Theory Total Energy and Introduction of a Modified Effective Coulomb Interaction. J. Phys. Chem. A 2007, 111, 10861–10873. [Google Scholar] [CrossRef]
- Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268. [Google Scholar] [CrossRef]
- Jedrzejewski, M.; Szeleszczuk, L.; Pisklak, D.M. The Reaction Mechanism of Loganic Acid Methyltransferase: A Molecular Dynamics Simulation and Quantum Mechanics Study. Molecules 2023, 28, 5767. [Google Scholar] [CrossRef]
- Perlinska, A.P.; Kalek, M.; Christian, T.; Hou, Y.-M.; Sulkowska, J.I. Mg2+-dependent methyl transfer by a knotted protein: A molecular dynamics simulation and quantum mechanics study. ACS Catal. 2020, 10, 8058–8068. [Google Scholar] [CrossRef]
- Wirstam, M.; Blomberg, M.R.; Siegbahn, P.E. Reaction mechanism of compound I formation in heme peroxidases: A density functional theory study. J. Am. Chem. Soc. 1999, 121, 10178–10185. [Google Scholar] [CrossRef]
- Filatov, M.; Harris, N.; Shaik, S. On the “rebound” mechanism of alkane hydroxylation by cytochrome P450: Electronic structure of the intermediate and the electron transfer character in the rebound step. Angew. Chem. Int. Ed. 1999, 38, 3510–3512. [Google Scholar] [CrossRef]
- Sheng, X.; Kazemi, M.; Żądło-Dobrowolska, A.; Kroutil, W.; Himo, F. Mechanism of biocatalytic Friedel–Crafts acylation by acyltransferase from Pseudomonas protegens. ACS Catal. 2019, 10, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; DeYonker, N.J. The glycine N-methyltransferase case study: Another challenge for QM-cluster models? J. Phys. Chem. B 2023, 127, 9282–9294. [Google Scholar] [CrossRef] [PubMed]
- Prejanò, M.; Škerlová, J.; Stenmark, P.; Himo, F. Reaction Mechanism of Human PAICS Elucidated by Quantum Chemical Calculations. J. Am. Chem. Soc. 2022, 144, 14258–14268. [Google Scholar] [CrossRef] [PubMed]
- Summers, T.J.; Cheng, Q.; Palma, M.A.; Pham, D.-T.; Kelso, D.K.; Webster, C.E.; DeYonker, N.J. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study. Biophys. J. 2021, 120, 3577–3587. [Google Scholar] [CrossRef]
- DeYonker, N.J. Rigorous and reproducible computational enzymology: The RINRUS software toolkit. Biophys. J. 2024, 123, 548a–549a. [Google Scholar] [CrossRef]
- Pascual-ahuir, J.L.; Silla, E.; Tuñon, I. GEPOL: An improved description of molecular surfaces. III. A new algorithm for the computation of a solvent-excluding surface. J. Comput. Chem. 1994, 15, 1127–1138. [Google Scholar] [CrossRef]
- Miertuš, S.; Tomasi, J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Klamt, A.; Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 1993, 799–805. [Google Scholar] [CrossRef]
- Siegbahn, P.E.; Himo, F. The quantum chemical cluster approach for modeling enzyme reactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 323–336. [Google Scholar] [CrossRef]
- Siegbahn, P.E.; Himo, F. Recent developments of the quantum chemical cluster approach for modeling enzyme reactions. JBIC J. Biol. Inorg. Chem. 2009, 14, 643–651. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernandes, P.A. Computational enzymatic catalysis. Acc. Chem. Res. 2008, 41, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Warshel, A.; Levitt, M. Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J. Mol. Biol. 1976, 103, 227–249. [Google Scholar] [CrossRef]
- Ehlert, S.; Grimme, S.; Hansen, A. Conformational Energy Benchmark for Longer n-Alkane Chains. J. Phys. Chem. A 2022, 126, 3521–3535. [Google Scholar] [CrossRef]
- Plett, C.; Grimme, S.; Hansen, A. Toward Reliable Conformational Energies of Amino Acids and Dipeptides—The DipCONFS Benchmark and DipCONL Datasets. J. Chem. Theory Comput. 2024, 20, 8329–8339. [Google Scholar] [CrossRef]
- Plett, C.; Grimme, S.; Hansen, A. Conformational energies of biomolecules in solution: Extending the MPCONF196 benchmark with explicit water molecules. J. Comput. Chem. 2024, 45, 419–429. [Google Scholar] [CrossRef]
- Jindal, G.; Warshel, A. Exploring the Dependence of QM/MM Calculations of Enzyme Catalysis on the Size of the QM Region. J. Phys. Chem. B 2016, 120, 9913–9921. [Google Scholar] [CrossRef]
- Kulik, H.J.; Zhang, J.; Klinman, J.P.; Martinez, T.J. How large should the QM region be in QM/MM calculations? The case of catechol O-methyltransferase. J. Phys. Chem. B 2016, 120, 11381–11394. [Google Scholar] [CrossRef]
- Mehmood, R.; Kulik, H.J. Both configuration and QM region size matter: Zinc stability in QM/MM models of DNA methyltransferase. J. Chem. Theory Comput. 2020, 16, 3121–3134. [Google Scholar] [CrossRef]
- Paz, H.; Beck, S.; Lee, R.; Ho, J.; Yu, H. The Effects of Conformational Sampling and QM Region Size in QM/MM Simulations: An Adaptive QM/MM Study With Model Systems. J. Comput. Chem. 2025, 46, e70109. [Google Scholar] [CrossRef] [PubMed]
- Wasif Baig, M.; Pederzoli, M.; Jurkiewicz, P.; Cwiklik, L.; Pittner, J. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study. Molecules 2018, 23, 1707. [Google Scholar] [CrossRef] [PubMed]
- Avagliano, D.; Lorini, E.; González, L. Sampling effects in quantum mechanical/molecular mechanics trajectory surface hopping non-adiabatic dynamics. Philos. Trans. R. Soc. A 2022, 380, 20200381. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Cuervo, J.; Salahub, D.; Lev, B.; Noskov, S. A guide to QM/MM methodology and applications. Adv. Quantum Chem. 2010, 59, 353–400. [Google Scholar]
- Cerqueira, N.; Moorthy, H.; Fernandes, P.; Ramos, M. The mechanism of the Ser-(cis) Ser-Lys catalytic triad of peptide amidases. Phys. Chem. Chem. Phys. 2017, 19, 12343–12354. [Google Scholar] [CrossRef] [PubMed]
- DiLabio, G.A.; Hurley, M.M.; Christiansen, P.A. Simple one-electron quantum capping potentials for use in hybrid QM/MM studies of biological molecules. J. Chem. Phys. 2002, 116, 9578–9584. [Google Scholar] [CrossRef]
- Antes, I.; Thiel, W. Adjusted connection atoms for combined quantum mechanical and molecular mechanical methods. J. Phys. Chem. A 1999, 103, 9290–9295. [Google Scholar] [CrossRef]
- Dapprich, S.; Kom Aromi, I.; Byun, K.S.; Morokuma, K.; Frisch, M.J. A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. J. Mol. Struct. THEOCHEM 1999, 461–462, 1–21. [Google Scholar] [CrossRef]
- Maseras, F.; Morokuma, K. IMOMM: A new integrated ab initio+ molecular mechanics geometry optimization scheme of equilibrium structures and transition states. J. Comput. Chem. 1995, 16, 1170–1179. [Google Scholar] [CrossRef]
- Vreven, T.; Byun, K.S.; Komáromi, I.; Dapprich, S.; Montgomery, J.A., Jr.; Morokuma, K.; Frisch, M.J. Combining quantum mechanics methods with molecular mechanics methods in ONIOM. J. Chem. Theory Comput. 2006, 2, 815–826. [Google Scholar] [CrossRef]
- Sumowski, C.V.; Ochsenfeld, C. A convergence study of QM/MM isomerization energies with the selected size of the QM region for peptidic systems. J. Phys. Chem. A 2009, 113, 11734–11741. [Google Scholar] [CrossRef]
- Sumowski, C.V.; Schmitt, B.B.; Schweizer, S.; Ochsenfeld, C. Quantum-chemical and combined quantum-chemical/molecular-mechanical studies on the stabilization of a twin arginine pair in adenovirus Ad11. Angew. Chem. Int. Ed. 2010, 49, 9951–9955. [Google Scholar] [CrossRef]
- Hu, L.; Eliasson, J.; Heimdal, J.; Ryde, U. Do quantum mechanical energies calculated for small models of protein-active sites converge? J. Phys. Chem. A 2009, 113, 11793–11800. [Google Scholar] [CrossRef]
- Hu, L.; Söderhjelm, P.; Ryde, U. On the convergence of QM/MM energies. J. Chem. Theory Comput. 2011, 7, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Barrios Herrera, L.; Chehelamirani, M.; Hostaš, J.; Jalife, S.; Salahub, D.R. Multiscale modeling of enzymes: QM-cluster, QM/MM, and QM/MM/MD: A tutorial review. Int. J. Quantum Chem. 2018, 118, e25558. [Google Scholar] [CrossRef]
- de Visser, S.P.; Wong, H.P.; Zhang, Y.; Yadav, R.; Sastri, C.V. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chem. Eur. J. 2024, 30, e202402468. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Himo, F. The quantum chemical cluster approach in biocatalysis. Acc. Chem. Res. 2023, 56, 938–947. [Google Scholar] [CrossRef]
- Tzeliou, C.E.; Mermigki, M.A.; Tzeli, D. Review on the QM/MM methodologies and their application to metalloproteins. Molecules 2022, 27, 2660. [Google Scholar] [CrossRef]
- Clemente, C.M.; Capece, L.; Martí, M.A. Best practices on QM/MM simulations of biological systems. J. Chem. Inf. Model. 2023, 63, 2609–2627. [Google Scholar] [CrossRef]
- Alder, B.J.; Wainwright, T.E. Phase transition for a hard sphere system. J. Chem. Phys. 1957, 27, 1208. [Google Scholar] [CrossRef]
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585–590. [Google Scholar] [CrossRef]
- Levitt, M.; Lifson, S. Refinement of protein conformations using a macromolecular energy minimization procedure. J. Mol. Biol. 1969, 46, 269–279. [Google Scholar] [CrossRef]
- Lifson, S.; Warshel, A. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 1968, 49, 5116–5129. [Google Scholar] [CrossRef]
- Swope, W.C.; Andersen, H.C.; Berens, P.H.; Wilson, K.R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 1982, 76, 637–649. [Google Scholar] [CrossRef]
- Hockney, R.W.; Goel, S.; Eastwood, J. Quiet high-resolution computer models of a plasma. J. Comput. Phys. 1974, 14, 148–158. [Google Scholar] [CrossRef]
- Wu, R.; Cao, Z. QM/MM study of catalytic methyl transfer by the N5-glutamine SAM-dependent methyltransferase and its inhibition by the nitrogen analogue of coenzyme. J. Comput. Chem. 2008, 29, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Wang, J.; Gao, J.; Liu, Y.; Liu, C. QM/MM studies on the catalytic mechanism of phenylethanolamine N-methyltransferase. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2012, 1824, 533–541. [Google Scholar] [CrossRef]
- Hörberg, J.; Saenz-Mendez, P.; Eriksson, L.A. QM/MM studies of Dph5—A promiscuous methyltransferase in the eukaryotic biosynthetic pathway of diphthamide. J. Chem. Inf. Model. 2018, 58, 1406–1414. [Google Scholar] [CrossRef]
- Tsutsumi, H.; Moriwaki, Y.; Terada, T.; Shimizu, K.; Shin-ya, K.; Katsuyama, Y.; Ohnishi, Y. Structural and Molecular Basis of the Catalytic Mechanism of Geranyl Pyrophosphate C6-Methyltransferase: Creation of an Unprecedented Farnesyl Pyrophosphate C6-Methyltransferase. Angew. Chem. Int. Ed. 2022, 61, e202111217. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Moriwaki, Y.; Noguchi, T.; Shimizu, K.; Kuzuyama, T.; Terada, T. QM/MM Study of the Catalytic Mechanism and Substrate Specificity of the Aromatic Substrate C-Methyltransferase Fur6. Biochemistry 2024, 63, 806–814. [Google Scholar] [CrossRef]
- Liu, L.; Shi, T.; Houk, K.N.; Zhao, Y.-L. Understanding the R882H mutation effects of DNA methyltransferase DNMT3A: A combination of molecular dynamics simulations and QM/MM calculations. RSC Adv. 2019, 9, 31425–31434. [Google Scholar] [CrossRef]
- Zhang, X.; Bruice, T.C. Product specificity and mechanism of protein lysine methyltransferases: Insights from the histone lysine methyltransferase SET8. Biochemistry 2008, 47, 6671–6677. [Google Scholar] [CrossRef]
- Miranda-Rojas, S.; Blanco-Esperguez, K.; Tuñón, I.; Kästner, J.; Mendizábal, F. Exploration of the activation mechanism of the epigenetic regulator MLL3: A QM/MM study. Biomolecules 2021, 11, 1051. [Google Scholar] [CrossRef]
- Schopf, P.; Mills, M.J.; Warshel, A. The entropic contributions in vitamin B12 enzymes still reflect the electrostatic paradigm. Proc. Natl. Acad. Sci. USA 2015, 112, 4328–4333. [Google Scholar] [CrossRef]
- Chang, C.-E.; Chen, W.; Gilson, M.K. Evaluating the accuracy of the quasiharmonic approximation. J. Chem. Theory Comput. 2005, 1, 1017–1028. [Google Scholar] [CrossRef]
- Saez, D.A.; Zinovjev, K.; Tuñón, I.; Vöhringer-Martinez, E. Catalytic reaction mechanism in native and mutant catechol-O-methyltransferase from the adaptive string method and mean reaction force analysis. J. Phys. Chem. B 2018, 122, 8861–8871. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-Y.; Xu, X.-L.; Deng, H.; Wang, K.-N.; Rahman, A.; Ma, Y.; Shaik, F.; Wang, C.-M.; Qian, P.; Guo, H. Structural and Energetic Origin of Different Product Specificities and Activities for SETD3 and Its Mutants on the Methylation of the β-Actin H73K Peptide: Insights from a QM/MM Study. J. Chem. Theory Comput. 2022, 19, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.-S.; Rahman, A.; Jiang, K.-B.; Deng, H.; Zhao, Y.-Y.; Zhang, W.-J.; Liu, K.; Qian, P.; Guo, H. Unraveling the Origins of Changing Product Specificity Properties of Arginine Methyltransferase PRMT7 by the E181D and E181D/Q329A Mutations through QM/MM MD and Free-Energy Simulations. J. Chem. Theory Comput. 2022, 18, 2631–2641. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Sousa, S.F.; Ribeiro, A.J.; Neves, R.P.; Brás, N.F.; Cerqueira, N.M.; Fernandes, P.A.; Ramos, M.J. Application of quantum mechanics/molecular mechanics methods in the study of enzymatic reaction mechanisms. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1281. [Google Scholar] [CrossRef]
- Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [CrossRef]
- Loerbroks, C.; Heimermann, A.; Thiel, W. Solvents effects on the mechanism of cellulose hydrolysis: A QM/MM study. J. Comput. Chem. 2015, 36, 1114–1123. [Google Scholar] [CrossRef]
- Micallef, I.; Baron, B. Therapeutic Targeting of Protein Lysine and Arginine Methyltransferases: Principles and Strategies for Inhibitor Design. Int. J. Mol. Sci. 2025, 26, 9038. [Google Scholar] [CrossRef]
- Schramm, V.L. Transition States, Analogues, and Drug Development. ACS Chem. Biol. 2013, 8, 71–81. [Google Scholar] [CrossRef]
- Schramm, V.L. Enzymatic Transition States and Drug Design. Chem. Rev. 2018, 118, 11194–11258. [Google Scholar] [CrossRef]
- Mahmoodi, N.; Harijan, R.K.; Schramm, V.L. Transition-State Analogues of Phenylethanolamine N-Methyltransferase. J. Am. Chem. Soc. 2020, 142, 14222–14233. [Google Scholar] [CrossRef]
- Zhang, Y.; van Haren, M.J.; Martin, N.I. Peptidic transition state analogues as PRMT inhibitors. Methods 2020, 175, 24–29. [Google Scholar] [CrossRef]
- Micallef, I.; Fenech, K.; Baron, B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front. Mol. Biosci. 2024, 11, 1455415. [Google Scholar] [CrossRef]
- Georgieva, P.; Himo, F. Quantum chemical modeling of enzymatic reactions: The case of histone lysine methyltransferase. J. Comput. Chem. 2010, 31, 1707–1714. [Google Scholar] [CrossRef]
- Georgieva, P.; Wu, Q.; McLeish, M.J.; Himo, F. The reaction mechanism of phenylethanolamine N-methyltransferase: A density functional theory study. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2009, 1794, 1831–1837. [Google Scholar] [CrossRef]
- Velichkova, P.; Himo, F. Methyl transfer in glycine N-methyltransferase. A theoretical study. J. Phys. Chem. B 2005, 109, 8216–8219. [Google Scholar] [CrossRef]
- Velichkova, P.; Himo, F. Theoretical study of the methyl transfer in guanidinoacetate methyltransferase. J. Phys. Chem. B 2006, 110, 16–19. [Google Scholar] [CrossRef]
- Xiao, B.; Jing, C.; Wilson, J.R.; Walker, P.A.; Vasisht, N.; Kelly, G.; Howell, S.; Taylor, I.A.; Blackburn, G.M.; Gamblin, S.J. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 2003, 421, 652–656. [Google Scholar] [CrossRef]
- Komoto, J.; Yamada, T.; Takata, Y.; Konishi, K.; Ogawa, H.; Gomi, T.; Fujioka, M.; Takusagawa, F. Catalytic mechanism of guanidinoacetate methyltransferase: Crystal structures of guanidinoacetate methyltransferase ternary complexes. Biochemistry 2004, 43, 14385–14394. [Google Scholar] [CrossRef]
- Zhang, X.; Bruice, T.C. Reaction mechanism of guanidinoacetate methyltransferase, concerted or step-wise. Proc. Natl. Acad. Sci. USA 2006, 103, 16141–16146. [Google Scholar] [CrossRef]
- Shorokhov, D.; Zewail, A.H. 4D electron imaging: Principles and perspectives. Phys. Chem. Chem. Phys. 2008, 10, 2879–2893. [Google Scholar] [CrossRef]
- Meyer, B.; Wurm, J.P.; Kötter, P.; Leisegang, M.S.; Schilling, V.; Buchhaupt, M.; Held, M.; Bahr, U.; Karas, M.; Heckel, A.; et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Ψ1191 in yeast 18S rRNA. Nucleic Acids Res. 2011, 39, 1526–1537. [Google Scholar] [CrossRef]
- Wurm, J.P.; Meyer, B.; Bahr, U.; Held, M.; Frolow, O.; Kötter, P.; Engels, J.W.; Heckel, A.; Karas, M.; Entian, K.D.; et al. The ribosome assembly factor Nep1 responsible for Bowen-Conradi syndrome is a pseudouridine-N1-specific methyltransferase. Nucleic Acids Res. 2010, 38, 2387–2398. [Google Scholar] [CrossRef]
- Eschrich, D.; Buchhaupt, M.; Kötter, P.; Entian, K.D. Nep1p (Emg1p), a novel protein conserved in eukaryotes and archaea, is involved in ribosome biogenesis. Curr. Genet. 2002, 40, 326–338. [Google Scholar] [CrossRef]
- Levy, Y.; Onuchic, J.N. Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 389–415. [Google Scholar] [CrossRef]
- Rodriguez-Almazan, C.; Arreola, R.; Rodriguez-Larrea, D.; Aguirre-López, B.; de Gómez-Puyou, M.T.; Perez-Montfort, R.; Costas, M.; Gómez-Puyou, A.; Torres-Larios, A. Structural basis of human triosephosphate isomerase deficiency: Mutation E104D is related to alterations of a conserved water network at the dimer interface. J. Biol. Chem. 2008, 283, 23254–23263. [Google Scholar] [CrossRef]
- Malin, R.; Zielenkiewicz, P.; Saenger, W. Structurally conserved water molecules in ribonuclease T1. J. Biol. Chem. 1991, 266, 4848–4852. [Google Scholar] [CrossRef]
- Madyastha, K.M.; Guarnaccia, R.; Baxter, C.; Coscia, C.J. S-Adenosyl-l-methionine: Loganic acid methyltransferase: A carboxyl-alkylating enzyme from Vinca rosea. J. Biol. Chem. 1973, 248, 2497–2501. [Google Scholar] [CrossRef]
- Murata, J.; Roepke, J.; Gordon, H.; De Luca, V. The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell 2008, 20, 524–542. [Google Scholar] [CrossRef]
- Petronikolou, N.; Hollatz, A.J.; Schuler, M.A.; Nair, S.K. Loganic acid methyltransferase: Insights into the specificity of methylation on an iridoid glycoside. ChemBioChem 2018, 19, 784–788. [Google Scholar] [CrossRef]
- Axelrod, J. Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacol. Rev. 1966, 18, 95–113. [Google Scholar] [CrossRef]
- Ibdah, M.; Zhang, X.-H.; Schmidt, J.; Vogt, T. A novel Mg2+-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J. Biol. Chem. 2003, 278, 43961–43972. [Google Scholar] [CrossRef]
- Axelrod, J.; Tomchick, R. Enzymatic O-methylation of epinephrine and other catechols. J. Biol. Chem. 1958, 233, 702–705. [Google Scholar] [CrossRef]
- Tkaczuk, K.L.; Dunin-Horkawicz, S.; Purta, E.; Bujnicki, J.M. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. BMC Bioinform. 2007, 8, 73. [Google Scholar] [CrossRef]
- Sułkowska, J.I.; Rawdon, E.J.; Millett, K.C.; Onuchic, J.N.; Stasiak, A. Conservation of complex knotting and slipknotting patterns in proteins. Proc. Natl. Acad. Sci. USA 2012, 109, E1715–E1723. [Google Scholar] [CrossRef] [PubMed]
- Björk, G.R.; Jacobsson, K.; Nilsson, K.; Johansson, M.J.; Byström, A.S.; Persson, O.P. A primordial tRNA modification required for the evolution of life? EMBO J. 2001, 20, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Gamper, H.B.; Masuda, I.; Frenkel-Morgenstern, M.; Hou, Y.-M. Maintenance of protein synthesis reading frame by EF-P and m1G37-tRNA. Nat. Commun. 2015, 6, 7226. [Google Scholar] [CrossRef]
- Gamper, H.B.; Masuda, I.; Frenkel-Morgenstern, M.; Hou, Y.M. The UGG Isoacceptor of tRNAPro Is Naturally Prone to Frameshifts. Int. J. Mol. Sci. 2015, 16, 14866–14883. [Google Scholar] [CrossRef] [PubMed]
- Masuda, I.; Matsubara, R.; Christian, T.; Rojas, E.R.; Yadavalli, S.S.; Zhang, L.; Goulian, M.; Foster, L.J.; Huang, K.C.; Hou, Y.M. tRNA Methylation Is a Global Determinant of Bacterial Multi-drug Resistance. Cell Syst. 2019, 8, 302–314.e8, Erratum in Cell Syst. 2019, 8, 475. [Google Scholar] [CrossRef]
- Sakaguchi, R.; Lahoud, G.; Christian, T.; Gamper, H.; Hou, Y.M. A divalent metal ion-dependent N1-methyl transfer to G37-tRNA. Chem. Biol. 2014, 21, 1351–1360. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sapienza, P.J.; Abeysinghe, T.; Luzum, C.; Lee, A.L.; Finer-Moore, J.S.; Stroud, R.M.; Kohen, A. Mg2+ binds to the surface of thymidylate synthase and affects hydride transfer at the interior active site. J. Am. Chem. Soc. 2013, 135, 7583–7592. [Google Scholar] [CrossRef] [PubMed]
- Leonarski, F.; D’Ascenzo, L.; Auffinger, P. Mg2+ ions: Do they bind to nucleobase nitrogens? Nucleic Acids Res. 2016, 45, 987–1004. [Google Scholar] [CrossRef]
- Perlinska, A.P.; Stasiulewicz, A.; Nawrocka, E.K.; Kazimierczuk, K.; Setny, P.; Sulkowska, J.I. Restriction of S-adenosylmethionine conformational freedom by knotted protein binding sites. PLOS Comput. Biol. 2020, 16, e1007904. [Google Scholar] [CrossRef]
- Lotta, T.; Vidgren, J.; Tilgmann, C.; Ulmanen, I.; Melen, K.; Julkunen, I.; Taskinen, J. Kinetics of Human Soluble and Membrane-Bound Catechol O-Methyltransferase: A Revised Mechanism and Description of the Thermolabile Variant of the Enzyme. Biochemistry 1995, 34, 4202–4210. [Google Scholar] [CrossRef]
- Rutherford, K.; Le Trong, I.; Stenkamp, R.E.; Parson, W.W. Crystal structures of human 108V and 108M catechol O-methyltransferase. J. Mol. Biol. 2008, 380, 120–130. [Google Scholar] [CrossRef]
- Vidgren, J.; Svensson, L.A.; Liljas, A. Crystal structure of catechol O-methyltransferase. Nature 1994, 368, 354–358. [Google Scholar] [CrossRef]
- Sparta, M.; Alexandrova, A.N. How metal substitution affects the enzymatic activity of catechol-O-methyltransferase. PLoS ONE 2012, 7, e47172. [Google Scholar] [CrossRef] [PubMed]
- Veser, J. Kinetics and inhibition studies of catechol O-methyltransferase from the yeast Candida tropicalis. J. Bacteriol. 1987, 169, 3696–3700. [Google Scholar] [CrossRef]
- Kim, B.-G.; Sung, S.H.; Chong, Y.; Lim, Y.; Ahn, J.-H. Plant flavonoid O-methyltransferases: Substrate specificity and application. J. Plant Biol. 2010, 53, 321–329. [Google Scholar] [CrossRef]
- Del Rizzo, P.A.; Trievel, R.C. Substrate and product specificities of SET domain methyltransferases. Epigenetics 2011, 6, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Christian, T.; Sakaguchi, R.; Perlinska, A.P.; Lahoud, G.; Ito, T.; Taylor, E.A.; Yokoyama, S.; Sulkowska, J.I.; Hou, Y.-M. Methyl transfer by substrate signaling from a knotted protein fold. Nat. Struct. Mol. Biol. 2016, 23, 941–948. [Google Scholar] [CrossRef]
- Weinshilboum, R.; Raymond, F.; Pazmino, P. Human erythrocyte thiopurine methyltransferase: Radiochemical microassay and biochemical properties. Clin. Chim. Acta 1978, 85, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Feng, Q.; Wilk, D.; Adjei, A.A.; Salavaggione, O.E.; Weinshilboum, R.M.; Yee, V.C. Structural basis of substrate recognition in thiopurine s-methyltransferase. Biochemistry 2008, 47, 6216–6225. [Google Scholar] [CrossRef]
- Tsutsumi, H.; Katsuyama, Y.; Izumikawa, M.; Takagi, M.; Fujie, M.; Satoh, N.; Shin-ya, K.; Ohnishi, Y. Unprecedented Cyclization Catalyzed by a Cytochrome P450 in Benzastatin Biosynthesis. J. Am. Chem. Soc. 2018, 140, 6631–6639. [Google Scholar] [CrossRef] [PubMed]
- KIM, W.-G.; KIM, J.-P.; KIM, C.-J.; LEE, K.-H.; Ick-dong, Y. Benzastatins A, B, C, and D: New free radical scavengers from Streptomyces nitrosporeus 30643 I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot. 1996, 49, 20–25. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, J.-P.; Koshino, H.; Shin-Ya, K.; Seto, H.; Yoo, I.-D. Benzastatins E, F, and G: New indoline alkaloids with neuronal cell protecting activity from Streptomyces nitrosporeus. Tetrahedron 1997, 53, 4309–4316. [Google Scholar] [CrossRef]
- Kim, W.-G.; Ryoo, I.-J.; Park, J.-S.; Yoo, I.-D. Benzastatins H and I, new benzastatin derivatives with neuronal cell protecting activity from Streptomyces nitrosporeus. J. Antibiot. 2001, 54, 513–516. [Google Scholar] [CrossRef]
- Lee, J.-G.; Yoo, I.-D.; Kim, W.-G. Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biol. Pharm. Bull. 2007, 30, 795–797. [Google Scholar] [CrossRef]
- Nakagawa, A.; Iwai, Y.; Hashimoto, H.; Miyazaki, N.; Oiwa, R.; Takahashi, Y.; Hirano, A.; Shibukawa, N.; Kojima, Y.; Omura, S. Virantmycin, a new antiviral antibiotic produced by a strain of Streptomyces. J. Antibiot. 1981, 34, 1408–1415. [Google Scholar] [CrossRef]
- Motohashi, K.; Nagai, A.; Takagi, M.; Shin-ya, K. Two novel benzastatin derivatives, JBIR-67 and JBIR-73, isolated from Streptomyces sp. RI18. J. Antibiot. 2011, 64, 281–283. [Google Scholar] [CrossRef]
- Kim, W.-G.; Kim, J.-P.; Ick-Dong, Y. Benzastatins A, B, C, and D: New free radical scavengers from Streptomyces nitrosporeus 30643 II. Structure determination. J. Antibiot. 1996, 49, 26–30. [Google Scholar] [CrossRef]
- Hirota-Takahata, Y.; Kobayashi, H.; Kizuka, M.; Ohyama, T.; Kitamura-Miyazaki, M.; Suzuki, Y.; Fujiwara, M.; Nakajima, M.; Ando, O. Studies on novel HIF activators, A-503451s. J. Antibiot. 2016, 69, 747–753. [Google Scholar] [CrossRef]
- D’Auria, J.C.; Chen, F.; Pichersky, E. Chapter eleven The SABATH family of MTS in Arabidopsis thaliana and other plant species. In Recent Advances in Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2003; Volume 37, pp. 253–283. [Google Scholar]
- Murfitt, L.M.; Kolosova, N.; Mann, C.J.; Dudareva, N. Purification and characterization of S-adenosyl-L-methionine: Benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methyl benzoate in flowers of Antirrhinum majus. Arch. Biochem. Biophys. 2000, 382, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Noble, R.L.; Beer, C.T.; McIntyre, R.W. Biological effects of dihydrovinblastine. Cancer 1967, 20, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Pichersky, E.; Noel, J.P.; Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 2006, 311, 808–811. [Google Scholar] [CrossRef] [PubMed]
- Köllner, T.G.; Lenk, C.; Zhao, N.; Seidl-Adams, I.; Gershenzon, J.; Chen, F.; Degenhardt, J. Herbivore-Induced SABATH Methyltransferases of Maize That Methylate Anthranilic Acid Using S-adenosyl-l-methionine. Plant Physiol. 2010, 153, 1795–1807. [Google Scholar] [CrossRef] [PubMed]
- Han, X.-M.; Yang, Q.; Liu, Y.-J.; Yang, Z.-L.; Wang, X.-R.; Zeng, Q.-Y.; Yang, H.-L. Evolution and Function of the Populus SABATH Family Reveal That a Single Amino Acid Change Results in a Substrate Switch. Plant Cell Physiol. 2017, 59, 392–403. [Google Scholar] [CrossRef]
- Ward, L.C.; McCue, H.V.; Carnell, A.J. Carboxyl methyltransferases: Natural functions and potential applications in industrial biotechnology. ChemCatChem 2021, 13, 121–128. [Google Scholar] [CrossRef]
- Ross, J.R.; Nam, K.H.; D’Auria, J.C.; Pichersky, E. S-adenosyl-L-methionine: Salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyltransferases. Arch. Biochem. Biophys. 1999, 367, 9–16. [Google Scholar] [CrossRef]
- Effmert, U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.M.; Noel, J.P.; Dudareva, N.; Piechulla, B. Floral benzenoid carboxyl methyltransferases: From in vitro to in planta function. Phytochemistry 2005, 66, 1211–1230. [Google Scholar] [CrossRef]
- Zhao, N.; Guan, J.; Ferrer, J.-L.; Engle, N.; Chern, M.; Ronald, P.; Tschaplinski, T.J.; Chen, F. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol. Biochem. 2010, 48, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Zeigler, M.; Schmelz, E.; Taylor, M.G.; Rushing, S.; Jones, J.B.; Klee, H.J. Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. Plant J. 2010, 62, 113–123. [Google Scholar] [CrossRef]
- Yao, J.; Xu, Q.; Chen, F.; Guo, H. QM/MM free energy simulations of salicylic acid methyltransferase: Effects of stabilization of TS-like structures on substrate specificity. J. Phys. Chem. B 2011, 115, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Greer, E.L.; Shi, Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 2012, 13, 343–357. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Greenberg, R.A. Histone tails: Directing the chromatin response to DNA damage. FEBS Lett. 2011, 585, 2883–2890. [Google Scholar] [CrossRef] [PubMed]
- Eissenberg, J.C.; Shilatifard, A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev. Biol. 2010, 339, 240–249. [Google Scholar] [CrossRef]
- Paik, W.K.; Kim, S. EN-dimethyllysine in histones. Biochem. Biophys. Res. Commun. 1967, 27, 479–483. [Google Scholar] [CrossRef]
- Hempel, K.; Lange, H.; Birkofer, L. Epsilon-N-trimethyllysine, a new amino acid in histones. Naturwissenschaften 1968, 55, 37. [Google Scholar] [CrossRef]
- Byvoet, P.; Shepherd, G.; Hardin, J.; Noland, B. The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch. Biochem. Biophys. 1972, 148, 558–567. [Google Scholar] [CrossRef]
- Borun, T.W.; Pearson, D.; Paik, W.K. Studies of histone methylation during the HeLa S-3 cell cycle. J. Biol. Chem. 1972, 247, 4288–4298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bruice, T.C. A Quantum Mechanics/Molecular Mechanics Study of the Catalytic Mechanism and Product Specificity of Viral Histone Lysine Methyltransferase. Biochemistry 2007, 46, 9743–9751. [Google Scholar] [CrossRef]
- Zhang, X.; Bruice, T.C. Histone Lysine Methyltransferase SET7/9: Formation of a Water Channel Precedes Each Methyl Transfer. Biochemistry 2007, 46, 14838–14844. [Google Scholar] [CrossRef]
- Ren, W.-S.; Jiang, K.-B.; Deng, H.; Lu, N.; Yu, T.; Guo, H.; Qian, P. Catalytic Mechanism and Product Specificity of Protein Arginine Methyltransferase PRMT7: A Study from QM/MM Molecular Dynamics and Free Energy Simulations. J. Chem. Theory Comput. 2020, 16, 5301–5312. [Google Scholar] [CrossRef]
- Qian, P.; Guo, H.; Wang, L.; Guo, H. QM/MM investigation of substrate and product specificities of Suv4-20h2: How does this enzyme generate dimethylated H4K20 from monomethylated substrate? J. Chem. Theory Comput. 2017, 13, 2977–2986. [Google Scholar] [CrossRef]
- Chu, Y.; Li, G.; Guo, H. QM/MM MD and free energy simulations of the methylation reactions catalyzed by protein arginine methyltransferase PRMT3. Can. J. Chem. 2013, 91, 605–612. [Google Scholar] [CrossRef]
- Yao, J.; Chu, Y.; An, R.; Guo, H. Understanding product specificity of protein lysine methyltransferases from QM/MM molecular dynamics and free energy simulations: The effects of mutation on SET7/9 beyond the Tyr/Phe switch. J. Chem. Inf. Model. 2012, 52, 449–456. [Google Scholar] [CrossRef]
- Chu, Y.; Xu, Q.; Guo, H. Understanding energetic origins of product specificity of SET8 from QM/MM free energy simulations: What causes the stop of methyl addition during histone lysine methylation? J. Chem. Theory Comput. 2010, 6, 1380–1389. [Google Scholar] [CrossRef]
- Hu, P.; Wang, S.; Zhang, Y. How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations. J. Am. Chem. Soc. 2008, 130, 3806–3813. [Google Scholar] [CrossRef]
- Wang, S.; Hu, P.; Zhang, Y. Ab initio QM/MM Molecular Dynamics Simulation of Enzyme Catalysis: The Case of Histone Lysine Methyltransferase SET7/9. J. Phys. Chem. B 2007, 111, 3758. [Google Scholar] [CrossRef]
- Guo, H.-B.; Guo, H. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc. Natl. Acad. Sci. USA 2007, 104, 8797–8802. [Google Scholar] [CrossRef]
- Hu, P.; Zhang, Y. Catalytic mechanism and product specificity of the histone lysine methyltransferase SET7/9: An ab initio QM/MM-FE study with multiple initial structures. J. Am. Chem. Soc. 2006, 128, 1272–1278. [Google Scholar] [CrossRef]
- Miranda, T.B.; Miranda, M.; Frankel, A.; Clarke, S. PRMT7 is a member of the protein arginine methyltransferase family with a distinct substrate specificity. J. Biol. Chem. 2004, 279, 22902–22907. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Cook, J.R.; Yang, Z.-H.; Mirochnitchenko, O.; Gunderson, S.I.; Felix, A.M.; Herth, N.; Hoffmann, R.; Pestka, S. PRMT7, a new protein arginine methyltransferase that synthesizes symmetric dimethylarginine. J. Biol. Chem. 2005, 280, 3656–3664. [Google Scholar] [CrossRef]
- Nishioka, K.; Reinberg, D. Methods and tips for the purification of human histone methyltransferases. Methods 2003, 31, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Jain, K.; Clarke, S.G. PRMT7 as a unique member of the protein arginine methyltransferase family: A review. Arch. Biochem. Biophys. 2019, 665, 36–45. [Google Scholar] [CrossRef]
- Fisk, J.C.; Sayegh, J.; Zurita-Lopez, C.; Menon, S.; Presnyak, V.; Clarke, S.G.; Read, L.K. A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei. J. Biol. Chem. 2009, 284, 11590–11600. [Google Scholar] [CrossRef]
- Zurita-Lopez, C.I.; Sandberg, T.; Kelly, R.; Clarke, S.G. Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. J. Biol. Chem. 2012, 287, 7859–7870. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Maity, R.; Whitelegge, J.P.; Hadjikyriacou, A.; Li, Z.; Zurita-Lopez, C.; Al-Hadid, Q.; Clark, A.T.; Bedford, M.T.; Masson, J.-Y.; et al. Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J. Biol. Chem. 2013, 288, 37010–37025. [Google Scholar] [CrossRef]
- Feng, Y.; Hadjikyriacou, A.; Clarke, S.G. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7): The importance of acidic residues in the double E loop. J. Biol. Chem. 2014, 289, 32604–32616. [Google Scholar] [CrossRef]
- Jain, K.; Warmack, R.A.; Debler, E.W.; Hadjikyriacou, A.; Stavropoulos, P.; Clarke, S.G. Protein Arginine Methyltransferase Product Specificity Is Mediated by Distinct Active-site Architectures. J. Biol. Chem. 2016, 291, 18299–18308. [Google Scholar] [CrossRef]
- Yue, Y.; Chu, Y.; Guo, H. Computational study of symmetric methylation on histone arginine catalyzed by protein arginine methyltransferase PRMT5 through QM/MM MD and free energy simulations. Molecules 2015, 20, 10032–10046. [Google Scholar] [CrossRef]
- Wysocka, J.; Allis, C.D.; Coonrod, S. Histone arginine methylation and its dynamic regulation. Front. Biosci. 2006, 11, 344–355. [Google Scholar] [CrossRef]
- Antonysamy, S.; Bonday, Z.; Campbell, R.M.; Doyle, B.; Druzina, Z.; Gheyi, T.; Han, B.; Jungheim, L.N.; Qian, Y.; Rauch, C.; et al. Crystal structure of the human PRMT5: MEP50 complex. Proc. Natl. Acad. Sci. USA 2012, 109, 17960–17965. [Google Scholar] [CrossRef] [PubMed]
- Friesen, S.A.; Elder, J.B.; Bushnell, E.A. Density Functional Theory Investigation of As (III) S-Adenosylmethionine Methyltransferase. ACS Omega 2020, 5, 21000–21006. [Google Scholar] [CrossRef]
- Schmidt, T.; Schwede, T.; Meuwly, M. Computational analysis of methyl transfer reactions in dengue virus methyltransferase. J. Phys. Chem. B 2014, 118, 5882–5890. [Google Scholar] [CrossRef] [PubMed]
- Łach, W.; Brela, M.Z.; Boczar, M.; Wójcik, M.J.; Nakajima, T. Molecular modelling of DNA cytosine methylation. J. Mol. Struct. 2024, 1310, 138284. [Google Scholar] [CrossRef]
- Newby, Z.E.; Lau, E.Y.; Bruice, T.C. A theoretical examination of the factors controlling the catalytic efficiency of the DNA-(adenine-N6)-methyltransferase from Thermus aquaticus. Proc. Natl. Acad. Sci. USA 2002, 99, 7922–7927. [Google Scholar] [CrossRef] [PubMed]
- Kahn, K.; Bruice, T.C. Transition-state and ground-state structures and their interaction with the active-site residues in catechol O-methyltransferase. J. Am. Chem. Soc. 2000, 122, 46–51. [Google Scholar] [CrossRef]
- Zhang, X.; Bruice, T.C. Catalytic mechanism and product specificity of rubisco large subunit methyltransferase: QM/MM and MD investigations. Biochemistry 2007, 46, 5505–5514. [Google Scholar] [CrossRef]
- Aranda, J.; Roca, M.; Lopez-Canut, V.; Tunon, I. Theoretical study of the catalytic mechanism of DNA-(N4-cytosine)-methyltransferase from the bacterium Proteus vulgaris. J. Phys. Chem. B 2010, 114, 8467–8473. [Google Scholar] [CrossRef]
- Demapan, D.; Kussmann, J.; Ochsenfeld, C.; Cui, Q. Factors that determine the variation of equilibrium and kinetic properties of QM/MM enzyme simulations: QM region, conformation, and boundary condition. J. Chem. Theory Comput. 2022, 18, 2530–2542. [Google Scholar] [CrossRef]
- Chen, X.; Schwartz, S.D. Examining the origin of catalytic power of catechol O-methyltransferase. ACS Catal. 2019, 9, 9870–9879. [Google Scholar] [CrossRef]
- Kulik, H.J. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys. Chem. Chem. Phys. 2018, 20, 20650–20660. [Google Scholar] [CrossRef]
- Patra, N.; Ioannidis, E.I.; Kulik, H.J. Computational investigation of the interplay of substrate positioning and reactivity in catechol O-methyltransferase. PLoS ONE 2016, 11, e0161868. [Google Scholar] [CrossRef] [PubMed]
- Aranda, J.; Zinovjev, K.; Swiderek, K.; Roca, M.; Tunon, I. Unraveling the reaction mechanism of enzymatic C5-cytosine methylation of DNA. A combined molecular dynamics and QM/MM study of wild type and Gln119 variant. Acs Catal. 2016, 6, 3262–3276. [Google Scholar] [CrossRef]
- Yue, Y.; Guo, H. Quantum mechanical/molecular mechanical study of catalytic mechanism and role of key residues in methylation reactions catalyzed by dimethylxanthine methyltransferase in caffeine biosynthesis. J. Chem. Inf. Model. 2014, 54, 593–600. [Google Scholar] [CrossRef]
- Aranda, J.; Zinovjev, K.; Roca, M.; Tunon, I. Dynamics and reactivity in Thermus aquaticus N6-adenine methyltransferase. J. Am. Chem. Soc. 2014, 136, 16227–16239. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Yao, J.; Guo, H. QM/MM MD and free energy simulations of G9a-like protein (GLP) and its mutants: Understanding the factors that determine the product specificity. PLoS ONE 2012, 7, e37674. [Google Scholar] [CrossRef]
- Xu, Q.; Chu, Y.Z.; Guo, H.B.; Smith, J.C.; Guo, H. Energy Triplets for Writing Epigenetic Marks: Insights from QM/MM Free-Energy Simulations of Protein Lysine Methyltransferases. Chem.–A Eur. J. 2009, 15, 12596–12599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bruice, T.C. The mechanism of M. HhaI DNA C5 cytosine methyltransferase enzyme: A quantum mechanics/molecular mechanics approach. Proc. Natl. Acad. Sci. USA 2006, 103, 6148–6153. [Google Scholar] [CrossRef]
- Soriano, A.; Castillo, R.; Christov, C.; Andrés, J.; Moliner, V.; Tuñón, I. Catalysis in glycine N-methyltransferase: Testing the electrostatic stabilization and compression hypothesis. Biochemistry 2006, 45, 14917–14925. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Moliner, V.; Ruiz-Pernía, J.J.; Silla, E.; Tuñón, I. Activation free energy of catechol O-methyltransferase. Corrections to the potential of mean force. J. Phys. Chem. A 2006, 110, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Roca, M.; Andrés, J.; Moliner, V.; Tuñón, I.; Bertrán, J. On the nature of the transition state in catechol O-methyltransferase. A complementary study based on molecular dynamics and potential energy surface explorations. J. Am. Chem. Soc. 2005, 127, 10648–10655. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jędrzejewski, M.; Szeleszczuk, Ł.; Pisklak, D.M. Mechanistic Insights into SAM-Dependent Methyltransferases: A Review of Computational Approaches. Int. J. Mol. Sci. 2025, 26, 9204. https://doi.org/10.3390/ijms26189204
Jędrzejewski M, Szeleszczuk Ł, Pisklak DM. Mechanistic Insights into SAM-Dependent Methyltransferases: A Review of Computational Approaches. International Journal of Molecular Sciences. 2025; 26(18):9204. https://doi.org/10.3390/ijms26189204
Chicago/Turabian StyleJędrzejewski, Mateusz, Łukasz Szeleszczuk, and Dariusz Maciej Pisklak. 2025. "Mechanistic Insights into SAM-Dependent Methyltransferases: A Review of Computational Approaches" International Journal of Molecular Sciences 26, no. 18: 9204. https://doi.org/10.3390/ijms26189204
APA StyleJędrzejewski, M., Szeleszczuk, Ł., & Pisklak, D. M. (2025). Mechanistic Insights into SAM-Dependent Methyltransferases: A Review of Computational Approaches. International Journal of Molecular Sciences, 26(18), 9204. https://doi.org/10.3390/ijms26189204