Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease
Abstract
1. Introduction
2. Results
2.1. Visual Parameters
2.2. Neuropsychological Findings
2.2.1. Cognitive Impairments
- Attention and Executive Function: A substantial proportion (65%) of the POAG group exhibited prolonged completion times on TMT-A, with 50% showing markedly extended times on TMT-B. This indicates significant difficulties in attentional control and cognitive flexibility.
- Visual Memory: The majority of patients (85%) scored below the expected range on the Rey–Osterrieth Complex Figure (ROCF) delayed recall, reflecting severe nonverbal memory deficits.
- Visuoconstructive Planning: Additionally, 40% of patients performed below average on the ROCF copy task.
- Executive-Linguistic Functioning: A total of 55% of participants scored below normative expectations on phonemic and semantic fluency tasks.
2.2.2. Correlation Analysis Between Visual and Cognitive Functions
2.3. Transcriptome Analysis Revealed and Data Analysis Differentially Expressed Genes in Glaucoma
2.4. RT-qPCR Validates the Results of RNA-seq
3. Discussion
4. Materials and Methods
4.1. Study Subjects and Clinical Data
4.2. Neuropsychological Assessment
4.2.1. Rey–Osterrieth Complex Figure Test (ROCFT)
4.2.2. Trail Making Test (TMT)
- TMT-A evaluates processing speed, visual scanning, sustained attention, and motor control. Participants are instructed to connect 25 consecutively numbered circles distributed randomly across an A4 sheet as quickly as possible.
- TMT-B assesses divided attention, task-switching, working memory, and cognitive flexibility. Here, participants alternate between numbers and letters in ascending order (e.g., 1-A-2-B-3-C, etc.). Completion time (in seconds) for each part was recorded.
4.2.3. Verbal Fluency Tasks
- Phonemic Fluency: Participants were asked to produce as many words as possible beginning with the letters “F”, “A”, and “S” within a one-minute period for each letter, excluding proper nouns and morphological variants. This was assessed using the FAS Test [57].
- Semantic Fluency: Participants were instructed to generate as many items as possible within 60 s that belong to a specific semantic category (e.g., “animals” or “fruits”). The total number of valid words produced in each condition was recorded.
4.3. Sample Collection, RNA Extraction, Library Construction, and RNA-seq
4.4. Gene Expression Data Analysis
4.5. Real-Time Quantitative PCR (RT-qPCR)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RGCs | Retinal Ganglion Cells |
CNS | Central Nervous System |
AD | Alzheimer Disease |
IOP | Intraocular Pressure |
POAG | Primary Open-Angle Glaucoma |
SD | Standard Deviation |
DEGs | Differentially Expressed Genes |
RNFL | Retinal Nerve Fiber Layer |
ONH | Optic Nerve Head |
PSD | Pattern Standard Deviation |
OCT | Optical Coherence Tomography |
VFI | Visual Field Index |
VF | Visual Field |
TMT | Trail Making Test |
sEVs | small Extracellular Vesicles |
CCN2 | Cellular Communications Network factor 2 |
TTBK1 | Tau Tubulin Kinase 1 |
ECM | Extracellular Matrix |
TGF-β | Transforming Growth Factor beta |
TM | Trabecular Meshwork |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
RT-qPCR | Quantitative reverse transcription PCR |
References
- Mora-Paez, D.J.; Guedes, J.; Amaral, D.C.; Ferreira, M.A.; Fernandes, B.F.; Pereira, S.F.; Botton, B.; Desai, A.; Pakter, H.M.; Lavinsky, F.; et al. Latin American Prevalence of Glaucoma: A Systematic Review and Meta-Analysis. Vision 2025, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Stuart, K.V.; de Vries, V.A.; Schuster, A.K.; Yu, Y.; van der Heide, F.C.T.; Delcourt, C.; Cougnard-Grégoire, A.; Schweitzer, C.; Brandl, C.; Zimmermann, M.E.; et al. Prevalence of Glaucoma in Europe and Projections to 2050: Findings from the European Eye Epidemiology Consortium. Ophthalmology 2025. [Google Scholar] [CrossRef]
- Mirzaei, M.; Gupta, V.B.; Chick, J.M.; Greco, T.M.; Wu, Y.; Chitranshi, N.; Wall, R.V.; Hone, E.; Deng, L.; Dheer, Y.; et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci. Rep. 2017, 7, 12685. [Google Scholar] [CrossRef]
- Mirzaei, M.; Deng, L.; Gupta, V.; Graham, S.; Gupta, V. Complement pathway in Alzheimer’s pathology and retinal neurodegenerative disorders-The road ahead. Neural Regen. Res. 2020, 15, 257–258. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, F.; Wang, J.; Li, Z.; Dai, H.; Mu, K.; Ge, J.; Zhang, H. Diffusion tensor magnetic resonance imaging reveals visual pathway damage that correlates with clinical severity in glaucoma. Clin. Exp. Ophthalmol. 2013, 41, 43–49. [Google Scholar] [CrossRef]
- Wang, X.; Chen, W.; Zhao, W.; Miao, M. Risk of glaucoma to subsequent dementia or cognitive impairment: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2024, 36, 172. [Google Scholar] [CrossRef]
- Kolli, A.; Kabeto, M.; McCammon, R.; Langa, K.M.; Ehrlich, J.R. Glaucoma and cognitive function trajectories in a population-based study: Findings from the health and retirement study. J. Am. Geriatr. Soc. 2022, 70, 2827–2837. [Google Scholar] [CrossRef]
- Mullany, S.; Xiao, L.; Qassim, A.; Marshall, H.; Gharahkhani, P.; MacGregor, S.; Hassall, M.M.; Siggs, O.M.; Souzeau, E.; Craig, J.E. Normal-tension glaucoma is associated with cognitive impairment. Br. J. Ophthalmol. 2022, 106, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Bou Ghanem, G.O.; Wareham, L.K.; Calkins, D.J. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog. Retin. Eye Res. 2024, 100, 101261. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Zhao, G.-L.; Cheng, S.; Wang, Z.; Yang, X.-L. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog. Retin. Eye Res. 2023, 93, 101169. [Google Scholar] [CrossRef]
- Durán-Cristiano, S.C. Glaucoma: Biological mechanism and its Clinical Translation. Curr. Mol. Med. 2023, 23, 479–491. [Google Scholar] [CrossRef]
- Monavarfeshani, A.; Yan, W.; Pappas, C.; Odenigbo, K.A.; He, Z.; Segrè, A.V.; van Zyl, T.; Hageman, G.S.; Sanes, J.R. Transcriptomic Analysis of the Ocular Posterior Segment Completes a Cell Atlas of the Human Eye. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Durán-Cristiano, S.C.; Bustamante-Arias, A.; Fernandez, G.J.; Martin-Gil, A.; Carracedo, G. Omics in Keratoconus: From Molecular to Clinical Practice. J. Clin. Med. 2025, 14, 2459. [Google Scholar] [CrossRef]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Vasconcelos, C.F.M.; Ribas, V.T.; Petrs-Silva, H. Shared Molecular Pathways in Glaucoma and Other Neurodegenerative Diseases: Insights from RNA-Seq Analysis and miRNA Regulation for Promising Therapeutic Avenues. Cells 2023, 12, 2155. [Google Scholar] [CrossRef]
- Yu, M.; Lin, C.; Weinreb, R.N.; Lai, G.; Chiu, V.; Leung, C.K.-S. Risk of Visual Field Progression in Glaucoma Patients with Progressive Retinal Nerve Fiber Layer Thinning: A 5-Year Prospective Study. Ophthalmology 2016, 123, 1201–1210. [Google Scholar] [CrossRef]
- Swaminathan, S.S.; Jammal, A.A.; Berchuck, S.I.; Medeiros, F.A. Rapid initial OCT RNFL thinning is predictive of faster visual field loss during extended follow-up in glaucoma. Am. J. Ophthalmol. 2021, 229, 100–107. [Google Scholar] [CrossRef]
- Sethi, A.; Rashidisabet, H.; Hallak, J.A.; Vajaranant, T.S. Which OCT parameters can best predict visual field progression in glaucoma? Eye 2023, 37, 3523–3525. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.-H.; Chiu, T.-H.; Yen, W.-T.; Lu, D.-W. Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction. Int. J. Mol. Sci. 2025, 26, 4473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nie, H.; Gong, X.; Dai, M.; Guo, Z.; Deng, X.; Li, M.; Liu, Y.; Sun, L.; Tang, X.; et al. A three-tier AI solution for equitable glaucoma diagnosis across China’s hierarchical healthcare system. NPJ Digit. Med. 2025, 8, 400. [Google Scholar] [CrossRef]
- Sun, J.A.; Yuan, M.; Johnson, G.E.; Pasquale, L.R.; Boland, M.V.; Friedman, D.S.; Elze, T.; Shen, L.Q.; Wang, M. Comparison of Structural and Functional Features in Primary Angle Closure and Open Angle Glaucomas. J. Glaucoma 2024, 33, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Eysel, U.T.; Schweigart, G.; Mittmann, T.; Eyding, D.; Qu, Y.; Vandesande, F.; Orban, G.; Arckens, L. Reorganization in the visual cortex after retinal and cortical damage. Restor. Neurol. Neurosci. 1999, 15, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Garzone, D.; Finger, R.P.; Mauschitz, M.M.; Koch, A.; Reuter, M.; Breteler, M.M.B.; Aziz, N.A. Visual impairment and retinal and brain neurodegeneration: A population-based study. Hum. Brain Mapp. 2023, 44, 2701–2711. [Google Scholar] [CrossRef]
- Marchesi, N.; Fahmideh, F.; Boschi, F.; Pascale, A.; Barbieri, A. Ocular Neurodegenerative Diseases: Interconnection between Retina and Cortical Areas. Cells 2021, 10, 2394. [Google Scholar] [CrossRef]
- Vidal-Villegas, B.; Di Pierdomenico, J.; Miralles de Imperial-Ollero, J.A.; Ortín-Martínez, A.; Nadal-Nicolás, F.M.; Bernal-Garro, J.M.; Navarro, N.C.; Villegas-Pérez, M.P.; Vidal-Sanz, M. Melanopsin(+)RGCs Are fully Resistant to NMDA-Induced Excitotoxicity. Int. J. Mol. Sci. 2019, 20, 3012. [Google Scholar] [CrossRef]
- Salobrar-García, E.; de Hoz, R.; Ramírez, A.I.; López-Cuenca, I.; Rojas, P.; Vazirani, R.; Amarante, C.; Yubero, R.; Gil, P.; Pinazo-Durán, M.D.; et al. Changes in visual function and retinal structure in the progression of Alzheimer’s disease. PLoS ONE 2019, 14, e0220535. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Xie, B.; Yin, X.; Liang, M.; Evans, A.C.; Wang, J.; Dai, C.; Wedrich, A. Reduced cortical thickness in primary open-angle glaucoma and its relationship to the retinal nerve fiber layer thickness. PLoS ONE 2013, 8, e73208. [Google Scholar] [CrossRef]
- Ko, F.; Muthy, Z.A.; Gallacher, J.; Sudlow, C.; Rees, G.; Yang, Q.; Keane, P.A.; Petzold, A.; Khaw, P.T.; Reisman, C.; et al. Association of Retinal Nerve Fiber Layer Thinning with Current and Future Cognitive Decline: A Study Using Optical Coherence Tomography. JAMA Neurol. 2018, 75, 1198–1205. [Google Scholar] [CrossRef]
- Shi, Z.; Zheng, H.; Hu, J.; Jiang, L.; Cao, X.; Chen, Y.; Mei, X.; Li, C.; Shen, Y. Retinal Nerve Fiber Layer Thinning Is Associated with Brain Atrophy: A Longitudinal Study in Nondemented Older Adults. Front. Aging Neurosci. 2019, 11, 69. [Google Scholar] [CrossRef]
- Yochim, B.P.; Mueller, A.E.; Kane, K.D.; Kahook, M.Y. Prevalence of cognitive impairment, depression, and anxiety symptoms among older adults with glaucoma. J. Glaucoma 2012, 21, 250–254. [Google Scholar] [CrossRef]
- Lee, S.S.-Y.; Wood, J.M.; Black, A.A. Impact of glaucoma on executive function and visual search. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2020, 40, 333–342. [Google Scholar] [CrossRef]
- Raman, P.; Khy Ching, Y.; Sivagurunathan, P.D.; Ramli, N.; Mohd Khalid, K.H. The Association Between Visual Field Reliability Indices and Cognitive Impairment in Glaucoma Patients. J. Glaucoma 2019, 28, 685–690. [Google Scholar] [CrossRef]
- Garg, M.; Midha, N.; Verma, R.; Gupta, V.; Angmo, D.; Velpandian, T.; Maharana, P.K.; Satapathy, S.; Sharma, N.; Dada, T. Cognitive Impairment in Primary Open Angle Glaucoma: A Case-Control Study. J. Glaucoma 2025, 34, 282–289. [Google Scholar] [CrossRef]
- Honjo, M.; Numaga, J.; Hara, T.; Asaoka, R. The association between structure-function relationships and cognitive impairment in elderly glaucoma patients. Sci. Rep. 2017, 7, 7095. [Google Scholar] [CrossRef]
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44–53. [Google Scholar] [CrossRef]
- Nozal, V.; Martinez, A. Tau Tubulin Kinase 1 (TTBK1), a new player in the fight against neurodegenerative diseases. Eur. J. Med. Chem. 2019, 161, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.-L.; Li, J.-H.; Zhang, W.-M.; Fu, M.-J.; Xing, H.-M.; Ma, H.; Gong, X.-H.; Wu, R.-H.; Liang, Y.-B.; Cui, R.-Z.; et al. Transcriptomic analysis of plasma-derived small extracellular vesicles reveals the pathological characteristics of normal tension glaucoma. Extracell. Vesicles Circ. Nucleic Acids 2024, 5, 438–454. [Google Scholar] [CrossRef] [PubMed]
- Bayram, D.; Yüksel, G.; Bayram, T.; Tireli, H. Optical Coherence Tomography Findings in Parkinson’s and Alzheimer’s Disease -Retinal Changes in Neurodegenerative Disease. Noro Psikiyatr. Ars. 2021, 58, 103–107. [Google Scholar] [PubMed]
- Fernández-Albarral, J.A.; Ramírez, A.I.; de Hoz, R.; Matamoros, J.A.; Salobrar-García, E.; Elvira-Hurtado, L.; López-Cuenca, I.; Sánchez-Puebla, L.; Salazar, J.J.; Ramírez, J.M. Glaucoma: From pathogenic mechanisms to retinal glial cell response to damage. Front. Cell. Neurosci. 2024, 18, 1354569. [Google Scholar] [CrossRef]
- Kumar, S.; Ramakrishnan, H.; Viswanathan, S.; Akopian, A.; Bloomfield, S.A. Neuroprotection of the Inner Retina Also Prevents Secondary Outer Retinal Pathology in a Mouse Model of Glaucoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 35. [Google Scholar] [CrossRef]
- Dillinger, A.E.; Kuespert, S.; Seleem, A.A.; Neuendorf, J.; Schneider, M.; Fuchshofer, R. CCN2/CTGF tip the balance of growth factors towards TGF-β2 in primary open-angle glaucoma. Front. Mol. Biosci. 2023, 10, 1045411. [Google Scholar] [CrossRef]
- Dillinger, A.E.; Weber, G.R.; Mayer, M.; Schneider, M.; Göppner, C.; Ohlmann, A.; Shamonin, M.; Monkman, G.J.; Fuchshofer, R. CCN2/CTGF-A Modulator of the Optic Nerve Head Astrocyte. Front. Cell Dev. Biol. 2022, 10, 864433. [Google Scholar] [CrossRef]
- Junglas, B.; Yu, A.H.L.; Welge-Lüssen, U.; Tamm, E.R.; Fuchshofer, R. Connective tissue growth factor induces extracellular matrix deposition in human trabecular meshwork cells. Exp. Eye Res. 2009, 88, 1065–1075. [Google Scholar] [CrossRef]
- Ahamad, S.; Hema, K.; Kumar, V.; Gupta, D. The structural, functional, and dynamic effect of Tau tubulin kinase1 upon a mutation: A neuro-degenerative hotspot. J. Cell. Biochem. 2021, 122, 1653–1664. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, J.; Wu, B.; Wang, Y.; Li, Y.; Yang, Y.; Yu, Y.; Feng, J. Enriched environment mitigates cognitive impairment in pre-adolescent mice following repeated neonatal sevoflurane exposure by reducing TTBK1 expression and Tau phosphorylation. Neuropharmacology 2025, 268, 110327. [Google Scholar] [CrossRef]
- Li, J.; Chen, W.; Yi, Y.; Tong, Q. miR-219-5p inhibits tau phosphorylation by targeting TTBK1 and GSK-3β in Alzheimer’s disease. J. Cell. Biochem. 2019, 120, 9936–9946. [Google Scholar] [CrossRef] [PubMed]
- Sahu, J.; Vallinayagam, M.; Srikanth, K.; Srini, S. Conjunctival impression cytology and tear film changes in patients with type 2 diabetes mellitus and its correlation with severity of diabetic retinopathy. Saudi J. Ophthalmol. 2024, 39, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Valencia, E.; García, M.; Fernández-Vega, B.; Pereiro, R.; Lobo, L.; González-Iglesias, H. Targeted Analysis of Tears Revealed Specific Altered Metal Homeostasis in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2022, 63, 10. [Google Scholar] [CrossRef]
- Pinazo-Durán, M.D.; Zanón-Moreno, V.; García-Villanueva, C.; Martucci, A.; Peris-Martínez, C.; Vila-Arteaga, J.; García-Medina, J.J.; Andrés-Blasco, I.; Gallego-Martínez, A.; Nucci, C.; et al. Biochemical-molecular-genetic biomarkers in the tear film, aqueous humor, and blood of primary open-angle glaucoma patients. Front. Med. 2023, 10, 1157773, Erratum in Front. Med. 2025, 12, 1675008. [Google Scholar] [CrossRef]
- Carnero, E.; Irigoyen-Bañegil, C.; Gutiérrez, I.; Extramiana, L.; Sabater, A.L.; Moreno-Montañes, J. Comparison of Transcriptomic Analysis of the Conjunctiva in Glaucoma-Treated Eyes with Dry Eyes and Healthy Controls. Biomolecules 2024, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.A.; Patrick, C.; Choudry, N.B.; Sharif, N.A.; Goldberg, J.L. Neuroprotection in neurodegenerations of the brain and eye: Lessons from the past and directions for the future. Front. Neurol. 2022, 13, 964197. [Google Scholar] [CrossRef]
- Yan, J.; Yang, X.; Jiao, X.; Yang, X.; Guo, M.; Chen, Y.; Zhan, L.; Chen, W. Integrative transcriptomic and proteomic analysis reveals CD9/ITGA4/PI3K-Akt axis mediates trabecular meshwork cell apoptosis in human glaucoma. J. Cell. Mol. Med. 2020, 24, 814–829. [Google Scholar] [CrossRef] [PubMed]
- You, M.; Rong, R.; Zeng, Z.; Fan, C.; Li, H.; Yang, Q.; Ji, D. Integrated analysis of long non-coding RNAs and mRNAs associated with glaucoma in vitro. Front. Endocrinol. 2023, 14, 1087442. [Google Scholar] [CrossRef]
- Enz, T.J.; Tribble, J.R.; Williams, P.A. Comparison of Glaucoma-Relevant Transcriptomic Datasets Identifies Novel Drug Targets for Retinal Ganglion Cell Neuroprotection. J. Clin. Med. 2021, 10, 3938. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, L.; Min, G.; Wang, Q.; Zhao, Y.; Li, Y. Overview of the Complex Figure Test and Its Clinical Application in Neuropsychiatric Disorders, Including Copying and Recall. Front. Neurol. 2021, 12, 680474. [Google Scholar] [CrossRef]
- Reitan, R.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation; Neuropsychology Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Spreen, O. Neurosensory Center Comprehensive Examination for Aphasia; Neuropsychol Lab, University of Victoria: Victoria, BC, Canada, 1977. [Google Scholar]
- Osterrieth, P.A. Le test de copie d’une figure complexe; contribution à l’étude de la perception et de la mémoire. [Test of copying a complex figure; contribution to the study of perception and memory.]. Arch. Psychol. 1944, 30, 206–356. [Google Scholar]
- Shin, M.-S.; Park, S.-Y.; Park, S.-R.; Seol, S.-H.; Kwon, J.S. Clinical and empirical applications of the Rey-Osterrieth Complex Figure Test. Nat. Protoc. 2006, 1, 892–899. [Google Scholar] [CrossRef]
- Zeng, Y.; Tang, X.; Chen, J.; Kang, X.; Bai, D. Optimizing total RNA extraction method for human and mice samples. PeerJ 2024, 12, e18072. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’Ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Variable | Control Group (n = 20) (Mean ± SD) | POAG Group (n = 20) (Mean ± SD) | p-Value |
---|---|---|---|
Age (years) | 54.81 ± 6.05 | 59.76 ± 10.66 | 0.098 |
Sex (male/female) | 17 (85%)/3 (15%) | 10 (50%)/10 (50%) | |
Level Education | n (%) | n (%) | <0.001 |
Low | 3 (15%) | ||
Medium | 8 (40%) | 9 (45%) | |
High | 12 (60%) | 8 (40%) | |
IOP (mmHg) | 17 mmHg ± 2.64 | 19 mmHg ± 6.81 | 0.231 |
Visual Acuity | 0.48 | 0.10 | 0.021 |
Parameter | Control Group (Mean ± SD) | POAG Group (Mean ± SD) | Statistical Significance (p-Value) |
---|---|---|---|
OCT Structural Parameters | |||
Average RGC | 89.07 ± 9.31 | 84.10 ± 12.85 | 0.213 |
Superior RGC | 88.77 ± 8.92 | 83.33 ± 13.87 | 0.168 |
Inferior RGC | 87.85 ± 10.18 | 83.30 ± 10.25 | 0.298 |
Average RNFL Thickness (µm) | 112.80 ± 11.17 | 95.46 ± 15.73 | <0.001 |
RNFL Thickness Sup (µm) | 117.00 ± 17.78 | 93.46 ± 21.99 | 0.001 |
ONH | 0.45 ± 0.19 | 0.62 ± 0.16 | 0.024 |
Vertical C/D | 0.49 ± 0.15 | 0.69 ± 0.15 | <0.001 |
Rim Area (mm2) | 1.35 ± 0.29 | 1.24 ± 0.37 | 0.321 |
Disc Area | 2.00 ± 0.35 | 2.47 ± 0.45 | 0.001 |
Cup Volume | 0.16 ± 0.35 | 0.45 ± 0.23 | <0.001 |
Visual Field Functional Parameters | |||
Mean Deviation (MD) (dB) | −2.04 ± 1.92 | −5.20 ± 6.06 | 0.036 |
Visual Field Index (VFI) (%) | 98.01 ± 5.66 | 87.23 ± 12.35 | 0.035 a |
Pattern Standard Deviation (PSD) (dB) | 2.55 ± 1.11 | 3.80 ± 1.89 | 0.019 |
OCT Parameter | VF Parameter | Correlation Coefficients (r) | p-Values |
---|---|---|---|
Average RNFL thickness (µm) | MD (dB) | 0.36 | 0.190 |
Average RNFL Superior (µm) | MD (dB) | 0.33 | 0.206 |
Average RNFL thickness (µm) | PSD (dB) | −0.53 | 0.032 |
Average RNFL Superior (µm) | PSD (dB) | −0.46 | 0.069 |
Control Group | POAG Group | ||
---|---|---|---|
(n = 20) | (n = 20) | ||
Mean ± SD | Mean ± SD | p-Values | |
ROCF copy | 30.95 ± 3.31 | 27.06 ± 5.83 | 0.015 β,* |
ROCF memory | 18.75 ± 4.03 | 13.76 ± 4.90 | 0.001 β,* |
TMT A (s) | 51.40 ± 13.92 | 71.57 ± 21.06 | 0.005 β,* |
TMT B (s) | 103.60 ± 39.55 | 152.60 ± 42.69 | 0.002 β,* |
TMT B-A | 52.20 ± 34.09 | 76.08 ± 32.79 | 0.048 α,* |
Fluency F | 12.10 ± 4.36 | 8.90 ± 3.89 | 0.019 β,* |
Fluency A | 13.80 ± 4.11 | 10.50 ± 3.90 | 0.013 β,* |
Fluency S | 13.00 ± 4.06 | 10.50 ± 4.49 | 0.073 β |
Fluency Animals | 20.55 ± 3.28 | 16.20 ± 4.48 | 0.001 β,* |
Fluency fruits | 14.40 ± 3.14 | 11.55 ± 2.72 | 0.004 β,* |
Cognitive Domain | Neuropsychological Test | Associated Variable | r-Correlations | p-Values |
---|---|---|---|---|
Executive function | ||||
Mental flexibility Inhibition response Perceptual-motor function | ROCF Copy | Fluency A | 0.415 | 0.010 |
MD (dB) | 0.534 | 0.001 | ||
Mental flexibility Complex Attention (cognitive processing speed, inhibitory control) | TMT B | Fluency (animals) | −0.528 | 0.001 |
Fluency (fruits) | −0.420 | 0.012 | ||
Fluency F | −0.435 | 0.009 | ||
Fluency S | −0.511 | 0.002 | ||
RNFL Superior (µm) | −0.480 | 0.004 | ||
Learning and Memory (visuo-spatial memory) | ROCF Memory | Fluency (animals) | 0.455 | 0.004 |
Fluency (fruits) | 0.472 | 0.002 | ||
Fluency A | 0.434 | 0.006 | ||
TMT A | −0.441 | 0.009 | ||
MD (dB) | 0.529 | 0.001 | ||
PSD (dB) | −0.591 | 0.000 | ||
Complex Attention (cognitive processing speed, inhibitory control) | TMT A | ROCF Memory | −0.441 | 0.009 |
Fluency (animals) | −0.614 | 0.000 | ||
Fluency (fruits) | −0.478 | 0.004 | ||
Fluency F | −0.411 | 0.016 | ||
Fluency A | −0.489 | 0.003 | ||
PSD (dB) | 0.409 | 0.016 | ||
Language (Fluency) | ||||
Fluency (animals) | RNFL (µm) | 0.432 | 0.005 | |
RNFL Superior (µm) | 0.428 | 0.006 | ||
PSD (dB) | −0.411 | 0.008 | ||
Fluency (fruits) | RGC thickness | 0.460 | 0.003 | |
RNFL (µm) | 0.462 | 0.003 | ||
RNFL Superior (µm) | 0.406 | 0.009 | ||
Fluency A | RGC thickness | 0.457 | 0.003 | |
RNFL (µm) | 0.438 | 0.005 | ||
RNFL Superior (µm) | 0.405 | 0.010 |
Expression Change | Symbol | Description | Gene Role | Log2 Fold Change |
---|---|---|---|---|
Upregulated Genes | CCN2/CTGF | Cellular Communications Network factor 2 | It’s a downstream mediator of transforming growth factor beta (TGF-β) and modulates ECM homeostasis in the trabecular meshwork (TM). It’s upregulated in trabecular meshwork fibrosis and optic nerve head remodeling. | 4.78 |
TTBK1 | Tau Tubulin Kinase 1 | Overexpression is involved in autophagy and NF-κB signaling. TBK1 may cause retinal ganglion cell apoptosis and optic nerve damage contributing to neurodegeneration. | 5.55 |
Inclusion | Exclusion |
---|---|
Individual ages 39–70 | Individuals under 39 years of age |
Individual diagnosed with POAG, with or without drug treatment | Other glaucoma type |
Individuals with best corrected visual acuity of 20/40 | Individuals with neurodegenerative disease or disorders of the nervous system |
In control group, non-glaucomatous healthy individuals, and not familiar history | Individuals with neurodegenerative disease or disorders of the nervous system, and hyperlipidemia or hypercholesterolemia. |
Individuals with glaucoma who present with macular degeneration, cataracts, or any other retinal pathology unrelated to glaucoma | |
Individuals with retinal vascular occlusions of any etiology |
Target | F/R | Primer Sequence (5′ → 3′) | Amplicon Size (BP) |
---|---|---|---|
TTBK1 | Forward | TGGTGAGATCTACGAGGCCA | 170 |
Reverse | ACTTCTCGTTCCTGCCACAG | ||
CCN2 | Forward | TTAGCGTGCTCACTGACCTG | 182 |
Reverse | GCCACAAGCTGTCCAGTCTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Cristiano, S.C.; Duque-Chica, G.L.; Torres-Osorio, V.; Ospina-Villa, J.D.; Martin-Gil, A.; Fernandez, G.J.; Carracedo, G. Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease. Int. J. Mol. Sci. 2025, 26, 9109. https://doi.org/10.3390/ijms26189109
Durán-Cristiano SC, Duque-Chica GL, Torres-Osorio V, Ospina-Villa JD, Martin-Gil A, Fernandez GJ, Carracedo G. Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease. International Journal of Molecular Sciences. 2025; 26(18):9109. https://doi.org/10.3390/ijms26189109
Chicago/Turabian StyleDurán-Cristiano, Sandra Carolina, Gloria L. Duque-Chica, Viviana Torres-Osorio, Juan David Ospina-Villa, Alba Martin-Gil, Geysson Javier Fernandez, and Gonzalo Carracedo. 2025. "Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease" International Journal of Molecular Sciences 26, no. 18: 9109. https://doi.org/10.3390/ijms26189109
APA StyleDurán-Cristiano, S. C., Duque-Chica, G. L., Torres-Osorio, V., Ospina-Villa, J. D., Martin-Gil, A., Fernandez, G. J., & Carracedo, G. (2025). Exploring Molecular and Clinical Dimensions of Glaucoma as a Neurodegenerative Disease. International Journal of Molecular Sciences, 26(18), 9109. https://doi.org/10.3390/ijms26189109