Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System
Abstract
1. Introduction
2. Glial Cells in Neuronal Network Function
2.1. Astrocytes
2.1.1. Structural, Metabolic, and Energetic Support
2.1.2. Synaptic Regulation and Plasticity
2.1.3. Regulation of Blood Flow and Neurovascular Coupling
2.1.4. Blood–Brain Barrier Maintenance and Neuroprotection
2.1.5. Inflammatory Modulation and Immune Signaling
2.1.6. Involvement in Neurological Disorders
2.2. Oligodendrocytes
2.2.1. Myelination and Neural Transmission Efficiency
2.2.2. Metabolic and Structural Support
2.2.3. Translational Relevance
2.2.4. Axonal Maintenance and Repair
2.2.5. Modulation of Neuronal Activity
2.2.6. Role in CNS Plasticity and Learning
2.2.7. Involvement in Neurological and Psychiatric Disorders
2.3. NG2-Glia and Microglia: Versatile Regulators of CNS Homeostasis and Plasticity
2.3.1. Developmental and Reparative Functions
2.3.2. Synaptic Modulation and Neuroplasticity
2.3.3. Immune Surveillance and Inflammatory Responses
2.3.4. Intercellular Interactions and Neurovascular Coupling
2.3.5. Pathological Roles and Therapeutic Relevance
2.4. Translational Perspectives and Future Directions
2.4.1. Clinical and Therapeutic Implications
2.4.2. Strategic Research Priorities
- Advanced imaging and real-time functional mapping (employ super-resolution microscopy, two-photon in vivo imaging, and optogenetic tools to visualize glial dynamics and neuron–glia interactions with subcellular precision in real time) [134].
- Genetic and molecular dissection (use single-cell multiomics, lineage tracing, and CRISPR-based genome engineering to resolve subtype-specific functions, plasticity states, and disease-associated transcriptional signatures) [75].
- Computational and systems neuroscience integration (develop multi-scale computational models to simulate neuron–glia network behavior, predict system-level outcomes of pharmacological modulation, and identify optimal therapeutic targets).
- Interdisciplinary translational frameworks (integrate neuroscience with immunology, systems biology, biomaterials science, and bioengineering to advance glia-based interventions from bench to bedside) [135].
2.5. Ependymal Cells
2.5.1. Structure and Localization
2.5.2. Role in CSF Dynamics
2.5.3. Neurogenesis and the Neural Stem Cell Niche
2.5.4. Sensory and Signaling Functions
2.5.5. Pathological Implications
2.5.6. Research and Therapeutic Potential
- Ciliary function restoration via gene therapy or pharmacological modulation to improve CSF dynamics.
- Barrier reinforcement to limit neuroinflammation in demyelinating disorders.
3. Advanced Imaging and Integrative Methodologies in Glial Research
3.1. Advanced Imaging Technologies
3.2. Genetic and Molecular Manipulations
3.3. Computational and Systems Neuroscience
3.4. Interdisciplinary Integration
3.5. Translational Neuroscience and Glia-Targeted Therapeutics
- Modulating microglial–neuronal crosstalk with CX3CR1 agonists or attenuating chronic neuroinflammation via CSF1R inhibitors.
- Enhancing remyelination through transplantation of iPSC-derived oligodendrocytes or pharmacological activation of oligodendrocyte progenitor cells.
- Reprogramming astrocyte reactivity to restore neurovascular coupling and reduce excitotoxicity in stroke and epilepsy models.
4. Conclusions
- Recognition of glial heterogeneity and plasticity as a driver of neural network adaptation—Single-cell multiomics and high-resolution in vivo imaging have revealed unprecedented diversity within astrocytes, oligodendrocytes, microglia, NG2-glia, and ependymal cells, uncovering their context-dependent functions in synaptic modulation, neurovascular coupling, and immune regulation.
- Identification of glia-specific molecular targets with translational potential—novel therapeutic strategies now focus on modulating glutamate transporters in astrocytes, promoting remyelination via OPC differentiation, reprogramming microglia toward neuroprotective phenotypes, and restoring glymphatic clearance through aquaporin-4 polarity correction.
- Demonstration of glial roles in cognition, plasticity, and repair—evidence now shows that activity-dependent myelination, astrocyte–neuron lactate shuttling, and microglia-mediated synaptic remodeling are integral to learning, memory, and post-injury regeneration.
- Integration of glial biology into precision medicine frameworks—CRISPR–Cas9 editing, chemogenetic modulation, and bioengineered scaffolds targeting glia are entering preclinical and early-phase clinical trials, bridging basic discoveries with therapeutic application in neurodegenerative, neuroinflammatory, and psychiatric disorders.
- Emergence of glial biomarkers for early diagnosis and disease monitoring—circulating or CSF-derived glial markers (e.g., GFAP, sTREM2) are now being evaluated as prognostic tools, enabling patient stratification and therapy tracking.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jäkel, S.; Dimou, L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front. Cell. Neurosci. 2017, 11, 24. [Google Scholar] [CrossRef]
- Kettenmann, H.; Verkhratsky, A. Neuroglia—Living nerve glue. Fortschr. Neurol. Psychiatr. 2011, 79, 588–597. [Google Scholar] [CrossRef]
- Peng, H.-R.; Zhang, Y.-K.; Zhou, J.-W. The Structure and Function of Glial Networks: Beyond the Neuronal Connections. Neurosci. Bull. 2023, 39, 531–540. [Google Scholar] [CrossRef]
- Allen, N.J.; Lyons, D.A. Glia as architects of central nervous system formation and function. Science 2018, 362, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Choi, J.; Yoon, B.-E. Neuron-Glia Interactions in Neurodevelopmental Disorders. Cells 2020, 9, 2176. [Google Scholar] [CrossRef] [PubMed]
- von Bernhardi, R.; Eugenín-von Bernhardi, J.; Flores, B.; Eugenín León, J. Glial Cells and Integrity of the Nervous System. Adv. Exp. Med. Biol. 2016, 949, 1–24. [Google Scholar] [CrossRef]
- Donnelly, C.R.; Andriessen, A.S.; Chen, G.; Wang, K.; Jiang, C.; Maixner, W.; Ji, R.-R. Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics 2020, 17, 846–860. [Google Scholar] [CrossRef]
- Antel, J.P.; Becher, B.; Ludwin, S.K.; Prat, A.; Quintana, F.J. Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. J. Immunol. 2020, 204, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Araque, A.; Navarrete, M. Glial cells in neuronal network function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2375–2381. [Google Scholar] [CrossRef]
- Hansson, E.; Rönnbäck, L. Glial neuronal signaling in the central nervous system. FASEB J. 2003, 17, 341–348. [Google Scholar] [CrossRef]
- Dimou, L.; Gallo, V. NG2-glia and their functions in the central nervous system. Glia 2015, 63, 1429–1451. [Google Scholar] [CrossRef]
- Koroleva, A.; Deiwick, A.; El-Tamer, A.; Koch, L.; Shi, Y.; Estévez-Priego, E.; Ludl, A.-A.; Soriano, J.; Guseva, D.; Ponimaskin, E.; et al. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds. ACS Appl. Mater. Interfaces 2021, 13, 7839–7853. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Monje, M. Neuron-Glial Interactions in Health and Brain Cancer. Adv. Biol. 2022, 6, e2200122. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, X.; Zhang, Y.; Zheng, X.; Cepeda, C.; Wang, Y.; Duan, S.; Tong, X. Interactions of glial cells with neuronal synapses, from astrocytes to microglia and oligodendrocyte lineage cells. Glia 2023, 71, 1383–1401. [Google Scholar] [CrossRef] [PubMed]
- Matejuk, A.; Vandenbark, A.A.; Offner, H. Cross-Talk of the CNS with Immune Cells and Functions in Health and Disease. Front. Neurol. 2021, 12, 672455. [Google Scholar] [CrossRef] [PubMed]
- Nutma, E.; Gent, D.; Amor, S.; Peferoen, L.A.N. Astrocyte and Oligodendrocyte Cross-Talk in the Central Nervous System. Cells 2020, 9, 600. [Google Scholar] [CrossRef]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef]
- Perea, G.; Sur, M.; Araque, A. Neuron-glia networks: Integral gear of brain function. Front. Cell. Neurosci. 2014, 8, 378. [Google Scholar] [CrossRef]
- Bedner, P.; Jabs, R.; Steinhäuser, C. Properties of human astrocytes and NG2 glia. Glia 2020, 68, 756–767. [Google Scholar] [CrossRef]
- Kim, Y.; Park, J.; Choi, Y.K. The Role of Astrocytes in the Central Nervous System Focused on BK Channel and Heme Oxygenase Metabolites: A Review. Antioxidants 2019, 8, 121. [Google Scholar] [CrossRef]
- Oberheim, N.A.; Goldman, S.A.; Nedergaard, M. Heterogeneity of astrocytic form and function. Methods Mol. Biol. 2012, 814, 23–45. [Google Scholar] [PubMed]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M.V. Astrocytes in human central nervous system diseases: A frontier for new therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Boulay, A.C.; Mazaré, N.; Saubaméa, B.; Cohen-Salmon, M. Preparing the Astrocyte Perivascular Endfeet Transcriptome to Investigate Astrocyte Molecular Regulations at the Brain-Vascular Interface. Methods Mol. Biol. 2019, 1938, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Castro, B.; Robel, S.; Mishra, A. Astrocyte Endfeet in Brain Function and Pathology: Open Questions. Annu. Rev. Neurosci. 2023, 46, 101–121. [Google Scholar] [CrossRef]
- Esteras, N.; Blacker, T.S.; Zherebtsov, E.A.; Stelmashuk, O.A.; Zhang, Y.; Wigley, W.C.; Duchen, M.R.; Dinkova-Kostova, A.T.; Abramov, A.Y. Nrf2 regulates glucose uptake and metabolism in neurons and astrocytes. Redox Biol. 2023, 62, 102672. [Google Scholar] [CrossRef]
- Hülsmann, S.; Oku, Y.; Zhang, W.; Richter, D.W. Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur. J. Neurosci. 2000, 12, 856–862. [Google Scholar] [CrossRef]
- Meldolesi, J. Role of Senescent Astrocytes in Health and Disease. Int. J. Mol. Sci. 2023, 24, 8498. [Google Scholar] [CrossRef]
- Gómez-Gonzalo, M.; Martin-Fernandez, M.; Martínez-Murillo, R.; Mederos, S.; Hernández-Vivanco, A.; Jamison, S.; Fernandez, A.P.; Serrano, J.; Calero, P.; Futch, H.S.; et al. Neuron-astrocyte signaling is preserved in the aging brain. Glia 2017, 65, 569–580. [Google Scholar] [CrossRef]
- Hahn, J.; Wang, X.; Margeta, M. Astrocytes increase the activity of synaptic GluN2B NMDA receptors. Front. Cell. Neurosci. 2015, 9, 117. [Google Scholar] [CrossRef]
- Rasia-Filho, A.A.; Calcagnotto, M.E.; von Bohlen Und Halbach, O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. Adv. Neurobiol. 2023, 34, 255–310. [Google Scholar] [CrossRef]
- Vernadakis, A. Glia-neuron intercommunications and synaptic plasticity. Prog. Neurobiol. 1996, 49, 185–214. [Google Scholar] [CrossRef]
- Jahn, H.M.; Scheller, A.; Kirchhoff, F. Genetic control of astrocyte function in neural circuits. Front. Cell. Neurosci. 2015, 9, 310. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Yang, Z.; Li, H.; Qin, M.; Gao, H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer’s disease. Adv. Drug Deliv. Rev. 2024, 207, 115219. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sun, W.; Bai, J.; Gao, F.; Ma, H.; Liu, H.; Hu, J.; Xu, C.; Zhang, X.; Liu, Z.; et al. Targeting blood brain barrier-Remote ischemic conditioning alleviates cognitive impairment in female APP/PS1 rats. CNS Neurosci. Ther. 2024, 30, e14613. [Google Scholar] [CrossRef]
- Pekny, M.; Pekna, M.; Messing, A.; Steinhäuser, C.; Lee, J.M.; Parpura, V.; Hol, E.M.; Sofroniew, M.V.; Verkhratsky, A. Astrocytes: A central element in neurological diseases. Acta Neuropathol. 2016, 131, 323–345. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Ho, M.S.; Vardjan, N.; Zorec, R.; Parpura, V. General Pathophysiology of Astroglia. Adv. Exp. Med. Biol. 2019, 1175, 149–179. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Astrocyte cells in the brain have immune memory. Nature 2024, 627, 744–745. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Zorec, R.; Rodríguez, J.J.; Parpura, V. Astroglia dynamics in ageing and Alzheimer’s disease. Curr. Opin. Pharmacol. 2016, 26, 74–79. [Google Scholar] [CrossRef]
- Scuderi, C.; Stecca, C.; Iacomino, A.; Steardo, L. Role of astrocytes in major neurological disorders: The evidence and implications. IUBMB Life 2013, 65, 957–961. [Google Scholar] [CrossRef]
- Rothstein, J.D.; Dykes-Hoberg, M.; Pardo, C.A.; Bristol, L.A.; Jin, L.; Kuncl, R.W.; Kanai, Y.; Hediger, M.A.; Wang, Y.; Schielke, J.P.; et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996, 16, 675–686. [Google Scholar] [CrossRef]
- Takahashi, K.; Kong, Q.; Lin, Y.; Stouffer, N.; Schulte, D.A.; Lai, L.; Liu, Q.; Chang, L.-C.; Dominguez, S.; Xing, X.; et al. Restored glial glutamate transporter EAAT2 function as a potential therapeutic approach for Alzheimer’s disease. J. Exp. Med. 2015, 212, 319–332. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhang, S.; Yan, D.; Dong, Y.; Zhang, P.; Sun, W.; Liu, X. Aquaporin 4 and its isoforms regulation ameliorate AQP4 Mis-localization-induced glymphatic dysfunction in ischemic stroke. J. Adv. Res. 2025, in press. [CrossRef] [PubMed]
- Mi, Y.; Qi, G.; Vitali, F.; Shang, Y.; Raikes, A.C.; Wang, T.; Jin, Y.; Brinton, R.D.; Gu, H.; Yin, F. Loss of fatty acid degradation by astrocytic mitochondria triggers neuroinflammation and neurodegeneration. Nat. Metab. 2023, 5, 445–465. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.; Huang, K.C.; Harkin, J.; Baker, A.; Hughes, J.M.; Pan, Y.; Tutrow, K.; VanderWall, K.B.; Lavekar, S.S.; Hernandez, M.; et al. Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models. Stem Cell Rep. 2024, 19, 1122–1136. [Google Scholar] [CrossRef]
- Abraham, M.; Peterburs, J.; Mundorf, A. Oligodendrocytes matter: A review of animal studies on early adversity. J. Neural Transm. 2023, 130, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Duncan, G.J.; Simkins, T.J.; Emery, B. Neuron-Oligodendrocyte Interactions in the Structure and Integrity of Axons. Front. Cell Dev. Biol. 2021, 9, 653101. [Google Scholar] [CrossRef]
- Abraham, M.; Mundorf, A.; Brodmann, K.; Freund, N. Unraveling the mystery of white matter in depression: A translational perspective on recent advances. Brain Behav. 2022, 12, e2629. [Google Scholar] [CrossRef]
- Leipp, F.; Vialaret, J.; Mohaupt, P.; Coppens, S.; Jaffuel, A.; Niehoff, A.-C.; Lehmann, S.; Hirtz, C. Glial fibrillary acidic protein in Alzheimer’s disease: A narrative review. Brain Commun. 2024, 6, fcae396. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shin, K.Y.; Chang, K.-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef]
- Dar, N.J.; Bhat, J.A.; John, U.; Bhat, S.A. Neuroglia in Neurodegeneration: Exploring Glial Dynamics in Brain Disorders. Neuroglia 2024, 5, 488–504. [Google Scholar] [CrossRef]
- Brown, H.J.; Fan, R.Z.; Bell, R.; Salehe, S.S.; Martínez, C.M.; Lai, Y.; Tieu, K. Imbalanced mitochondrial dynamics in human PD and α-synuclein mouse brains. Neurobiol. Dis. 2025, 212, 106976. [Google Scholar] [CrossRef]
- Yang, Y.; Song, J.-J.; Choi, Y.R.; Kim, S.-H.; Seok, M.-J.; Wulansari, N.; Darsono, W.H.W.; Kwon, O.-C.; Chang, M.-Y.; Park, S.M.; et al. Therapeutic functions of astrocytes to treat ?-synuclein pathology in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2022, 119, e2110746119. [Google Scholar] [CrossRef]
- Almeida, R.G.; Lyons, D.A. On myelinated axon plasticity and neuronal circuit formation and function. J. Neurosci. 2017, 37, 10023–10034. [Google Scholar] [CrossRef]
- Piaton, G.; Gould, R.M.; Lubetzki, C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J. Neurochem. 2010, 114, 1243–1260. [Google Scholar] [CrossRef]
- Philips, T.; Rothstein, J.D. Oligodendroglia: Metabolic supporters of neurons. J. Clin. Investig. 2017, 127, 3271–3280. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, J. Oligodendrocytes in neurodegenerative diseases. Front. Biol. 2013, 8, 127–133. [Google Scholar] [CrossRef]
- Brown, T.L.; Macklin, W.B. The Actin Cytoskeleton in Myelinating Cells. Neurochem. Res. 2020, 45, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Richter-Landsberg, C. The Cytoskeleton in Oligodendrocytes: Microtubule Dynamics in Health and Disease. J. Mol. Neurosci. 2008, 35, 55–63. [Google Scholar] [CrossRef]
- Wilkins, A.; Majed, H.; Layfield, R.; Compston, A.; Chandran, S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: A novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J. Neurosci. 2003, 23, 4967–4974. [Google Scholar] [CrossRef]
- Li, J.; Jaiswal, M.K.; Chien, J.-F.; Kozlenkov, A.; Jung, J.; Zhou, P.; Gardashli, M.; Pregent, L.J.; Engelberg-Cook, E.; Dickson, D.W.; et al. Divergent single cell transcriptome and epigenome alterations in ALS and FTD patients with C9orf72 mutation. Nat. Commun. 2023, 14, 5714. [Google Scholar] [CrossRef]
- Caldwell, A.L.M.; Sancho, L.; Deng, J.; Bosworth, A.; Miglietta, A.; Diedrich, J.K.; Shokhirev, M.N.; Allen, N.J. Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders. Nat. Neurosci. 2022, 25, 1163–1178. [Google Scholar] [CrossRef]
- Gildea, H.K.; Liddelow, S.A. Mechanisms of astrocyte aging in reactivity and disease. Mol. Neurodegener. 2025, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- French, H.M.; Reid, M.; Mamontov, P.; Simmons, R.A.; Grinspan, J.B. Oxidative stress disrupts oligodendrocyte maturation. J. Neurosci. Res. 2009, 87, 3076–3087. [Google Scholar] [CrossRef] [PubMed]
- Suminaite, D.; Lyons, D.A.; Livesey, M.R. Myelinated axon physiology and regulation of neural circuit function. Glia 2019, 67, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Tepavčević, V.; Lubetzki, C. Oligodendrocyte progenitor cell recruitment and remyelination in multiple sclerosis: The more, the merrier? Brain 2022, 145, 4178–4192. [Google Scholar] [CrossRef]
- Gautier, H.O.B.; Evans, K.A.; Volbracht, K.; James, R.; Sitnikov, S.; Lundgaard, I.; James, F.; Lao-Peregrin, C.; Reynolds, R.; Franklin, R.J.M.; et al. Neuronal activity regulates remyelination via glutamate signalling to oligodendrocyte progenitors. Nat. Commun. 2015, 6, 8518. [Google Scholar] [CrossRef]
- Huang, S.; Ren, C.; Luo, Y.; Ding, Y.; Ji, X.; Li, S. New insights into the roles of oligodendrocytes regulation in ischemic stroke recovery. Neurobiol. Dis. 2023, 184, 106200. [Google Scholar] [CrossRef]
- Koreman, E.; Sun, X.; Lu, Q.R. Chromatin remodeling and epigenetic regulation of oligodendrocyte myelination and myelin repair. Mol. Cell Neurosci. 2018, 87, 18–26. [Google Scholar] [CrossRef]
- Seo, J.H.; Miyamoto, N.; Hayakawa, K.; Pham, L.-D.D.; Maki, T.; Ayata, C.; Kim, K.-W.; Lo, E.H.; Arai, K. Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J. Clin. Investig. 2013, 123, 782–786. [Google Scholar] [CrossRef]
- Dzyubenko, E.; Gottschling, C.; Faissner, A. Neuron-Glia Interactions in Neural Plasticity: Contributions of Neural Extracellular Matrix and Perineuronal Nets. Neural Plast. 2016, 2016, 5214961. [Google Scholar] [CrossRef]
- Sancho, L.; Contreras, M.; Allen, N.J. Glia as sculptors of synaptic plasticity. Neurosci. Res. 2021, 167, 17–29. [Google Scholar] [CrossRef]
- Yuliana, Y. Understanding Brain Plasticity in Learning Process. Int. J. Res. STEM Educ. 2020, 2, 42–58. [Google Scholar] [CrossRef]
- Bennett, G.A.; Palliser, H.K.; Walker, D.; Hirst, J. Severity and timing: How prenatal stress exposure affects glial developmental, emotional behavioral and plasma neurosteroid responses in guinea pig offspring. Psychoneuroendocrinology 2016, 70, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Birey, F.; Kokkosis, A.G.; Aguirre, A. Oligodendroglia-lineage cells in brain plasticity, homeostasis and psychiatric disorders. Curr. Opin. Neurobiol. 2017, 47, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Yamin, M.; Islam, M.M.; Sarker, M.T.; Meem, A.F.K.; Akter, A.; Emran, T.B.; Cavalu, S.; Sharma, R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid. Med. Cell. Longev. 2022, 2022, 3201644. [Google Scholar] [CrossRef]
- Białoń, M.; Wąsik, A. Advantages and limitations of animal schizophrenia models. Int. J. Mol. Sci. 2022, 23, 5968. [Google Scholar] [CrossRef]
- Kuhn, S.; Gritti, L.; Crooks, D.; Dombrowski, Y. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019, 8, 1424. [Google Scholar] [CrossRef]
- Tolentino, M.; Pace, F.; Perantie, D.C.; Mikesell, R.; Huecker, J.; Chahin, S.; Ghezzi, L.; Piccio, L.; Cross, A.H. Cerebrospinal fluid biomarkers as predictors of multiple sclerosis severity. Mult. Scler. Relat. Disord. 2025, 94, 106268. [Google Scholar] [CrossRef]
- Panichi, L.B.; Stanca, S.; Dolciotti, C.; Bongioanni, P. The Role of Oligodendrocytes in Neurodegenerative Diseases: Unwrapping the Layers. Int. J. Mol. Sci. 2025, 26, 4623. [Google Scholar] [CrossRef]
- Gklinos, P.; Dobson, R. Myelin Oligodendrocyte Glycoprotein-Antibody Associated Disease: An Updated Review of the Clinical Spectrum, Pathogenetic Mechanisms and Therapeutic Management. Antibodies 2024, 13, 43. [Google Scholar] [CrossRef]
- Varley, J.A.; Champsas, D.; Prossor, T.; Pontillo, G.; Abdel-Mannan, O.; Khaleeli, Z.; Petzold, A.; Toosy, A.T.; Trip, S.A.; Wilson, H.; et al. Validation of the 2023 International Diagnostic Criteria for MOGAD in a Selected Cohort of Adults and Children. Neurology 2024, 103, e209321. [Google Scholar] [CrossRef]
- Enokida, T.; Hattori, K.; Ota, M.; Tatsumi, M.; Hidese, S.; Sato, N.; Hoshino, M.; Kunugi, H. Correlation between myelin basic protein levels in cerebrospinal fluid and motor speed in patients with schizophrenia. Neuropsychopharmacol. Rep. 2024, 44, 663–670. [Google Scholar] [CrossRef]
- Yandamuri, S.S.; Filipek, B.; Obaid, A.H.; Lele, N.; Thurman, J.; Makhani, N.; Nowak, R.J.; Guo, Y.; Lucchinetti, C.F.; Flanagan, E.P.; et al. MOGAD patient autoantibodies induce complement, phagocytosis, and cellular cytotoxicity. JCI Insight 2023, 8, e165373. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Misu, T.; Fujihara, K.; Aoki, M. Pathology of myelin oligodendrocyte glycoprotein antibody-associated disease: A comparison with multiple sclerosis and aquaporin 4 antibody-positive neuromyelitis optica spectrum disorders. Front. Neurol. 2023, 14, 1209749. [Google Scholar] [CrossRef]
- Abe, Y.; Yasui, M. Aquaporin-4 in Neuromyelitis Optica Spectrum Disorders: A Target of Autoimmunity in the Central Nervous System. Biomolecules 2022, 12, 591. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, H.; Tang, C. Aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders: Progress of experimental models based on disease pathogenesis. Neural Regen. Res. 2025, 20, 354–365. [Google Scholar] [CrossRef]
- Eugenín-von Bernhardi, J.; Dimou, L. NG2-glia, More Than Progenitor Cells. Adv. Exp. Med. Biol. 2016, 949, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Galichet, C.; Clayton, R.W.; Lovell-Badge, R. Novel Tools and Investigative Approaches for the Study of Oligodendrocyte Precursor Cells (NG2-Glia) in CNS Development and Disease. Front. Cell. Neurosci. 2021, 15, 673132. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Zhang, M.; Yao, Z. The roles of neuron-NG2 glia synapses in promoting oligodendrocyte development and remyelination. Cell Tissue Res. 2020, 381, 43–53. [Google Scholar] [CrossRef]
- Vigano, F.; Dimou, L. The heterogeneous nature of NG2-glia. Brain Res. 2016, 1638 Pt B, 129–137. [Google Scholar] [CrossRef]
- Parolisi, R.; Boda, E. NG2 Glia: Novel Roles beyond Re-/Myelination. Neuroglia 2018, 1, 151–175. [Google Scholar] [CrossRef]
- Cichorek, M.; Kowiański, P.; Lietzau, G.; Lasek, J.; Moryś, J. Neuroglia—Development and role in physiological and pathophysiological processes. Folia Morphol. 2021, 80, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Patt, L.; Tascio, D.; Domingos, C.; Timmermann, A.; Jabs, R.; Henneberger, C.; Steinhäuser, C.; Seifert, G. Impact of Developmental Changes of GABAA Receptors on Interneuron-NG2 Glia Transmission in the Hippocampus. Int. J. Mol. Sci. 2023, 24, 13490. [Google Scholar] [CrossRef]
- Du, X.; Zhang, Z.; Zhou, H.; Zhou, J. Modulators of NG2-Glia Differentiation into Neurons and Glia and Their Crosstalk. Cell. Mol. Neurobiol. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Levine, J. The reactions and role of NG2 glia in spinal cord injury. Brain Res. 2016, 1638 Pt B, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Song, F.-E.; Huang, J.-L.; Lin, S.-H.; Wang, S.; Ma, G.-F.; Tong, X.-P. Roles of NG2-glia in ischemic stroke. CNS Neurosci. Ther. 2017, 23, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Lull, M.E.; Block, M.L. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010, 7, 354–365. [Google Scholar] [CrossRef]
- Thameem Dheen, S.; Kaur, C.; Ling, E.-A. Microglial activation and its implications in the brain diseases. Curr. Med. Chem. 2007, 14, 1189–1197. [Google Scholar] [CrossRef]
- Augusto-Oliveira, M.; Arrifano, G.P.; Lopes-Araújo, A.; Santos-Sacramento, L.; Takeda, P.Y.; Anthony, D.C.; Malva, J.O.; Crespo-Lopez, M.E. What Do Microglia Really Do in Healthy Adult Brain? Cells 2019, 8, 1293. [Google Scholar] [CrossRef]
- Leyh, J.; Paeschke, S.; Mages, B.; Michalski, D.; Nowicki, M.; Bechmann, I.; Winter, K. Classification of Microglial Morphological Phenotypes Using Machine Learning. Front. Cell. Neurosci. 2021, 15, 701673. [Google Scholar] [CrossRef]
- Aloisi, F. The role of microglia and astrocytes in CNS immune surveillance and immunopathology. Adv. Exp. Med. Biol. 1999, 468, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Sundal, C. Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Neurology 2014, 82, 1846. [Google Scholar] [CrossRef] [PubMed]
- van Rossum, D.; Hanisch, U.-K. Microglia. Metab. Brain Dis. 2004, 19, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Zhang, Y.; Chen, Y.; Zhu, J.; Yang, Y.; Zhang, H.-L. Role of Microglia in Neurological Disorders and Their Potentials as a Therapeutic Target. Mol. Neurobiol. 2017, 54, 7567–7584. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, J.; Tan, Y.; Chen, S. Microglia in neurodegenerative diseases: Mechanism and potential therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 359. [Google Scholar] [CrossRef]
- Darwish, S.F.; Elbadry, A.M.M.; Elbokhomy, A.S.; Salama, G.A.; Salama, R.M. The dual face of microglia (M1/M2) as a potential target in the protective effect of nutraceuticals against neurodegenerative diseases. Front. Aging 2023, 4, 1231706. [Google Scholar] [CrossRef]
- Guo, S.; Wang, H.; Yin, Y. Microglia Polarization From M1 to M2 in Neurodegenerative Diseases. Front. Aging Neurosci. 2022, 14, 815347. [Google Scholar] [CrossRef]
- Duggan, M.R.; Morgan, D.G.; Price, B.R.; Rajbanshi, B.; Martin-Pe?a, A.; Tansey, M.G.; Walker, K.A. Immune modulation to treat Alzheimer’s disease. Mol. Neurodegener. 2025, 20, 39. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Seyedmirzaei, H.; Karami, S. Neuroimaging biomarkers and CSF sTREM2 levels in Alzheimer’s disease: A longitudinal study. Sci. Rep. 2024, 14, 15318. [Google Scholar] [CrossRef]
- Ewers, M.; Franzmeier, N.; Suárez-Calvet, M.; Morenas-Rodriguez, E.; Caballero, M.A.A.; Kleinberger, G.; Piccio, L.; Cruchaga, C.; Deming, Y.; Dichgans, M.; et al. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer’s disease. Sci. Transl. Med. 2019, 11, eaav6221. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, J.; Wang, W.; Liu, X.; Fu, Y.; Fan, D. sTREM2 cerebrospinal fluid levels are a potential biomarker in amyotrophic lateral sclerosis and associate with UMN burden. Front. Neurol. 2024, 15, 1515252. [Google Scholar] [CrossRef]
- Ruan, C.; Elyaman, W. A New Understanding of TMEM119 as a Marker of Microglia. Front. Cell. Neurosci. 2022, 16, 902372. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-L.; Yang, S.; Zhou, L.-Q.; Chu, Y.-H.; Pang, X.-W.; You, Y.-F.; Zhang, H.; Zhang, L.-Y.; Zhu, L.-F.; Chen, L.; et al. Bruton’s tyrosine kinase inhibition ameliorated neuroinflammation during chronic white matter ischemia. J. Neuroinflamm. 2024, 21, 195. [Google Scholar] [CrossRef]
- Bhargava, P.; Kim, S.; Reyes, A.A.; Grenningloh, R.; Boschert, U.; Absinta, M.; Pardo, C.; Zijl, P.V.; Zhang, J.; Calabresi, P.A. Imaging meningeal inflammation in CNS autoimmunity identifies a therapeutic role for BTK inhibition. Brain 2021, 144, 1396–1408. [Google Scholar] [CrossRef]
- Zurawski, J.; Tauhid, S.; Chu, R.; Khalid, F.; Healy, B.C.; Weiner, H.L.; Bakshi, R. 7T MRI cerebral leptomeningeal enhancement is common in relapsing-remitting multiple sclerosis and is associated with cortical and thalamic lesions. Mult. Scler. 2020, 26, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.; Butovsky, O. Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu. Rev. Immunol. 2017, 35, 441–468. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Ferretti, M.T. Function and Dysfunction of Microglia during Brain Development: Consequences for Synapses and Neural Circuits. Front. Synaptic Neurosci. 2017, 9, 9. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Zhou, H.; Zhou, J. NG2-glia crosstalk with microglia in health and disease. CNS Neurosci. Ther. 2022, 28, 1663–1674. [Google Scholar] [CrossRef]
- Nishiyama, A.; Yang, Z.; Butt, A. Astrocytes and NG2-glia: What’s in a name? J. Anat. 2005, 207, 687–693. [Google Scholar] [CrossRef]
- Wigley, R.; Hamilton, N.; Nishiyama, A.; Kirchhoff, F.; Butt, A.M. Morphological and physiological interactions of NG2-glia with astrocytes and neurons. J. Anat. 2007, 210, 661–670. [Google Scholar] [CrossRef]
- Girolamo, F.; Errede, M.; Bizzoca, A.; Virgintino, D.; Ribatti, D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022, 11, 1707. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Geng, P.; Zhao, X.; Wang, Q.; Liu, C.; Guo, C.; Dong, W.; Jin, X. The NG2-glia is a potential target to maintain the integrity of neurovascular unit after acute ischemic stroke. Neurobiol. Dis. 2023, 180, 106076. [Google Scholar] [CrossRef] [PubMed]
- Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity 2021, 54, 2194–2208. [Google Scholar] [CrossRef]
- Gemma, C.; Bachstetter, A.D. The role of microglia in adult hippocampal neurogenesis. Front. Cell. Neurosci. 2013, 7, 229. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E. What Are the Roles of Oligodendrocyte Precursor Cells in Normal and Pathologic Conditions? Neurology 2023, 101, 958–965. [Google Scholar] [CrossRef]
- Zou, P.; Wu, C.; Liu, T.C.Y.; Duan, R.; Yang, L. Oligodendrocyte progenitor cells in Alzheimer’s disease: From physiology to pathology. Transl. Neurodegener. 2023, 12, 52. [Google Scholar] [CrossRef]
- Levine, J.M.; Reynolds, R.; Fawcett, J.W. The oligodendrocyte precursor cell in health and disease. Trends Neurosci. 2001, 24, 39–47. [Google Scholar] [CrossRef]
- Leenders, F.; Koole, L.; Slaets, H.; Tiane, A.; van den Hove, D.; Vanmierlo, T. Navigating oligodendrocyte precursor cell aging in brain health. Mech. Ageing Dev. 2024, 220, 111959. [Google Scholar] [CrossRef]
- Guedes, J.R.; Ferreira, P.A.; Costa, J.M.; Cardoso, A.L.; Peça, J. Microglia-dependent remodeling of neuronal circuits. J. Neurochem. 2022, 163, 74–93. [Google Scholar] [CrossRef]
- Wlodarczyk, A.; Holtman, I.R.; Krueger, M.; Yogev, N.; Bruttger, J.; Khorooshi, R.; Benmamar-Badel, A.; de Boer-Bergsma, J.J.; Martin, N.A.; Karram, K.; et al. A novel microglial subset plays a key role in myelinogenesis in developing brain. EMBO J. 2017, 36, 3292–3308. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, A. Microglial Modulation as a Therapeutic Avenue for Perioperative Neurocognitive Disorders: Unveiling Pathophysiological Mechanisms and Clinical Implications. CNS Neurosci. Ther. 2025, 31, e70481. [Google Scholar] [CrossRef]
- Majewski, S.; Klein, P.; Boillée, S.; Clarke, B.E.; Patani, R. Towards an integrated approach for understanding glia in Amyotrophic Lateral Sclerosis. Glia 2025, 73, 591–607. [Google Scholar] [CrossRef]
- Blaszczyk, G.J.; Piscopo, V.E.C.; Goldsmith, T.M.; Chapleau, A.; Sirois, J.; Bernard, G.; Antel, J.P.; Durcan, T.M. Single cell RNAseq to identify subpopulations of glial progenitors in iPSC-derived oligodendroglial lineage cultures. NPJ Syst. Biol. Appl. 2025, 11, 35. [Google Scholar] [CrossRef]
- Hirbec, H.; Déglon, N.; Foo, L.C.; Goshen, I.; Grutzendler, J.; Hangen, E.; Kreisel, T.; Linck, N.; Muffat, J.; Regio, S.; et al. Emerging technologies to study glial cells. Glia 2020, 68, 1692–1728, Erratum in Glia 2021, 69, 507. https://doi.org/10.1002/glia.23901. [Google Scholar] [CrossRef] [PubMed]
- Ablinger, I.; Dressel, K.; Rott, T.; Lauer, A.A.; Tiemann, M.; Batista, J.P.; Taddey, T.; Grimm, H.S.; Grimm, M.O.W. Interdisciplinary Approaches to Deal with Alzheimer’s Disease-From Bench to Bedside: What Feasible Options Do Already Exist Today? Biomedicines 2022, 10, 2922. [Google Scholar] [CrossRef] [PubMed]
- Del Bigio, M.R. Ependymal cells: Biology and pathology. Acta Neuropathol. 2010, 119, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Enos, N.; Takenaka, H.; Scott, S.; Salfity, H.V.N.; Kirk, M.; Egar, M.W.; Sarria, D.A.; Slayback-Barry, D.; Belecky-Adams, T.; Chernoff, E.A.G. Meningeal Foam Cells and Ependymal Cells in Axolotl Spinal Cord Regeneration. Front. Immunol. 2019, 10, 2558. [Google Scholar] [CrossRef]
- Dopp, J.; Ortega, A.; Davie, K.; Poovathingal, S.; Baz, E.l.-S.; Liu, S. Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles. Nat. Neurosci. 2024, 27, 359–372. [Google Scholar] [CrossRef]
- Yamada, S.; Ishikawa, M.; Nozaki, K. Exploring mechanisms of ventricular enlargement in idiopathic normal pressure hydrocephalus: A role of cerebrospinal fluid dynamics and motile cilia. Fluids Barriers CNS 2021, 18, 20. [Google Scholar] [CrossRef]
- Morest, D.K.; Silver, J. Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are going? Glia 2003, 43, 6–18. [Google Scholar] [CrossRef]
- Ripoll, C.; Poulen, G.; Chevreau, R.; Lonjon, N.; Vachiery-Lahaye, F.; Bauchet, L.; Hugnot, J.-P. Persistence of FoxJ1+ Pax6+ Sox2+ ependymal cells throughout life in the human spinal cord. Cell Mol. Life Sci. 2023, 80, 181. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.C.; Li, D.; Berry, B.C.; Zheng, S.; Carroll, R.S.; Johnson, M.D.; Yang, H.W. Heterozygous FOXJ1 Mutations Cause Incomplete Ependymal Cell Differentiation and Communicating Hydrocephalus. Cell Mol. Neurobiol. 2023, 43, 4103–4116. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Anbarchian, T.; Tsai, J.M.; Plant, G.W.; Nusse, R. Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis. Proc. Natl. Acad. Sci. USA 2018, 115, E5954–E5962. [Google Scholar] [CrossRef] [PubMed]
- Nelles, D.G.; Hazrati, L.-N. Ependymal cells and neurodegenerative disease: Outcomes of compromised ependymal barrier function. Brain Commun. 2022, 4, fcac288. [Google Scholar] [CrossRef]
- Makrygianni, E.A.; Chrousos, G.P. Neural Progenitor Cells and the Hypothalamus. Cells 2023, 12, 1822. [Google Scholar] [CrossRef]
- Deng, S.; Gan, L.; Liu, C.; Xu, T.; Zhou, S.; Guo, Y.; Zhang, Z.; Yang, G.-Y.; Tian, H.; Tang, Y. Roles of Ependymal Cells in the Physiology and Pathology of the Central Nervous System. Aging Dis. 2023, 14, 468–483. [Google Scholar] [CrossRef]
- Redmond, S.A.; Figueres-Oñate, M.; Obernier, K.; Nascimento, M.A.; Parraguez, J.I.; López-Mascaraque, L.; Fuentealba, L.C.; Alvarez-Buylla, A. Development of Ependymal and Postnatal Neural Stem Cells and Their Origin from a Common Embryonic Progenitor. Cell Rep. 2019, 27, 429–441.e3. [Google Scholar] [CrossRef]
- Rodriguez-Jimenez, F.J.; Vilches, A.; Perez-Arago, M.A.; Clemente, E.; Roman, R.; Leal, J.; Castro, A.A.; Fustero, S.; Moreno-Manzano, V.; Jendelova, P.; et al. Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3. Neurotherapeutics 2021, 18, 515–533. [Google Scholar] [CrossRef]
- Jiménez, A.J.; Domínguez-Pinos, M.-D.; Guerra, M.M.; Fernández-Llebrez, P.; Pérez-Fígares, J.-M. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers 2014, 2, e28426. [Google Scholar] [CrossRef]
- Kawano, N.; Yagishita, S.; Hara, M.; Tadokoro, M. Pathologic features of ependymoma: Histologic patterns and a review of the literature. Neuropathology 1998, 18, 1–12. [Google Scholar] [CrossRef]
- Nelles, D.G.; Hazrati, L.-N. The pathological potential of ependymal cells in mild traumatic brain injury. Front. Cell. Neurosci. 2023, 17, 1216420. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Floriddia, E.M.; Toskas, K.; Fernandes, K.J.L.; Guérout, N.; Barnabé-Heider, F. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time. EBioMedicine 2016, 13, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Taupin, P. Therapeutic potential of adult neural stem cells. Recent Pat. CNS Drug Discov. 2006, 1, 299–303. [Google Scholar] [CrossRef] [PubMed]
Glial Cell Type | Molecular Biomarkers | Principal Physiological Functions | Disease-Associated Alterations | Translational/Diagnostic Relevance |
---|---|---|---|---|
Astrocytes | GFAP, S100β, AQP4, EAAT1/2 | Ion homeostasis, neurotransmitter clearance, metabolic support, BBB regulation, immune surveillance | Reactive astrogliosis, impaired glutamate uptake, AQP4 mislocalization, neuroinflammation | GFAP (CSF/plasma)—biomarker of AD progression [48]; AQP4-IgG—diagnostic of NMOSD [49] |
Oligodendrocytes | MBP, MOG, PLP1, CNPase | Myelination, axonal insulation, metabolic support | Demyelination (MS, leukodystrophies), oxidative stress, impaired coupling | CSF MBP—biomarker of demyelination [82]; MOG-IgG—defines MOGAD [80,81] |
NG2-glia (OPCs) | NG2/CSPG4, PDGFRα, Olig2 | Proliferation, differentiation, remyelination, synaptic modulation | Blocked differentiation, maladaptive responses in demyelination | Canonical identifiers: NG2/CSPG4, PDGFRα [125]; OPC dysfunction in aging and AD [126,128] |
Microglia | Iba1, TMEM119, CX3CR1 | Immune surveillance, synaptic pruning, phagocytosis | Chronic activation, NF-κB/NLRP3 signaling, oxidative stress | CSF sTREM2—biomarker of microglial activation in AD, ALS [109,111]; TMEM119—resident microglial marker (limitations) [112] |
Ependymal cells | Vimentin, CD24, FoxJ1 | CSF circulation, barrier function, support of neurogenic niches | Impaired CSF flow, barrier breakdown, hydrocephalus | FoxJ1—canonical marker [141]; FOXJ1 mutations—linked to hydrocephalus [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawrzyniak, A.; Krawczyk-Marć, I.; Żuryń, A.; Walocha, J.; Balawender, K. Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System. Int. J. Mol. Sci. 2025, 26, 9080. https://doi.org/10.3390/ijms26189080
Wawrzyniak A, Krawczyk-Marć I, Żuryń A, Walocha J, Balawender K. Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System. International Journal of Molecular Sciences. 2025; 26(18):9080. https://doi.org/10.3390/ijms26189080
Chicago/Turabian StyleWawrzyniak, Agata, Izabela Krawczyk-Marć, Agnieszka Żuryń, Jerzy Walocha, and Krzysztof Balawender. 2025. "Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System" International Journal of Molecular Sciences 26, no. 18: 9080. https://doi.org/10.3390/ijms26189080
APA StyleWawrzyniak, A., Krawczyk-Marć, I., Żuryń, A., Walocha, J., & Balawender, K. (2025). Diversity, Functional Complexity, and Translational Potential of Glial Cells in the Central Nervous System. International Journal of Molecular Sciences, 26(18), 9080. https://doi.org/10.3390/ijms26189080