MicroRNAs Secreted by the Embryo in Spent Culture Medium Can Regulate mRNAs Involved in Endometrial Receptivity, Embryo Attachment, and Invasion
Abstract
1. Introduction
2. Results
2.1. MiRNA Expression in Blastocoel Fluid and in Spent Culture Medium
2.2. MiRNA Expression in Spent Culture Medium and in Blank Medium
2.3. Network miRNA–mRNA Interaction and Signalling Pathway Analyses
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Design of Custom TaqMan Low-Density Array and miRNA Amplification
4.3. Expression Data Analysis and Statistics
4.4. Network miRNA–mRNA Interaction and Enrichment Pathway Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horgan, R.; Clancy, O.; Myers, J.; Baker, P. An Overview of Proteomic and Metabolomic Technologies and Their Application to Pregnancy Research. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 173–181. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M.; Stevens, J.; Schlenker, T.; Schoolcraft, W.B. Schoolcraft. Blastocyst Score Affects Implantation and Pregnancy Outcome: Towards a Single Blastocyst Transfer. Fertil. Steril. 2000, 73, 1155–1158. [Google Scholar] [CrossRef]
- Capalbo, A.; Rienzi, L.; Cimadomo, D.; Maggiulli, R.; Elliott, T.; Wright, G.; Nagy, Z.P.; Ubaldi, F.M. Correlation between Standard Blastocyst Morphology, Euploidy and Implantation: An Observational Study in Two Centers Involving 956 Screened Blastocysts. Hum. Reprod. 2014, 29, 1173–1181. [Google Scholar] [CrossRef]
- Grati, F.R.; Capalbo, A.; Gabbiato, I.; Battaglia, P.; Pittalis, M.C.; Bizzoco, D.; Cardarelli, L.; Gatta, V.; Lonardo, F.; Novelli, A.; et al. Prenatal Diagnosis Following Preimplantation Genetic Testing (Pgt): Recommendations of the Italian Society of Human Genetics (Sigu). J. Assist. Reprod. Genet. 2025, 42, 1015–1024. [Google Scholar] [CrossRef]
- Aoyama, N.; Kato, K. Trophectoderm Biopsy for Preimplantation Genetic Test and Technical Tips: A Review. Reprod. Med. Biol. 2020, 19, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Handayani, N.; Aubry, D.; Boediono, A.; Bowolaksono, A.; Sini, I.; Haq, N.M.D.; Sirait, B.; Periastiningrum, G.; Mutia, K.; Wiweko, B. Non-Invasive Pre-Implantation Genetic Testing’s Reliability for Aneuploidy Using Cell-Free DNA in Embryo Culture Media. J. Gynecol. Obstet. Hum. Reprod. 2024, 53, 102808. [Google Scholar] [CrossRef] [PubMed]
- Kuznyetsov, V.; Madjunkova, S.; Abramov, R.; Antes, R.; Ibarrientos, Z.; Motamedi, G.; Zaman, A.; Kuznyetsova, I.; Librach, C.L. Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (Mipgt-a) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid-Towards Development of a Clinical Assay. Sci. Rep. 2020, 10, 7244. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.N.; Monteiro, P.B. Monteiro. Non-Invasive Preimplantation Genetic Testing: A Literature Review. JBRA Assist. Reprod. 2022, 26, 554–558. [Google Scholar]
- Moustakli, E.; Zikopoulos, A.; Skentou, C.; Bouba, I.; Dafopoulos, K.; Georgiou, I. Evolution of Minimally Invasive and Non-Invasive Preimplantation Genetic Testing: An Overview. J. Clin. Med. 2024, 13, 2160. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, H.; Kong, S.; Wang, S.; Wang, H.; Wang, H.; Armant, D.R. Physiological and Molecular Determinants of Embryo Implantation. Mol. Asp. Med. 2013, 34, 939–980. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. Micrornas in Action: Biogenesis, Function and Regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Shekibi, M.; Heng, S.; Nie, G. Micrornas in the Regulation of Endometrial Receptivity for Embryo Implantation. Int. J. Mol. Sci. 2022, 23, 6210. [Google Scholar] [CrossRef]
- Cha, J.; Sun, X.; Dey, S.K. Mechanisms of Implantation: Strategies for Successful Pregnancy. Nat. Med. 2012, 18, 1754–1767. [Google Scholar] [CrossRef]
- Ramon, L.A.; Braza-Boils, A.; Gilabert-Estelles, J.; Gilabert, J.; Espana, F.; Chirivella, M.; Estelles, A. Micrornas Expression in Endometriosis and Their Relation to Angiogenic Factors. Hum. Reprod. 2011, 26, 1082–1090. [Google Scholar] [CrossRef]
- Salmasi, S.; Heidar, M.S.; Khaksary Mahabady, M.; Rashidi, B.; Mirzaei, H. MicroRNAs, Endometrial Receptivity and Molecular Pathways. Reprod. Biol. Endocrinol. 2024, 22, 139. [Google Scholar] [CrossRef]
- Zhou, W.; Dimitriadis, E. Secreted Microrna to Predict Embryo Implantation Outcome: From Research to Clinical Diagnostic Application. Front. Cell Dev. Biol. 2020, 8, 586510. [Google Scholar] [CrossRef]
- Kirkegaard, K.; Yan, Y.; Sørensen, B.S.; Hardarson, T.; Hanson, C.; Ingerslev, H.J.; Knudsen, U.B.; Kjems, J.; Lundin, K.; Ahlström, A. Comprehensive Analysis of Soluble Rnas in Human Embryo Culture Media and Blastocoel Fluid. J. Assist. Reprod. Genet. 2020, 37, 2199–2209. [Google Scholar] [CrossRef]
- Hernández-Vargas, P.; Muñoz, M.; Domínguez, F. Identifying Biomarkers for Predicting Successful Embryo Implantation: Applying Single to Multi-Omics to Improve Reproductive Outcomes. Hum. Reprod. Update 2020, 26, 264–301. [Google Scholar] [CrossRef]
- Jin, J.; Ma, J.; Wang, X.; Hong, F.; Zhang, Y.; Zhou, F.; Wan, C.; Zou, Y.; Yang, J.; Lu, S.; et al. Multi-Omics Pgt: Re-Evaluation of Euploid Blastocysts for Implantation Potential Based on Rna Sequencing. Hum. Reprod. 2024, 39, 2861–2872. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, R.; Caponnetto, A.; Ferrara, C.; Fazzio, A.; Barbagallo, C.; Stella, M.; Barbagallo, D.; Ragusa, M.; Vento, M.E.; Borzì, P.; et al. Up-Regulated Micrornas in Blastocoel Fluid of Human Implanted Embryos Could Control Circuits of Pluripotency and Be Related to Embryo Competence. J. Assist. Reprod. Genet. 2025, 42, 1635–1649. [Google Scholar] [CrossRef] [PubMed]
- Nabeel, M.A.; Nowak, R.A. Extracellular Vesicles in Implantation: Cross-Talk between the Embryo and Endometrium. Adv. Anat. Embryol. Cell Biol. 2025. [Google Scholar] [CrossRef]
- Giacomini, E.; Vago, R.; Sanchez, A.M.; Podini, P.; Zarovni, N.; Murdica, V.; Rizzo, R.; Bortolotti, D.; Candiani, M.; Viganò, P. Secretome of In Vitro Cultured Human Embryos Contains Extracellular Vesicles That Are Uptaken by the Maternal Side. Sci. Rep. 2017, 7, 5210. [Google Scholar] [CrossRef]
- Segura-Benítez, M.; Bas-Rivas, A.; Juárez-Barber, E.; Carbajo-García, M.C.; Faus, A.; Santos, M.J.D.L.; Pellicer, A.; Ferrero, H. Human Blastocysts Uptake Extracellular Vesicles Secreted by Endometrial Cells Containing Mirnas Related to Implantation. Hum. Reprod. 2023, 38, 1547–1559. [Google Scholar] [CrossRef]
- Voros, C.; Varthaliti, A.; Athanasiou, D.; Mavrogianni, D.; Bananis, K.; Athanasiou, A.; Athanasiou, A.; Papahliou, A.-M.; Zografos, C.G.; Kondili, P.; et al. Microrna Signatures in Endometrial Receptivity-Unlocking Their Role in Embryo Implantation and Ivf Success: A Systematic Review. Biomedicines 2025, 13, 1189. [Google Scholar] [CrossRef] [PubMed]
- Omes, C.; Conti, A.; Benedetti, L.; Tomasoni, V.; De Marchi, D.; Nappi, R.E.; Cusella De Angelis, M.G.; Ceccarelli, G. Expression of miRNA from Spent Pre-Implantation Embryos Culture Media. Reprod. Biol. 2024, 24, 100847. [Google Scholar] [CrossRef] [PubMed]
- Mutia, K.; Wiweko, B.; Abinawanto, A.; Dwiranti, A.; Bowolaksono, A. Micrornas as a Biomarker to Predict Embryo Quality Assessment in in Vitro Fertilization. Int. J. Fertil. Steril. 2023, 17, 85–91. [Google Scholar] [PubMed]
- Fang, F.; Li, Z.; Yu, J.; Long, Y.; Zhao, Q.; Ding, X.; Wu, L.; Shao, S.; Zhang, L.; Xiang, W. Micrornas Secreted by Human Embryos Could Be Potential Biomarkers for Clinical Outcomes of Assisted Reproductive Technology. J. Adv. Res. 2021, 31, 25–34. [Google Scholar] [CrossRef]
- Tomic, V.; Kasum, M.; Vucic, K. Impact of Embryo Quality and Endometrial Thickness on Implantation in Natural Cycle Ivf. Arch. Gynecol. Obstet. 2020, 301, 1325–1330. [Google Scholar] [CrossRef]
- Tosar, J.P.; Cayota, A.; Eitan, E.; Halushka, M.K.; Witwer, K.W. Ribonucleic Artefacts: Are Some Extracellular Rna Discoveries Driven by Cell Culture Medium Components? J. Extracell. Vesicles 2017, 6, 1272832. [Google Scholar] [CrossRef]
- Auber, M.; Fröhlich, D.; Drechsel, O.; Karaulanov, E.; Krämer-Albers, E. Serum-Free Media Supplements Carry Mirnas That Co-Purify with Extracellular Vesicles. J. Extracell. Vesicles 2019, 8, 1656042. [Google Scholar] [CrossRef]
- Robertson, S.A.; Moldenhauer, L.M.; Green, E.S.; Care, A.S.; Hull, M.L. Immune Determinants of Endometrial Receptivity: A Biological Perspective. Fertil. Steril. 2022, 117, 1107–1120. [Google Scholar] [CrossRef]
- Hewitt, S.C.; Wu, S.-P.; Wang, T.; Ray, M.; Brolinson, M.; Young, S.L.; Spencer, T.E.; DeCherney, A.; DeMayo, F.J. The Estrogen Receptor Alpha Cistrome in Human Endometrium and Epithelial Organoids. Endocrinology 2022, 163, bqac116. [Google Scholar] [CrossRef]
- Zegers, M.M.; Friedl, P. Rho Gtpases in Collective Cell Migration. Small GTPases 2014, 5, e28997. [Google Scholar] [CrossRef] [PubMed]
- Grewal, S.; Carver, J.G.; Ridley, A.J.; Mardon, H.J. Implantation of the Human Embryo Requires Rac1-Dependent Endometrial Stromal Cell Migration. Proc. Natl. Acad. Sci. USA 2008, 105, 16189–16194. [Google Scholar] [CrossRef]
- Yao, S.; Shi, F.; Mu, N.; Li, X.; Ma, G.; Wang, Y.; Sun, X.; Liu, X.; Su, L. Angio-Associated Migratory Cell Protein (Aamp) Interacts with Cell Division Cycle 42 (Cdc42) and Enhances Migration and Invasion in Human Non-Small Cell Lung Cancer Cells. Cancer Lett. 2021, 502, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yan, J. Update of Wnt Signaling in Implantation and Decidualization. Reprod. Med. Biol. 2016, 15, 95–105. [Google Scholar] [CrossRef]
- Tepekoy, F.; Akkoyunlu, G.; Demir, R. The Role of Wnt Signaling Members in the Uterus and Embryo During Pre-Implantation and Implantation. J. Assist. Reprod. Genet. 2015, 32, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Liao, H.; Lin, W.; Li, Z.; Ma, X.; Xu, Q.; Yu, F. The Role of Tgf-Beta During Pregnancy and Pregnancy Complications. Int. J. Mol. Sci. 2023, 24, 16882. [Google Scholar] [CrossRef]
- Kao, L.C.; Tulac, S.; Lobo, S.; Imani, B.; Yang, J.P.; Germeyer, A.; Osteen, K.; Taylor, R.N.; Lessey, B.A.; Giudice, L.C. Global Gene Profiling in Human Endometrium During the Window of Implantation. Endocrinology 2002, 143, 2119–2138. [Google Scholar] [CrossRef]
- Guo, X.; Yi, H.; Li, T.C.; Wang, Y.; Wang, H.; Chen, X. Role of Vascular Endothelial Growth Factor (Vegf) in Human Embryo Implantation: Clinical Implications. Biomolecules 2021, 11, 253. [Google Scholar] [CrossRef]
- Mrozikiewicz, A.E.; Kurzawińska, G.; Walczak, M.; Skrzypczak-Zielińska, M.; Ożarowski, M.; Jędrzejczak, P. Up-Regulated mRNA Expression of VEGFA Receptors (FlT1 and KDR) in Placentas after Assisted Reproductive Technology Fertilization. J. Appl. Genet. 2024, 65, 531–540. [Google Scholar] [CrossRef]
- Calle, A.; Toribio, V.; Yáñez-Mó, M.; Ramírez, M.Á. Embryonic Trophectoderm Secretomics Reveals Chemotactic Migration and Intercellular Communication of Endometrial and Circulating Mscs in Embryonic Implantation. Int. J. Mol. Sci. 2021, 22, 5638. [Google Scholar] [CrossRef]
- Wang, Q.; He, G.; Hou, M.; Chen, L.; Chen, S.; Xu, A.; Fu, Y. Cell Cycle Regulation by Alternative Polyadenylation of Ccnd1. Sci. Rep. 2018, 8, 6824. [Google Scholar] [CrossRef]
- Pálinkás, H.L.; Rácz, G.A.; Gál, Z.; Hoffmann, O.I.; Tihanyi, G.; Róna, G.; Gócza, E.; Hiripi, L.; Vértessy, B.G. Crispr/Cas9-Mediated Knock-out of Dutpase in Mice Leads to Early Embryonic Lethality. Biomolecules 2019, 9, 136. [Google Scholar] [CrossRef]
- Sun, X.; Ruan, Y.C.; Guo, J.; Chen, H.; Tsang, L.L.; Zhang, X.; Jiang, X.; Chan, H.C. Regulation of Mir-101/Mir-199a-3p by the Epithelial Sodium Channel During Embryo Implantation: Involvement of Creb Phosphorylation. Reproduction 2014, 148, 559–568. [Google Scholar] [CrossRef]
- Jin, X.L.; O’nEill, C. Neill. Camp-Responsive Element-Binding Protein Expression and Regulation in the Mouse Preimplantation Embryo. Reproduction 2007, 134, 667–675. [Google Scholar] [CrossRef]
- Abreu, C.M.; Thomas, V.; Knaggs, P.; Bunkheila, A.; Cruz, A.; Teixeira, S.R.; Alpuim, P.; Francis, L.W.; Gebril, A.; Ibrahim, A.; et al. Non-Invasive Molecular Assessment of Human Embryo Development and Implantation Potential. Biosens. Bioelectron. 2020, 157, 112144. [Google Scholar] [CrossRef] [PubMed]
- Cabello-Pinedo, S.; Abdulla, H.; Mas, S.; Fraire, A.; Maroto, B.; Seth-Smith, M.; Escriba, M.; Teruel, J.; Crespo, J.; Munné, S.; et al. Development of a Novel Non-Invasive Metabolomics Assay to Predict Implantation Potential of Human Embryos. Reprod. Sci. 2024, 31, 2706–2717. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, R.; Palini, S.; Vento, M.E.; La Ferlita, A.; Faro, M.J.L.; Caroppo, E.; Borzì, P.; Falzone, L.; Barbagallo, D.; Ragusa, M.; et al. Identification of Extracellular Vesicles and Characterization of Mirna Expression Profiles in Human Blastocoel Fluid. Sci. Rep. 2019, 9, 84. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Feise, R.J. Do Multiple Outcome Measures Require P-Value Adjustment? BMC Med. Res. Methodol. 2002, 2, 8. [Google Scholar] [CrossRef] [PubMed]
miRNA ID | Ln (FC) | ±Std. Dev | p-Value |
---|---|---|---|
miR-106a | 5.13 | 0.76 | 0.001 |
miR-141 | 4.70 | 1.25 | 0.005 |
miR-150 | 4.18 | 1.10 | 0.001 |
miR-17 | 3.53 | 1.28 | 0.02 |
miR-192 | 4.04 | 1.01 | 0.001 |
miR-19b | −4.01 | 1.24 | 0.01 |
miR-202 | 5.73 | 1.44 | 0.0005 |
miR-203 | 4.38 | 1.29 | 0.001 |
miR-20a | 5.28 | 1.30 | 0.0004 |
miR-212 | 3.26 | 2.33 | 0.04 |
miR-26a | 3.73 | 2.19 | 0.02 |
miR-29c | 6.05 | 1.33 | 0.0005 |
miR-302a | 7.19 | 1.57 | 0.0001 |
miR-302b | 7.05 | 1.33 | 0.01 |
miR-302c | 2.55 | 1.10 | 0.01 |
miR-30c | 3.41 | 0.74 | 0.0001 |
miR-31 | 4.90 | 1.05 | 0.004 |
miR-320 | −2.00 | 0.96 | 0.04 |
miR-345 | 7.08 | 1.29 | 0.0013 |
miR-367 | 7.00 | 1.16 | 0.0009 |
miR-373 | 6.74 | 1.53 | 0.0002 |
miR-512-3p | 4.02 | 1.07 | 0.01 |
miR-515-3p | 6.76 | 1.25 | 0.01 |
miR-597 | 5.84 | 1.50 | 0.0004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caponnetto, A.; Ferrara, C.; Fazzio, A.; Carli, L.; Barbagallo, C.; Stella, M.; Barbagallo, D.; Ragusa, M.; Feichtinger, M.; Di Pietro, C.; et al. MicroRNAs Secreted by the Embryo in Spent Culture Medium Can Regulate mRNAs Involved in Endometrial Receptivity, Embryo Attachment, and Invasion. Int. J. Mol. Sci. 2025, 26, 8879. https://doi.org/10.3390/ijms26188879
Caponnetto A, Ferrara C, Fazzio A, Carli L, Barbagallo C, Stella M, Barbagallo D, Ragusa M, Feichtinger M, Di Pietro C, et al. MicroRNAs Secreted by the Embryo in Spent Culture Medium Can Regulate mRNAs Involved in Endometrial Receptivity, Embryo Attachment, and Invasion. International Journal of Molecular Sciences. 2025; 26(18):8879. https://doi.org/10.3390/ijms26188879
Chicago/Turabian StyleCaponnetto, Angela, Carmen Ferrara, Anna Fazzio, Luca Carli, Cristina Barbagallo, Michele Stella, Davide Barbagallo, Marco Ragusa, Michael Feichtinger, Cinzia Di Pietro, and et al. 2025. "MicroRNAs Secreted by the Embryo in Spent Culture Medium Can Regulate mRNAs Involved in Endometrial Receptivity, Embryo Attachment, and Invasion" International Journal of Molecular Sciences 26, no. 18: 8879. https://doi.org/10.3390/ijms26188879
APA StyleCaponnetto, A., Ferrara, C., Fazzio, A., Carli, L., Barbagallo, C., Stella, M., Barbagallo, D., Ragusa, M., Feichtinger, M., Di Pietro, C., & Battaglia, R. (2025). MicroRNAs Secreted by the Embryo in Spent Culture Medium Can Regulate mRNAs Involved in Endometrial Receptivity, Embryo Attachment, and Invasion. International Journal of Molecular Sciences, 26(18), 8879. https://doi.org/10.3390/ijms26188879