Functional Role of Single-Nucleotide Polymorphisms on IFNG and IFNGR1 in Humans with Cardiovascular Disease
Abstract
1. Introduction
2. Results
2.1. Study Approach
2.2. Sc-eQTL Mapping and Validation
2.3. IFNG and IFNGR1 Sc-eQTLs in T Lymphocytes
3. Discussion
4. Materials and Methods
4.1. Participant Cohort and Sample Collection
4.2. SNP–Chip Genotyping and QC
4.3. PBMC Preparation, Library Preparation, and CITE-Sequencing
4.4. CITE-Seq and Cell Type Identification
4.5. Doublet Removal and Quality Control
4.6. eQTL Mapping
4.7. Replication/Validation Analysis
4.8. Flow Cytometry
4.9. NicheNet and CellChat Analyses
4.10. Colocalization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HIV | Human Immunodeficiency Virus |
WIHS | Women’s Interagency HIV Study |
sCVD | Subclinical Cardiovascular Disease |
CAD | Coronary Artery Disease |
LLT | Lipid Lowering Therapy |
PBMC | Peripheral Blood Mononuclear Cells |
GWAS | Genome-Wide Association Study |
eQTL | Expression Quantitative Trait Locus |
sc-eQTL | Single-Cell eQTL |
DICE | Database of Immune Cell eQTLs, Expression, and Epigenomics |
IFNG | Interferon-Gamma |
IFNGR1 | Interferon-Gamma Receptor 1 |
References
- Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012, 380, 2095–2128. [Google Scholar] [CrossRef] [PubMed]
- Drobni, Z.D.; Kolossvary, M.; Karady, J.; Jermendy, A.L.; Tarnoki, A.D.; Tarnoki, D.L.; Simon, J.; Szilveszter, B.; Littvay, L.; Voros, S.; et al. Heritability of Coronary Artery Disease: Insights From a Classical Twin Study. Circ. Cardiovasc. Imaging 2022, 15, e013348. [Google Scholar] [CrossRef] [PubMed]
- McLaren, P.J.; Carrington, M. The impact of host genetic variation on infection with HIV-1. Nat. Immunol. 2015, 16, 577–583. [Google Scholar] [CrossRef]
- Matta, A.; Rabès, J.P.; Taraszkiewicz, D.; Carrié, D.; Roncalli, J.; Ferrières, J. Effect of causative genetic variants on atherosclerotic cardiovascular disease in heterozygous familial hypercholesterolemia patients. Front. Cardiovasc. Med. 2023, 10, 1182554. [Google Scholar] [CrossRef]
- Dwyer, J.H.; Allayee, H.; Dwyer Kathleen, M.; Fan, J.; Wu, H.; Mar, R.; Lusis Aldons, J.; Mehrabian, M. Arachidonate 5-Lipoxygenase Promoter Genotype, Dietary Arachidonic Acid, and Atherosclerosis. N. Engl. J. Med. 2004, 350, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Fellay, J.; Shianna, K.V.; Ge, D.; Colombo, S.; Ledergerber, B.; Weale, M.; Zhang, K.; Gumbs, C.; Castagna, A.; Cossarizza, A.; et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007, 317, 944–947. [Google Scholar] [CrossRef]
- Troyer, J.L.; Nelson, G.W.; Lautenberger, J.A.; Chinn, L.; McIntosh, C.; Johnson, R.C.; Sezgin, E.; Kessing, B.; Malasky, M.; Hendrickson, S.L.; et al. Genome-wide association study implicates PARD3B-based AIDS restriction. J. Infect. Dis. 2011, 203, 1491–1502. [Google Scholar] [CrossRef]
- Aherrahrou, R.; Reinberger, T.; Hashmi, S.; Erdmann, J. GWAS breakthroughs: Mapping the journey from one locus to 393 significant CAD associations. Cardiovasc. Res. 2024, 120, 1508–1530. [Google Scholar] [CrossRef]
- Saigusa, R.; Roy, P.; Freuchet, A.; Gulati, R.; Ghosheh, Y.; Suthahar, S.S.A.; Durant, C.P.; Hanna, D.B.; Kiosses, W.B.; Orecchioni, M.; et al. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. Nat. Cardiovasc. Res. 2022, 1, 462–475. [Google Scholar] [CrossRef]
- Vallejo, J.; Saigusa, R.; Gulati, R.; Armstrong Suthahar, S.S.; Suryawanshi, V.; Alimadadi, A.; Durant, C.P.; Ghosheh, Y.; Roy, P.; Ehinger, E.; et al. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol. 2022, 20, 193. [Google Scholar] [CrossRef]
- Fu, J.; Sha, B.E.; Thomas, L.L. HIV-1-infected peripheral blood mononuclear cells enhance neutrophil survival and HLA-DR expression via increased production of GM-CSF: Implications for HIV-1 infection. J. Acquir. Immune Defic. Syndr. 2011, 56, 16–25. [Google Scholar] [CrossRef]
- Miró, Ò.; López, S.; Martínez, E.; Pedrol, E.; Milinkovic, A.; Deig, E.; Garrabou, G.; Casademont, J.; Gatell, J.M.; Cardellach, F. Mitochondrial Effects of HIV Infection on the Peripheral Blood Mononuclear Cells of HIV-Infected Patients Who Were Never Treated with Antiretrovirals. Clin. Infect. Dis. 2004, 39, 710–716. [Google Scholar] [CrossRef]
- Kleiveland, C.R. Peripheral Blood Mononuclear Cells. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K., Cotter, P., López-Expósito, I., Kleiveland, C., Lea, T., Mackie, A., Requena, T., Swiatecka, D., Wichers, H., Eds.; Springer: Cham, Switzerland, 2015; pp. 161–167. [Google Scholar]
- Jeurink, P.V.; Vissers, Y.M.; Rappard, B.; Savelkoul, H.F.J. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: Kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008, 57, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Benagiano, M.; Azzurri, A.; Ciervo, A.; Amedei, A.; Tamburini, C.; Ferrari, M.; Telford, J.L.; Baldari, C.T.; Romagnani, S.; Cassone, A.; et al. T helper type 1 lymphocytes drive inflammation in human atherosclerotic lesions. Proc. Natl. Acad. Sci. USA 2003, 100, 6658–6663. [Google Scholar] [CrossRef]
- Frostegård, J.; Ulfgren, A.K.; Nyberg, P.; Hedin, U.; Swedenborg, J.; Andersson, U.; Hansson, G.K. Cytokine expression in advanced human atherosclerotic plaques: Dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999, 145, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Tracy, R.P.; Doyle, M.F.; Olson, N.C.; Huber, S.A.; Jenny, N.S.; Sallam, R.; Psaty, B.M.; Kronmal, R.A. T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: The Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 2013, 2, e000117. [Google Scholar] [CrossRef]
- Hokello, J.; Tyagi, K.; Owor, R.O.; Sharma, A.L.; Bhushan, A.; Daniel, R.; Tyagi, M. New Insights into HIV Life Cycle, Th1/Th2 Shift during HIV Infection and Preferential Virus Infection of Th2 Cells: Implications of Early HIV Treatment Initiation and Care. Life 2024, 14, 104. [Google Scholar] [CrossRef]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 2005, 201, 233–240. [Google Scholar] [CrossRef]
- Kim, C.H.; Rott, L.S.; Clark-Lewis, I.; Campbell, D.J.; Wu, L.; Butcher, E.C. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 2001, 193, 1373–1381. [Google Scholar] [CrossRef]
- Maria, M.; Pouyanfar, N.; Örd, T.; Kaikkonen, M.U. The Power of Single-Cell RNA Sequencing in eQTL Discovery. Genes 2022, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Adimora, A.A.; Ramirez, C.; Benning, L.; Greenblatt, R.M.; Kempf, M.C.; Tien, P.C.; Kassaye, S.G.; Anastos, K.; Cohen, M.; Minkoff, H.; et al. Cohort Profile: The Women’s Interagency HIV Study (WIHS). Int. J. Epidemiol. 2018, 47, 393–394i. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J.; Shoupe, D.; Azen, S.P.; Stanczyk, F.Z.; Hwang-Levine, J.; Budoff, M.J.; Henderson, V.W. Methods and baseline cardiovascular data from the Early versus Late Intervention Trial with Estradiol testing the menopausal hormone timing hypothesis. Menopause 2015, 22, 391–401. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e3529. [Google Scholar] [CrossRef]
- Illumina, I. HumanOmni2.5-Quad BeadChip: Product Information; Illumina: San Diego, CA, USA, 2010. [Google Scholar]
- Schmiedel, B.J.; Singh, D.; Madrigal, A.; Valdovino-Gonzalez, A.G.; White, B.M.; Zapardiel-Gonzalo, J.; Ha, B.; Altay, G.; Greenbaum, J.A.; McVicker, G.; et al. Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression. Cell 2018, 175, 1701–1715.e1716. [Google Scholar] [CrossRef]
- Placek, K.; Coffre, M.; Maiella, S.; Bianchi, E.; Rogge, L. Genetic and epigenetic networks controlling T helper 1 cell differentiation. Immunology 2009, 127, 155–162. [Google Scholar] [CrossRef]
- Höhler, T.; Reuss, E.; Adams, P.; Bartsch, B.; Weigmann, B.; Wörns, M.; Galle, P.R.; Victor, A.; Neurath, M.F. A Genetic Basis for IFN-γ Production and T-bet Expression in Humans. J. Immunol. 2005, 175, 5457–5462. [Google Scholar] [CrossRef] [PubMed]
- Olson, N.C.; Sallam, R.; Doyle, M.F.; Tracy, R.P.; Huber, S.A. T helper cell polarization in healthy people: Implications for cardiovascular disease. J. Cardiovasc. Transl. Res. 2013, 6, 772–786. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 1989, 7, 145–173. [Google Scholar] [CrossRef]
- Fitch, F.W.; McKisic, M.D.; Lancki, D.W.; Gajewski, T.F. Differential regulation of murine T lymphocyte subsets. Annu. Rev. Immunol. 1993, 11, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Laurat, E.; Poirier, B.; Tupin, E.; Caligiuri, G.; Hansson, G.K.; Bariéty, J.; Nicoletti, A. In Vivo Downregulation of T Helper Cell 1 Immune Responses Reduces Atherogenesis in Apolipoprotein E-Knockout Mice. Circulation 2001, 104, 197–202. [Google Scholar] [CrossRef]
- Roy, P.; Sidney, J.; Lindestam Arlehamn, C.S.; Phillips, E.; Mallal, S.; Armstrong Suthahar, S.S.; Billitti, M.; Rubiro, P.; Marrama, D.; Drago, F.; et al. Immunodominant MHC-II (Major Histocompatibility Complex II) Restricted Epitopes in Human Apolipoprotein B. Circ. Res. 2022, 131, 258–276. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.A.; Dobmeyer, J.M.; Dobmeyer, T.S.; Pape, M.; Ottmann, O.G.; Helm, E.B.; Hoelzer, D.; Rossol, R. Demonstration of the Th1 to Th2 cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on single cell level by flow cytometry. Aids 1997, 11, 1111–1118. [Google Scholar] [CrossRef]
- Sun, H.; Kim, D.; Li, X.; Kiselinova, M.; Ouyang, Z.; Vandekerckhove, L.; Shang, H.; Rosenberg, E.S.; Yu, X.G.; Lichterfeld, M. Th1/17 Polarization of CD4 T Cells Supports HIV-1 Persistence during Antiretroviral Therapy. J. Virol. 2015, 89, 11284–11293. [Google Scholar] [CrossRef] [PubMed]
- Clerici, M.; Shearer, G.M. A TH1 → TH2 switch is a critical step in the etiology of HIV infection. Immunol. Today 1993, 14, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.-p.; Flavell, R.A. The Transcription Factor GATA-3 Is Necessary and Sufficient for Th2 Cytokine Gene Expression in CD4 T Cells. Cell 1997, 89, 587–596. [Google Scholar] [CrossRef]
- Bennett, M.R.; Sinha, S.; Owens, G.K. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 2016, 118, 692–702. [Google Scholar] [CrossRef]
- Hambrecht, R.; Wolf, A.; Gielen, S.; Linke, A.; Hofer, J.; Erbs, S.; Schoene, N.; Schuler, G. Effect of Exercise on Coronary Endothelial Function in Patients with Coronary Artery Disease. N. Engl. J. Med. 2000, 342, 454–460. [Google Scholar] [CrossRef]
- Bale, T.L.; Epperson, C.N. Sex as a Biological Variable: Who, What, When, Why, and How. Neuropsychopharmacology 2017, 42, 386–396. [Google Scholar] [CrossRef]
- Maglo, K.N.; Mersha, T.B.; Martin, L.J. Population Genomics and the Statistical Values of Race: An Interdisciplinary Perspective on the Biological Classification of Human Populations and Implications for Clinical Genetic Epidemiological Research. Front. Genet. 2016, 7, 22. [Google Scholar] [CrossRef]
- D’Souza, G.; Bhondoekhan, F.; Benning, L.; Margolick, J.B.; Adedimeji, A.A.; Adimora, A.A.; Alcaide, M.L.; Cohen, M.H.; Detels, R.; Friedman, M.R.; et al. Characteristics of the MACS/WIHS Combined Cohort Study: Opportunities for Research on Aging With HIV in the Longest US Observational Study of HIV. Am. J. Epidemiol. 2021, 190, 1457–1475. [Google Scholar] [CrossRef]
- Kaplan, R.C.; Kingsley, L.A.; Gange, S.J.; Benning, L.; Jacobson, L.P.; Lazar, J.; Anastos, K.; Tien, P.C.; Sharrett, A.R.; Hodis, H.N. Low CD4+ T-cell count as a major atherosclerosis risk factor in HIV-infected women and men. Aids 2008, 22, 1615–1624. [Google Scholar] [CrossRef]
- Hanna, D.B.; Post, W.S.; Deal, J.A.; Hodis, H.N.; Jacobson, L.P.; Mack, W.J.; Anastos, K.; Gange, S.J.; Landay, A.L.; Lazar, J.M.; et al. HIV Infection Is Associated With Progression of Subclinical Carotid Atherosclerosis. Clin. Infect. Dis. 2015, 61, 640–650. [Google Scholar] [CrossRef]
- Ehinger, E.; Ghosheh, Y.; Pramod, A.B.; Lin, J.; Hanna, D.B.; Mueller, K.; Durant, C.P.; Baas, L.; Qi, Q.; Wang, T.; et al. Classical monocyte transcriptomes reveal significant anti-inflammatory statin effect in women with chronic HIV. Cardiovasc. Res. 2021, 117, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Shendre, A.; Wiener, H.W.; Irvin, M.R.; Aouizerat, B.E.; Overton, E.T.; Lazar, J.; Liu, C.; Hodis, H.N.; Limdi, N.A.; Weber, K.M.; et al. Genome-wide admixture and association study of subclinical atherosclerosis in the Women’s Interagency HIV Study (WIHS). PLoS ONE 2017, 12, e0188725. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, s13742-015. [Google Scholar] [CrossRef]
- McGinnis, C.S.; Murrow, L.M.; Gartner, Z.J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Systems 2019, 8, 329–337.e324. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Stuart, T.; Kowalski, M.H.; Choudhary, S.; Hoffman, P.; Hartman, A.; Srivastava, A.; Molla, G.; Madad, S.; Fernandez-Granda, C.; et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nature Biotechnology 2024, 42, 293–304. [Google Scholar] [CrossRef]
- Battle, A.; Montgomery, S.B. Determining causality and consequence of expression quantitative trait loci. Hum. Genet. 2014, 133, 727–735. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.I.; Pritchard, J.K. Trans Effects on Gene Expression Can Drive Omnigenic Inheritance. Cell 2019, 177, 1022–1034.e1026. [Google Scholar] [CrossRef]
- Saha, A.; Battle, A. False positives in trans-eQTL and co-expression analyses arising from RNA-sequencing alignment errors. F1000Research 2018, 7, 1860. [Google Scholar] [CrossRef]
- Fulco, C.P.; Nasser, J.; Jones, T.R.; Munson, G.; Bergman, D.T.; Subramanian, V.; Grossman, S.R.; Anyoha, R.; Doughty, B.R.; Patwardhan, T.A.; et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 2019, 51, 1664–1669. [Google Scholar] [CrossRef]
- Urbut, S.M.; Wang, G.; Carbonetto, P.; Stephens, M. Flexible statistical methods for estimating and testing effects in genomic studies with multiple conditions. Nat. Genet. 2019, 51, 187–195. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R. R Core Team R: A Language and Environment for Statistical Computing; Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Posit Team. RStudio: Integrated Development Environment for R; Posit Software, PBC: Boston, MA, USA, 2025. [Google Scholar]
- Browaeys, R.; Saelens, W.; Saeys, Y. NicheNet: Modeling intercellular communication by linking ligands to target genes. Nat. Methods 2020, 17, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.-H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef] [PubMed]
- Foley, C.N.; Staley, J.R.; Breen, P.G.; Sun, B.B.; Kirk, P.D.W.; Burgess, S.; Howson, J.M.M. A fast and efficient colocalization algorithm for identifying shared genetic risk factors across multiple traits. Nat. Commun. 2021, 12, 764. [Google Scholar] [CrossRef]
- Costanzo, M.C.; von Grotthuss, M.; Massung, J.; Jang, D.; Caulkins, L.; Koesterer, R.; Gilbert, C.; Welch, R.P.; Kudtarkar, P.; Hoang, Q.; et al. The Type 2 Diabetes Knowledge Portal: An open access genetic resource dedicated to type 2 diabetes and related traits. Cell Metab. 2023, 35, 695–710.e696. [Google Scholar] [CrossRef]
- Jurgens, S.J.; Pirruccello, J.P.; Choi, S.H.; Morrill, V.N.; Chaffin, M.; Lubitz, S.A.; Lunetta, K.L.; Ellinor, P.T. Adjusting for common variant polygenic scores improves yield in rare variant association analyses. Nat. Genet. 2023, 55, 544–548. [Google Scholar] [CrossRef]
- Suzuki, K.; Hatzikotoulas, K.; Southam, L.; Taylor, H.J.; Yin, X.; Lorenz, K.M.; Mandla, R.; Huerta-Chagoya, A.; Melloni, G.E.M.; Kanoni, S.; et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 2024, 627, 347–357. [Google Scholar] [CrossRef]
- Pulit, S.L.; Stoneman, C.; Morris, A.P.; Wood, A.R.; Glastonbury, C.A.; Tyrrell, J.; Yengo, L.; Ferreira, T.; Marouli, E.; Ji, Y.; et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum. Mol. Genet. 2019, 28, 166–174. [Google Scholar] [CrossRef]
- Keaton, J.M.; Kamali, Z.; Xie, T.; Vaez, A.; Williams, A.; Goleva, S.B.; Ani, A.; Evangelou, E.; Hellwege, J.N.; Yengo, L.; et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet. 2024, 56, 778–791. [Google Scholar] [CrossRef]
- Zhao, W.; Rasheed, A.; Tikkanen, E.; Lee, J.J.; Butterworth, A.S.; Howson, J.M.M.; Assimes, T.L.; Chowdhury, R.; Orho-Melander, M.; Damrauer, S.; et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 2017, 49, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, M.; Li, Y.; Parashar, S.; Ramirez, C.; McKay, H.; Landay, A.; Aherrahrou, R.; Advani, A.; Patel, R.; Kaplan, R.; et al. Functional Role of Single-Nucleotide Polymorphisms on IFNG and IFNGR1 in Humans with Cardiovascular Disease. Int. J. Mol. Sci. 2025, 26, 8806. https://doi.org/10.3390/ijms26188806
Mehta M, Li Y, Parashar S, Ramirez C, McKay H, Landay A, Aherrahrou R, Advani A, Patel R, Kaplan R, et al. Functional Role of Single-Nucleotide Polymorphisms on IFNG and IFNGR1 in Humans with Cardiovascular Disease. International Journal of Molecular Sciences. 2025; 26(18):8806. https://doi.org/10.3390/ijms26188806
Chicago/Turabian StyleMehta, Megh, Yang Li, Smriti Parashar, Catalina Ramirez, Heather McKay, Alan Landay, Redouane Aherrahrou, Aarushi Advani, Raag Patel, Robert Kaplan, and et al. 2025. "Functional Role of Single-Nucleotide Polymorphisms on IFNG and IFNGR1 in Humans with Cardiovascular Disease" International Journal of Molecular Sciences 26, no. 18: 8806. https://doi.org/10.3390/ijms26188806
APA StyleMehta, M., Li, Y., Parashar, S., Ramirez, C., McKay, H., Landay, A., Aherrahrou, R., Advani, A., Patel, R., Kaplan, R., Lazar, J., Anastos, K., Hanna, D. B., Qi, Q., & Ley, K. (2025). Functional Role of Single-Nucleotide Polymorphisms on IFNG and IFNGR1 in Humans with Cardiovascular Disease. International Journal of Molecular Sciences, 26(18), 8806. https://doi.org/10.3390/ijms26188806