Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition
Abstract
1. Introduction
2. Results and Discussion
3. Material and Methods
3.1. General Procedure for Anti-Markovnikov Hydroindolation
3.2. General Procedure for Markovnikov Hydroindolation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. [Google Scholar] [CrossRef]
- Lysenko, V.; Machushynets, N.V.; van Dam, J.L.; Sterk, F.A.C.; Speer, A.; Ram, A.F.J.; Slingerland, C.J.; Van Wezel, G.P.; Martin, N.I. Total Synthesis, Structure Elucidation, and Bioactivity Evaluation of the Cyclic Lipopeptide Natural Product Paenilipoheptin, A. Org. Lett. 2025, 27, 2826–2831. [Google Scholar] [CrossRef] [PubMed]
- Frecentese, F.; Sodano, F.; Corvino, A.; Schiano, M.E.; Magli, E.; Albrizio, S.; Sparaco, R.; Andreozzi, G.; Nieddu, M.; Rimoli, M.G. The Application of Microwaves, Ultrasounds, and Their Combination in the Synthesis of Nitrogen-Containing Bicyclic Heterocycles. Int. J. Mol. Sci. 2023, 24, 10722. [Google Scholar] [CrossRef] [PubMed]
- Khalilullah, H.; Agarwal, D.K.; Ahsan, M.J.; Jadav, S.S.; Mohammed, H.A.; Khan, M.A.; Mohammed, S.A.A.; Khan, R. Synthesis and Anti-Cancer Activity of New Pyrazolinyl-Indole Derivatives: Pharmacophoric Interactions and Docking Studies for Identifying New EGFR Inhibitors. Int. J. Mol. Sci. 2022, 23, 6548. [Google Scholar] [CrossRef]
- Silva, P.; de Almeida, M.; Silva, J.; Albino, S.; Espírito-Santo, R.; Lima, M.; Villarreal, C.; Moura, R.; Santos, V. (E)-2-Cyano-3-(1H-Indol-3-Yl)-N-Phenylacrylamide, a Hybrid Compound Derived from Indomethacin and Paracetamol: Design, Synthesis and Evaluation of the Anti- Inflammatory Potential. Int. J. Mol. Sci. 2020, 21, 2591. [Google Scholar] [CrossRef]
- Olyaei, A.; Sadeghpour, M. Chemistry of 3-Cyanoacetyl Indoles: Synthesis, Reactions and Applications: A Recent Update. RSC Adv. 2023, 13, 21710–21745. [Google Scholar] [CrossRef]
- Chen, J.B.; Jia, Y.X. Recent Progress in Transition-Metal-Catalyzed Enantioselective Indole Functionalizations. Org. Biomol. Chem. 2017, 15, 3550–3567. [Google Scholar] [CrossRef] [PubMed]
- Lőrinczi, B.; Simon, P.; Szatmári, I. Synthesis of Indole-Coupled KYNA Derivatives via C–N Bond Cleavage of Mannich Bases. Int. J. Mol. Sci. 2022, 23, 7152. [Google Scholar] [CrossRef]
- Wang, S.Y.; Shi, X.C.; Laborda, P. Indole-Based Melatonin Analogues: Synthetic Approaches and Biological Activity. Eur. J. Med. Chem. 2020, 185, 111847. [Google Scholar] [CrossRef]
- Salami, S.A.; Smith, V.J.; Krause, R.W.M. Aqua/Mechanochemical Mediated Synthesis of Novel Spiro [Indole–Pyrrolidine] Derivatives. Int. J. Mol. Sci. 2023, 24, 2307. [Google Scholar] [CrossRef]
- Sorokin, B.; Filimonova, A.; Emelianova, A.; Kublitski, V.; Gvozd, A.; Shmygarev, V.; Yampolsky, I.; Guglya, E.; Gusev, E.; Kuzmin, D. Novel Triazeneindole Antibiotics: Synthesis and Hit-to-Lead Optimization. Int. J. Mol. Sci. 2025, 26, 1870. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, M.; Chodkowski, A.; Siwek, A.; Satała, G.; Bojarski, A.J.; Dawidowski, M. Design and Synthesis of Potential Multi-Target Antidepressants:_Exploration of 1-(4-(7-Azaindole)-3,6-dihydropyridin-1-yl)alkyl-3-(1H-indol-3-yl)pyrrolidine-2,5-dione Derivatives with Affinity for the Serotonin Transporter. Int. J. Mol. Sci. 2024, 25, 11276. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Feng, R.; Dong, Z.B. Recent Advances in Indole Synthesis and the Related Alkylation. Asian J. Org. Chem. 2023, 12, e202300092. [Google Scholar] [CrossRef]
- Ferrer, C.; Amijs, C.H.M.; Echavarren, A.M. Intra- and Intermolecular Reactions of Indoles with Alkynes Catalyzed by Gold. Chem. Eur. J. 2007, 13, 1358–1373. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Hyun, C.G. Discovery of Indole–Thiourea Derivatives as Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Kinetic Studies, and In Silico Analysis. Int. J. Mol. Sci. 2024, 25, 9636. [Google Scholar] [CrossRef]
- Al-Wabli, R.I.; Issa, I.S.; Al-mutairi, M.S.; Almomen, A.A.; Attia, M.I. A Facile Synthesis and Molecular Characterization of Certain New Anti-Proliferative Indole-Based Chemical Entities. Int. J. Mol. Sci. 2023, 24, 7862. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, N.; Ghosh, H.; Nitzsche, B.; Dandawate, P.; Höpfner, M.; Schobert, R.; Biersack, B. Synthesis and Anticancer Evaluation of New Indole-Based Tyrphostin Derivatives and Their (p-Cymene)dichloridoruthenium(II) Complexes. Int. J. Mol. Sci. 2023, 24, 854. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Padmavani, B.; Gupta, M.K. Gallium(III) Halide-Catalyzed Coupling of Indoles with Phenylacetylene: Synthesis of Bis(indolyl)phenylethanes. Tetrahedron Lett. 2004, 45, 7577–7579. [Google Scholar] [CrossRef]
- Luo, C.; Yang, H.; Mao, R.; Lu, C.; Cheng, G. An Efficient Au(i) Catalyst for Double Hydroarylation of Alkynes with Heteroarenes. New J. Chem. 2015, 39, 3417–3423. [Google Scholar] [CrossRef]
- Maiti, G.; Kayal, U.; Karmakar, R.; Bhattacharya, R.N. An Efficient One Pot Conversion of Alkynes to Bis(indolyl) and Bis(pyrrolyl)alkanes in Aqueous Ethanol. Indian J. Chem. Sect. B Org. Med. Chem. 2013, 52, 122–128. [Google Scholar] [CrossRef]
- Xie, M.H.; Xie, F.D.; Lin, G.F.; Zhang, J.H. Convenient Synthesis of Bis(indolyl)alkanes and Bis(pyrrolyl)alkanes by Cu(OTf)2-Catalyzed Addition of Indole and Pyrrole to Acetylenic Sulfone. Tetrahedron Lett. 2010, 51, 1213–1215. [Google Scholar]
- Baron, M.; Biffis, A. Gold(I) Complexes in Ionic Liquids: An Efficient Catalytic System for the C-H Functionalization of Arenes and Heteroarenes under Mild Conditions. Eur. J. Org. Chem. 2019, 2019, 3687–3693. [Google Scholar] [CrossRef]
- Xia, D.; Wang, Y.; Du, Z.; Zheng, Q.Y.; Wang, C. Rhenium-Catalyzed Regiodivergent Addition of Indoles to Terminal Alkynes. Org. Lett. 2012, 14, 588–591. [Google Scholar]
- Srivastava, A.; Patel, S.S.; Chandna, N.; Jain, N. Copper-Catalyzed Anti-Markovnikov Hydroindolation of Terminal Alkynes: Regioselective Synthesis of Bis(indolyl)alkanes. J. Org. Chem. 2016, 81, 11664–11670. [Google Scholar]
- Guo, S.; Fang, Z.; Zhou, B.; Hua, J.; Dai, Z.; Yang, Z.; Liu, C.; He, W.; Guo, K. Cu/Pd-Catalyzed Chemoselective Synthesis of C-3 Dicarbonyl Indoles and Bis(indolyl)alkanes from Aldehydes and Indoles. Org. Chem. Front. 2019, 6, 627–631. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Z.; He, C. Addition of Heterocycles to Electron Deficient Olefins and Alkynes Catalyzed by Gold(III). J. Organomet. Chem. 2005, 690, 5049–5054. [Google Scholar] [CrossRef]
- Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Pd-Catalyzed Selective Addition of Heteroaromatic C-H Bonds to C-C Triple Bonds under Mild Conditions. Org. Lett. 2000, 2, 2927–2930. [Google Scholar] [PubMed]
- Ferrer, C.; Escribano-Cuesta, A.; Echavarren, A.M. Synthesis of the Tetracyclic Core Skeleton of the Lundurines by a Gold-Catalyzed Cyclization. Tetrahedron 2009, 65, 9015–9020. [Google Scholar] [CrossRef]
- Ferrer, C.; Echavarren, A.M. Gold-Catalyzed Intramolecular Reaction of Indoles with Alkynes: Facile Formation of Eight-Membered Rings and an Unexpected Allenylation. Angew. Chem. Int. Ed. 2006, 45, 1105–1109. [Google Scholar]
- Donets, P.A.; Van Hecke, K.; Van Meervelt, L.; Van Der Eycken, E.V. Efficient Synthesis of the Indoloazocine Framework via Intramolecular Alkyne Carbocyclization. Org. Lett. 2009, 11, 3618–3621. [Google Scholar] [CrossRef]
- Barluenga, J.; Fernández, A.; Rodríguez, F.; Fañanás, F.J. Synthesis of Bis(indolyl)alkanes by a Site-Selective Gold-Catalyzed Addition of Indoles to Butynol Derivatives. J. Organomet. Chem. 2009, 694, 546–550. [Google Scholar] [CrossRef]
- Tyagi, A.; Khan, J.; Yadav, N.; Mahato, R.; Hazra, C.K. Catalyst-Switchable Divergent Synthesis of Bis(indolyl)alkanes and 3- Alkylated Indoles from Styrene Oxides. J. Org. Chem. 2022, 87, 10229–10240. [Google Scholar] [CrossRef]
- Subramaniapillai, S.G.; Ganesan, A. ZnCl2 Promoted Efficient, One-Pot Synthesis of 3-Arylmethyl and Diarylmethyl Indoles. Tetrahedron Lett. 2014, 55, 694–698. [Google Scholar] [CrossRef]
- Banari, H.; Kiyani, H.; Pourali, A.R. Bisindolization Reaction Employing Phthalimide-N-Sulfonic Acid as an Efficient Catalyst. Curr. Organocatalysis 2019, 7, 124–133. [Google Scholar] [CrossRef]
- Liu, P.; Pan, Y.M.; Xu, Y.L.; Wang, H.S. PTSA-Catalyzed Mannich-Type-Cyclization-Oxidation Tandem Reactions: One-Pot Synthesis of 1,3,5-Substituted Pyrazoles from Aldehydes, Hydrazines and Alkynes. Org. Biomol. Chem. 2012, 10, 4696–4698. [Google Scholar] [CrossRef]
- Yadav, A.; Dahiya, P.; Rawat, M.; Peddinti, R.K. PTSA-Catalyzed [3 + 2] Cycloaddition of in Situ Generated 3-Ylidene Oxindoles with Coumarin-Based N-Phenyl Enamine Derivatives. Eur. J. Org. Chem. 2024, 27, e202301310. [Google Scholar] [CrossRef]
- Milián, A.; Fernández-Rodríguez, M.A.; Merino, E.; Vaquero, J.J.; García-García, P. Metal-Free Temperature-Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl3-Promoted Skeletal Rearrangement. Angew. Chem. Int. Ed. 2022, 61, e202205651. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Liu, D.G.; Chang, Z.; Li, Z.; Fu, Y.; Lu, X. Nickel-Catalyzed Switchable Site-Selective Alkene Hydroalkylation by Temperature Regulation. Angew. Chem. Int. Ed. 2022, 61, e202205537. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Tang, N.; Zhou, W.; Li, C.; Ou, Y.; Abdukader, A.; Qiu, R. Base-Promoted Annulated Aromatization of Aryl Acetylenes with Dimethyl Sulfoxide to Access Symmetrical/Unsymmetric M- Terphenyl. J. Org. Chem. 2024, 89, 10572–10581. [Google Scholar] [CrossRef]
- Huang, W.J.; Liu, L.X.; Zhou, Y.G.; Wu, B.; Jiang, G.F. Brønsted Acid-Catalyzed C6 Functionalization of 2,3-Disubstituted Indoles for Construction of Cyano-Substituted All-Carbon Quaternary Centers. Org. Biomol. Chem. 2023, 21, 3691–3696. [Google Scholar] [CrossRef]
- Hermange, P.; Gicquiaud, J.; Barbier, M.; Karnat, A.; Toullec, P.Y. Bronsted Acid Catalyzed Carbocyclizations Involving Electrophilic Activation of Alkynes. Synthesis 2022, 54, 5360–5384. [Google Scholar] [CrossRef]
- Otani, T.; Ueki, K.; Cho, K.; Kanai, K.; Tateno, K.; Saito, T. Construction of Dibenzo-Fused Seven-to Nine-Membered Carbocycles via Bronsted Acid-Promoted Intramolecular Friedel–Crafts-Type Alkenylation. Chem. Commun. 2015, 51, 7895–7898. [Google Scholar]
- Ling, F.; Xiao, L.; Fang, L.; Feng, C.; Xie, Z.; Lv, Y.; Zhong, W. B(C6F5)3-Catalyzed Markovnikov Addition of Indoles to Aryl Alkynes: An Approach toward Bis(indolyl)alkanes. Org. Biomol. Chem. 2018, 16, 9274–9278. [Google Scholar] [CrossRef]
- Dipika, N.; Sharma, Y.B.; Pant, S.; Dhaked, D.K.; Guru, M.M. Borane-Catalyzed Dehydrogenative C-C Bond Formation of Indoles with N-Tosylhydrazones: An Experimental and Computational Study. Org. Chem. Front. 2022, 9, 3428–3437. [Google Scholar] [CrossRef]
- Schießl, J.; Rudolph, M.; Hashmi, A.S.K. The Gold-Catalyzed Hydroarylation of Alkynes with Electron-Rich Heteroarenes—A Kinetic Investigation and New Synthetic Possibilities. Adv. Synth. Catal. 2017, 359, 639–653. [Google Scholar] [CrossRef]
- Noland, W.E.; Brown, C.D.; DeKruif, R.D.; Lanzatella, N.P.; Gao, S.M.; Zabronsky, A.E.; Tritch, K.J. Condensation Reactions of Indole with Acetophenones Affording Mixtures of 3,3-(1-Phenylethane-1,1-diyl)bis(1H-indoles) and 1,2,3,4-Tetrahydro-3-(1H-indol-3-yl)-1-methyl-1,3-diphenylcyclopent[b]indoles. Synth. Commun. 2018, 48, 1755–1765. [Google Scholar] [CrossRef]
- Nair, V.N.; Kojasoy, V.; Laconsay, C.J.; Kong, W.Y.; Tantillo, D.J.; Tambar, U.K. Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides. J. Am. Chem. Soc. 2021, 143, 9016–9025. [Google Scholar] [CrossRef]
- Kumar, S.; Rastogi, S.K.; Singh, A.; Bharati Ahirwar, M.; Deshmukh, M.M.; Sinha, A.K.; Kumar, R. Friedel-Crafts-Type Reaction of (Het)arenes with Aldehydes/Ketones under Acid-Free Conditions Using Neutral Ionic Liquid: A Convenient Routes to Bis(indolyl)methanes and Beyond. Asian J. Org. Chem. 2022, 11, e202100749. [Google Scholar] [CrossRef]
- Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J. Organocatalytic Asymmetric Synthesis of 1,1-Diarylethanes by Transfer Hydrogenation. J. Am. Chem. Soc. 2015, 137, 383–389. [Google Scholar] [CrossRef] [PubMed]
Entry | Catalyst b | Solvent c | Temp (°C)/Time (h) | Yield (%) d |
---|---|---|---|---|
1 | TsOH | MeOH | rt/12 | 74 |
2 | TsOH | H2O | rt/12 | 71 |
3 | TsOH | EtOH | rt/12 | 53 |
4 | TsOH | MeOH | 55/3 | 83 |
5 | TsOH | H2O | 55/3 | 79 |
6 | TsOH | H2O/MeOH | 55/3 | 87 |
7 | TsOH | - | 55/3 | ta |
8 | - | H2O/MeOH | 55/24 | nr |
9 | con. H2SO4 | H2O/MeOH | 55/3 | 64 |
10 | CF3SO3H | H2O/MeOH | 55/3 | 52 |
11 | MsOH | H2O/MeOH | 55/3 | 46 |
12 | CSA | H2O/MeOH | 55/3 | 59 |
13 | con. HCl | H2O/MeOH | 55/3 | ta |
14 | CH3COOH | H2O/MeOH | 55/3 | nr |
15 | CF3COOH | H2O/MeOH | 55/3 | nr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganesan, A.; Kwon, Y.-U. Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition. Int. J. Mol. Sci. 2025, 26, 8757. https://doi.org/10.3390/ijms26188757
Ganesan A, Kwon Y-U. Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition. International Journal of Molecular Sciences. 2025; 26(18):8757. https://doi.org/10.3390/ijms26188757
Chicago/Turabian StyleGanesan, Asaithampi, and Yong-Uk Kwon. 2025. "Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition" International Journal of Molecular Sciences 26, no. 18: 8757. https://doi.org/10.3390/ijms26188757
APA StyleGanesan, A., & Kwon, Y.-U. (2025). Brønstead Acid-Catalyzed Regiodivergent Hydroindolation of Indoles: Temperature-Controlled Markovnikov and Anti-Markovnikov Addition. International Journal of Molecular Sciences, 26(18), 8757. https://doi.org/10.3390/ijms26188757