Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of Photocatalysts
2.2. Photocatalytic Efficiency Measurement
2.2.1. Photocatalytic Degradation of Tinidazole
2.2.2. The Possible Photocatalytic Degradation Mechanism of ZS
2.2.3. Possible Degradation Pathways of TNZ
3. Experiment and Methods
3.1. Materials and Reagents
3.2. Preparation of ZnBiGdO4
3.3. Synthesis of SnS2
3.4. Production Process of ZS
3.5. Method for Synthesizing N-Doped TiO2
3.6. Photoelectrochemistry Experiment
3.7. Experimental Setup and Procedure
3.8. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graves, K.J.; Williamson, J.C.; Novak, J.; Tiwari, H.K.; Secor, W.E.; Muzny, C.A. Nitazoxanide and tizoxanide demonstrate high levels of in vitro activity against metronidazole-susceptible and metronidazole-resistant Trichomonas vaginalis clinical isolates. Microbiol. Spectr. 2025, 13, e0271724. [Google Scholar] [CrossRef]
- Mishra, S.R.; Gadore, V.; Ahmaruzzaman, M. Insights into persulfate-activated photodegradation of tinidazole and photoreduction of hexavalent chromium through β-In2S3 anchored on Ag-doped fish scale-derived HAp composite quantum dots. J. Clean. Prod. 2023, 427, 139221. [Google Scholar] [CrossRef]
- Gadore, V.; Mishra, S.R.; Ahmaruzzaman, M. SnS2/ZIF-67 nanocomposite: A novel bifunctional, highly efficient, and reusable photocatalyst for enhanced visible-light-assisted biodiesel production and degradation of tinidazole. Mater. Res. Bull. 2025, 183, 113177. [Google Scholar] [CrossRef]
- Nguyen, T.A.M.; Le, T.K.; Hoang, C.N.; Nguyen, H.K.H.; Huynh, T.K.X. Silver-modification of ZnO thin films deposited on Zn-electroplated Cu substrate by thermal shock method for the enhanced photocatalytic performance. J. Taibah Univ. Sci. 2024, 18, 2285079. [Google Scholar] [CrossRef]
- Derkaoui, K.; Bencherifa, I.; Elfiad, A.; Mebdoua, Y.; Belkhetta, I.; Boukhouidem, K.; Benredouane, S.; Hadjersi, T.; Manseri, A.; Kechouane, M. Unveiling the Optical and Dielectric Properties of MnFe2O4: A High-Performance Visible-Light Photocatalyst for Sustainable Rhodamine B Degradation. J. Electron. Mater. 2025, 54, 5271–5286. [Google Scholar] [CrossRef]
- Muthukrishnaraj, A.; Vadivel, S.; Joni, I.M.; Balasubramanian, N. Development of reduced graphene oxide/CuBi2O4 hybrid for enhanced photocatalytic behavior under visible light irradiation. Ceram. Int. 2015, 41, 6164–6168. [Google Scholar] [CrossRef]
- Varadharajan, K.; Singaram, B.; Mani, R.; Jeyaram, J. Enhanced Visible Light Photocatalytic Activity of Ag and Zn Doped and Codoped TiO2 Nanoparticles. J. Clust. Sci. 2016, 27, 1815–1829. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Z.; Fang, J.; Wu, S.; Xu, W. Synthesis and characterization of mesoporous Bi/TiO2 nanoparticles with high photocatalytic activity under visible light. J. Mater. Res. 2013, 28, 1334–1342. [Google Scholar] [CrossRef]
- Tang, X.; Xue, Q.; Qi, X.; Cheng, C.; Yang, M.; Yang, T.; Chen, F.; Qiu, F.; Quan, X. DFT and experimental study on visible-light driven photocatalysis of rare-earth-doped TiO2. Vacuum 2022, 200, 110972. [Google Scholar] [CrossRef]
- Zhao, J.; He, Q.; Zhang, X.; Yang, J.; Yao, B.; Zhang, Q.; Yu, X. Preparation and properties of visible light responsive g-C3N4/BiNbO4 photocatalysts for tinidazole decomposition. Integr. Ferroelectr. 2016, 176, 37–53. [Google Scholar] [CrossRef]
- Jo, W.; Natarajan, T. Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem. Eng. J. 2015, 281, 549–565. [Google Scholar] [CrossRef]
- Qu, J.; Yang, X.; Guo, C.; Cai, Y.; Li, Z.; Hu, J.; Li, C. Construction of BiVO4/NiCo2O4 nanosheet Z-scheme heterojunction for highly boost solar water oxidation. J. Colloid Interface Sci. 2022, 613, 265–275. [Google Scholar] [CrossRef]
- Renukadevi, S.; Jeyakumari, A. Rational design of ZnFe2O4/g-C3N4 heterostructures composites for high efficient visible-light photocatalysis for degradation of aqueous organic pollutants. Inorg. Chem. Commun. 2020, 118, 108047. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, C.; Wang, A.; Palanisamy, K.; Chen, F. Facile synthesis of NiAl2O4/g-C3N4 composite for efficient photocatalytic degradation of tetracycline. J. Environ. Sci. 2023, 127, 700–713. [Google Scholar] [CrossRef]
- Zhang, Y.; Yao, L.; Zhang, G.; Dionysiou, D.; Li, J.; Du, X. One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl. Catal. B Environ. 2014, 144, 730–738. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Y.; Feng, J.; Li, X. Constructing 3D flower-like hierarchical ZnO/SnS2 heterojunction by decorating SnS2 nanosheets with ZnO nanoclusters as synergistic photocatalyst. Appl. Phys. Express 2022, 15, 071005. [Google Scholar] [CrossRef]
- Hao, L.; Luan, J. Visible Light-Driven Direct Z-Scheme Ho2SmSbO7/YbDyBiNbO7 Heterojunction Photocatalyst for Efficient Degradation of Fenitrothion. Molecules 2024, 29, 5930. [Google Scholar] [CrossRef]
- Anas, M.; Ali, A.; Khan, A.; Alhodaib, A.; Zaman, A.; Ahmad, T.; Tirth, V.; Algahtani, A.; Ahmad, S.; Abdullaeva, B.; et al. Influence of Zirconium (Zr4+) Substitution on the Crystal Structure and Optical and Dielectric Properties of Sr0.8Mg0.2(Sn1−xZrx)O3 Ceramics. ACS Omega 2023, 8, 33794–33801. [Google Scholar] [CrossRef]
- Du, H.; Luan, J. Synthesis, characterization and photocatalytic activity of new photocatalyst CdBiYO4. Solid State Sci. 2012, 14, 1295–1305. [Google Scholar] [CrossRef]
- Fancello, D.; Scalco, J.; Medas, D.; Rodeghero, E.; Martucci, A.; Meneghini, C.; De Giudici, G. XRD-Thermal Combined Analyses: An Approach to Evaluate the Potential of Phytoremediation, Phytomining, and Biochar Production. Int. J. Environ. Res. Public Health 2019, 16, 1976. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Cao, M.; Yang, J.; Shen, J.; Huang, J.; Zhao, Y.; Sun, Y.; Wang, L.; Shen, Y. Controllable synthesis of SnS2/SnS nanosheets and their photoelectric properties. Mater. Lett. 2016, 180, 284–287. [Google Scholar] [CrossRef]
- Umar, A.; Akhtar, M.; Dar, G.; Abaker, M.; Al-Hajry, A.; Baskoutas, S. Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta 2013, 114, 183–190. [Google Scholar] [CrossRef]
- Chandramouli, K.; Suryanarayana, B.; Babu, T.; Raghavendra, V.; Parajuli, D.; Murali, N.; Malapati, V.; Mammo, T.; Shanmukhi, P.; Gudla, U. Synthesis, structural and antibacterial activity of pure, Fe doped, and glucose capped ZnO nanoparticles. Surf. Interfaces 2021, 26, 100270. [Google Scholar] [CrossRef]
- Vinoth, R.; Neppolian, B. Visible Light Photocatalysts Bi2O3 with Graphene Oxide Support for the Effective Degradation of Organic Compound. Mater. Focus 2014, 3, 485–490. [Google Scholar] [CrossRef]
- Hou, R.; Pang, K.; Bai, Z.; Feng, Z.; Ye, D.; Guo, Z.; Kong, L.; Bai, J.; Li, W. Study on carboxyl groups in direct liquefaction of lignite: Conjoint analysis of theoretical calculations and experimental methods. Fuel 2021, 286, 119298. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, A.; Kumar, D.; Kumar, A.; Kumar, A.; Mahatha, S.; Praveenkumar, S. Unveiling the role of temperature on structural, compositional, morphological, thermal and optical properties of hydrothermally synthesized SnS2 nanostructures. Inorg. Chem. Commun. 2025, 171, 113548. [Google Scholar]
- Gandhi, A.; Cheng, C.; Wu, S. Structural and Enhanced Optical Properties of Stabilized γ-Bi2O3 Nanoparticles: Effect of Oxygen Ion Vacancies. Nanomaterials 2020, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fang, Y.; Wang, P. Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot. Chin. Phys. Lett. 2012, 29, 114210. [Google Scholar] [CrossRef]
- Tho, N.; Huy, B.; Khanh, D.; Vy, N.; Thang, N.; Sy, D.; Hai, L.; Phuong, N. Visible-Light Degradation of Organic Dye Based on a Heterostructure Photocatalyst. Top. Catal. 2020, 63, 1157–1168. [Google Scholar] [CrossRef]
- Luan, J.; Chen, M.; Hu, W. Synthesis, Characterization and Photocatalytic Activity of New Photocatalyst ZnBiSbO4 under Visible Light Irradiation. Int. J. Mol. Sci. 2014, 15, 9459–9480. [Google Scholar] [CrossRef]
- Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132, 181–186. [Google Scholar] [CrossRef]
- Nagatani, H.; Suzuki, I.; Kita, M.; Tanaka, M.; Katsuya, Y.; Sakata, O.; Omata, T. Structure of β-AgGaO2; ternary I–III–VI2 oxide semiconductor with a wurtzite-derived structure. J. Solid State Chem. 2015, 222, 66–70. [Google Scholar] [CrossRef]
- Butler, M.A. Photoelectrolysis and physical properties of the semiconducting electrode WO2. J. Appl. Phys. 1977, 48, 1914–1920. [Google Scholar] [CrossRef]
- Nowak, M.; Kauch, B.; Szperlich, P. Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy. Rev. Sci. Instrum. 2009, 80, 046107. [Google Scholar] [CrossRef]
- Ahn, S.; Jung, S.; Gwak, J.; Cho, A.; Shin, K.; Yoon, K.; Park, D.; Cheong, H.; Yun, J. Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values. Appl. Phys. Lett. 2010, 97, 021905. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, C.; Jin, P.; Zhao, C. Preparation of Z-Scheme α-Fe2O3/g-C3N4 Heterojunction Based on In-Situ Photodeposition and Photocatalytic Activity for Hydrogen Production under Visible Light. Chin. J. Inorg. Chem. 2022, 38, 469–478. [Google Scholar]
- Luan, J.; Hao, L.; Yao, Y.; Wang, Y.; Yang, G.; Li, J. Preparation and Property Characterization of Sm2EuSbO7/ZnBiSbO5 Heterojunction Photocatalyst for Photodegradation of Parathion Methyl under Visible Light Irradiation. Molecules 2023, 28, 7722. [Google Scholar] [CrossRef]
- Yan, S.; Yang, J.; Li, Y.; Jia, X.; Song, H. One-step synthesis of ZnS/BiOBr photocatalyst to enhance photodegradation of tetracycline under full spectral irradiation. Mater. Lett. 2020, 276, 128232. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Jiang, X.; Chen, S.; Meng, S.; Fu, X. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. J. Hazard. Mater. 2014, 280, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Mafa, P.J.; Malefane, M.E.; Idris, A.O.; Mamba, B.B.; Liu, D.; Gui, J.; Kuvarega, A.T. Cobalt oxide/copper bismuth oxide/samarium vanadate (Co3O4/CuBi2O4/SmVO4) dual Z-scheme heterostructured photocatalyst with high charge-transfer efficiency: Enhanced carbamazepine degradation under visible light irradiation. J. Colloid Interface Sci. 2021, 603, 666–684. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yuan, S.; Zhang, Z.; Liu, S.; Guo, H.; Qi, X.; Wu, Z.; Guo, J. Cobalt/Nitrogen-Doped carbon hollow spheres for highly efficient degradation of tinidazole with peroxymonosulfate. Mater. Res. Bull. 2024, 175, 112755. [Google Scholar] [CrossRef]
- Vaghela, B.; Rao, S. A novel validated stability indicating high performance liquid chromatographic method for estimation of degradation behavior of ciprofloxacin and tinidazole in solid oral dosage. J. Pharm. Bioallied Sci. 2013, 5, 298–308. [Google Scholar] [CrossRef]
- Pyka-Pajak, A. TLC-Densitometric Analysis of Selected 5-Nitroimidazoles. Processes 2023, 11, 170. [Google Scholar] [CrossRef]
- Yadav, N.; Roy, S.; Yadav, G.; Bhattacharjee, B.; Gadore, V.; Mishra, S.; Ahmaruzzaman, M. Nanoscale engineered photocatalysis for tinidazole removal: Nickel complex integrated MoS2 Nanosheets anchored on boron nitride for enhanced persulfate activation. J. Water Process Eng. 2025, 74, 107774. [Google Scholar] [CrossRef]
- Xu, A.; Liu, W.; Chu, L.; Zhang, Y.; He, Y.; Zhang, Y. Enhancement of E-Peroxone process with waste-tire carbon composite cathode for tinidazole degradation. Water Sci. Technol. 2022, 85, 3357–3369. [Google Scholar] [CrossRef]
- Qin, Q.; Qin, H.; Li, K.; Tan, R.; Liu, X.; Li, L. The adsorption characteristics and degradation mechanism of tinidazole on an anatase TiO2 surface: A DFT study. RSC Adv. 2020, 10, 2104–2112. [Google Scholar] [CrossRef]
- Aksit, D.; Sayil, C.; Soylu, G. Synthesize and characterization of a novel sol-gel-driven Bi2O3 semiconductor: Complete degradation and fast photocatalytic activity for paracetamol. J. Sol-Gel Sci. Technol. 2025, 113, 868–884. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y. Low temperature in air molten synthesis of flower-like hierarchical structure SnS2 with superior photocatalysis. Colloid Interface Sci. Commun. 2021, 45, 100522. [Google Scholar] [CrossRef]
- Lopis, A.; Choudhari, K.; Sai, R.; Kanakikodi, K.; Maradur, S.; Shivashankar, S.; Kulkarni, S. Laddered type-1 heterojunction: Harvesting full-solar-spectrum in scavenger free photocatalysis. Sol. Energy 2022, 240, 57–68. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Song, L. Preparation of BiF3/BiOBr heterojunctions from microwave-assisted method and photocatalytic performances. J. Hazard. Mater. 2019, 367, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Chachvalvutikul, A.; Luangwanta, T.; Leangnim, N.; Kanpiengjai, A.; Kaowphong, S. Simultaneous reduction of Cr(VI) and oxidation of As(III) by visible-light-driven Z-scheme NiFe2O4/Bi7O9I3-Bi4O5Br2 heterojunction. J. Water Process Eng. 2025, 74, 107765. [Google Scholar] [CrossRef]
- Zhang, Z.; Goodall, J.; Morgan, D.; Brown, S.; Clark, R.; Knowles, J.; Mordan, N.; Evans, J.; Carley, A.; Bowker, M.; et al. Photocatalytic activities of N-doped nano-titanias and titanium nitride. J. Eur. Ceram. Soc. 2009, 29, 2343–2353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, J.; Liu, B.; Hao, L.; Han, W.; Liu, A. Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation. Int. J. Mol. Sci. 2025, 26, 8366. https://doi.org/10.3390/ijms26178366
Luan J, Liu B, Hao L, Han W, Liu A. Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation. International Journal of Molecular Sciences. 2025; 26(17):8366. https://doi.org/10.3390/ijms26178366
Chicago/Turabian StyleLuan, Jingfei, Boyang Liu, Liang Hao, Wenchen Han, and Anan Liu. 2025. "Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation" International Journal of Molecular Sciences 26, no. 17: 8366. https://doi.org/10.3390/ijms26178366
APA StyleLuan, J., Liu, B., Hao, L., Han, W., & Liu, A. (2025). Innovative Z-Scheme Heterojunction Photocatalyst ZnBiGdO4/SnS2 for Photocatalytic Degradation of Tinidazole Under Visible Light Irradiation. International Journal of Molecular Sciences, 26(17), 8366. https://doi.org/10.3390/ijms26178366