Adaptive Changes in Endurance Athletes: A Review of Molecular, Echocardiographic and Electrocardiographic Findings
Abstract
1. Introduction
2. Impact of Exercise on Cardiac Pathogenesis
2.1. Molecular Changes and Biomarkers
2.2. Cardiac Pathological and Physiological Alterations
2.2.1. Cardiac Fibrosis
2.2.2. Cardiac Hypertrophy
2.2.3. Vascular Alterations
2.2.4. Left and Right Atrium Responses
2.2.5. Ventricular Responses
3. Detection Parameters
3.1. Echocardiography
- -
- sinus bradycardia (≥30 bpm),
- -
- sinus arrhythmia,
- -
- ectopic atrial rhythm,
- -
- junctional escape rhythm,
- -
- first-degree AV block (PR interval > 200 ms),
- -
- Mobitz type I second-degree AV block (Wenckebach),
- -
- incomplete right bundle branch block (nRBBB),
- -
- voltage criteria for left ventricular hypertrophy (LVH),
- -
- early repolarization (ST-segment or J-point elevation, J-waves, or terminal QRS slurring),
- -
- convex ST-segment elevation with T-wave inversion in leads V1–V4 (particularly in Black athletes) [133].
- -
- T-wave inversion,
- -
- ST-segment depression,
- -
- pathological Q-waves,
- -
- complete left bundle branch block (LBBB),
- -
- intraventricular conduction delay,
- -
- left axis deviation (−30° to −90°),
- -
- signs of left atrial enlargement (P-wave > 120 ms in leads I and II),
- -
- right ventricular hypertrophy,
- -
- frequent premature ventricular complexes (PVCs),
- -
- prolonged or shortened QT interval,
- -
- Brugada-like ECG pattern,
- -
- profound sinus bradycardia (<30 bpm),
- -
- atrial tachyarrhythmias,
- -
3.2. Transthoracic Echocardiography
3.2.1. Assessment of Left and Right Atrium
3.2.2. Assessment of Left and Right Ventricle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pelliccia, A.; Caselli, S.; Sharma, S.; Basso, C.; Bax, J.J.; Corrado, D.; D’Andrea, A.; D’Ascenzi, F.; Di Paolo, F.M.; Edvardsen, T.; et al. European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: Recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur. Heart J. 2018, 39, 1949–1969. [Google Scholar] [CrossRef]
- Sejersen, C.; Volianitis, S.; Secher, N.H. The athlete’s heart: Allometric considerations on published papers and relation to cardiovascular variables. Eur. J. Appl. Physiol. 2024, 124, 1337–1346. [Google Scholar] [CrossRef]
- Torun, A.; Erdem, A.; Doğan, S.; Orhan, A.L.; Acar, B.; Simsek, U.; Sahin, T. Comparison of the effects of resistance, aerobic and mixed exercise on athlete’s heart. J. Sports Med. Phys. Fitness 2024, 64, 88–93. [Google Scholar] [CrossRef]
- Saunders, A.M.; Jones, R.L.; Richards, J. Cardiac structure and function in resistance-trained and untrained adults: A systematic review and meta-analysis. J. Sports Sci. 2022, 40, 2191–2199. [Google Scholar] [CrossRef]
- Stewart, G.M.; Yamada, A.; Haseler, L.J.; Kavanagh, J.J.; Chan, J.; Koerbin, G.; Wood, C.; Sabapathy, S. Influence of exercise intensity and duration on functional and biochemical perturbations in the human heart. J. Physiol. 2016, 594, 3031–3044. [Google Scholar] [CrossRef] [PubMed]
- It4u. Wytyczne ESC Dotyczące Kardiologii Sportowej i Ćwiczeń Fizycznych u Osób z Chorobami Układu Krążenia. Available online: https://ptkardio.pl/wytyczne/37-wytyczne_esc_dotyczace_kardiologii_sportowej_i_cwiczen_fizycznych_u_osob_z_chorobami_ukladu_krazenia (accessed on 7 May 2025).
- Liu, C.-H.; Li, L.-H.; Chang, M.-L.; Kao, W.-F.; How, C.-K.; Lai, J.-I.; Lin, Y.-K.; Chiu, Y.-H.; Chang, W.-H. Electrical Cardiometry and Cardiac Biomarkers in 24-h and 48-h Ultramarathoners. Int. J. Sports Med. 2021, 42, 1035–1042. [Google Scholar] [CrossRef]
- Wuestenfeld, J.C.; Kastner, T.; Hesse, J.; Fesseler, L.; Frohberg, F.; Rossbach, C.; Wolfarth, B. Differences in Troponin I and Troponin T Release in High-Performance Athletes Outside of Competition. Int. J. Mol. Sci. 2024, 25, 1062. [Google Scholar] [CrossRef] [PubMed]
- Couzin-Frankel, J. Why are elite athletes prone to heart arrhythmias? Science 2024, 384, 722–723. [Google Scholar] [CrossRef]
- Modica, G.; Sollazzo, F.; Bianco, M.; Cammarano, M.; Pella, R.; Monti, R.; Palmieri, V.; Zeppilli, P. Bicuspid Aortic Valve and Premature Ventricular Beats in Athletes. Int. J. Environ. Res. Public Health 2022, 19, 12188. [Google Scholar] [CrossRef]
- Rossi, C.; Roklicer, R.; Drid, P.; Milovancev, A.; Trivic, T.; Scardina, A.; Carraro, A.; Bianco, A. Left Ventricular Hypertrophy in Male and Female Judo Athletes. Int. J. Sports Med. 2024, 45, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Monmeneu, J.V.; López, M.P.; García, M.P.; Higueras, L.; Masiá, M.D.; Boraita, A. Reference ventricular dimensions and function parameters by cardiovascular magnetic resonance in highly trained Caucasian athletes. J. Cardiovasc. Magn. Reson. 2023, 25, 12. [Google Scholar] [CrossRef] [PubMed]
- D’Ascenzi, F.; Cavigli, L.; Cameli, M.; Claessen, G.; van Craenenbroeck, E.M.; Cavarretta, E.; D’Andrea, A.; De la Garza, M.S.; Eijsvogels, T.M.H.; van Kimmenade, R.R.J.; et al. Sport PRactice and its Effects on aortic size and valve function in bicuspid Aortic valve Disease: A cross-sectional report from the SPREAD study. Br. J. Sports Med. 2024, 58, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Bhuva, A.N.; D’Silva, A.; Torlasco, C.; Jones, S.; Nadarajan, N.; Van Zalen, J.; Chaturvedi, N.; Lloyd, G.; Sharma, S.; Moon, J.C.; et al. Training for a First-Time Marathon Reverses Age-Related Aortic Stiffening. J. Am. Coll. Cardiol. 2020, 75, 60–71. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.; Caso, P.; Scarafile, R.; Salerno, G.; De Corato, G.; Mita, C.; Di Salvo, G.; Allocca, F.; Colonna, D.; Caprile, M.; et al. Biventricular myocardial adaptation to different training protocols in competitive master athletes. Int. J. Cardiol. 2007, 115, 342–349. [Google Scholar] [CrossRef]
- Tso, J.; Kim, J.H. Master Endurance Athletes and Cardiovascular Controversies. Curr. Sports Med. Rep. 2020, 19, 113–118. [Google Scholar] [CrossRef]
- Maron, B.J.; Levine, B.D.; Washington, R.L.; Baggish, A.L.; Kovacs, R.J.; Maron, M.S. Eligibility and Disqualification Recommendations for Competitive Athletes with Cardiovascular Abnormalities: Task Force 2: Preparticipation Screening for Cardiovascular Disease in Competitive Athletes: A Scientific Statement from the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 2015, 66, 2356–2361. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Zaidi, A.; Ghani, S.; Sharma, R.; Oxborough, D.; Panoulas, V.F.; Sheikh, N.; Gati, S.; Papadakis, M.; Sharma, S. Physiological right ventricular adaptation in elite athletes of African and Afro-Caribbean origin. Circulation 2013, 127, 1783–1792. [Google Scholar] [CrossRef]
- Finocchiaro, G.; Westaby, J.; Sheppard, M.N.; Papadakis, M.; Sharma, S. Sudden Cardiac Death in Young Athletes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 83, 350–370. [Google Scholar] [CrossRef]
- Boraita, A.; Díaz-Gonzalez, L.; Valenzuela, P.L.; Heras, M.-E.; Morales-Acuna, F.; Castillo-García, A.; Lucia, M.J.; Suja, P.; Santos-Lozano, A.; Lucia, A. Normative Values for Sport-Specific Left Ventricular Dimensions and Exercise-Induced Cardiac Remodeling in Elite Spanish Male and Female Athletes. Sports Med. Open 2022, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Gati, S.; Sharma, S. Determinants of the athlete’s heart: A cardiovascular magnetic resonance imaging study. Eur. J. Prev. Cardiol. 2020, 27, 536–539. [Google Scholar] [CrossRef]
- La Gerche, A.; Burns, A.T.; Mooney, D.J.; Inder, W.J.; Taylor, A.J.; Bogaert, J.; Macisaac, A.I.; Heidbüchel, H.; Prior, D.L. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 2012, 33, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Lord, R.N.; Utomi, V.; Oxborough, D.L.; Curry, B.A.; Brown, M.; George, K.P. Left ventricular function and mechanics following prolonged endurance exercise: An update and meta-analysis with insights from novel techniques. Eur. J. Appl. Physiol. 2018, 118, 1291–1299. [Google Scholar] [CrossRef]
- Roeh, A.; Schuster, T.; Jung, P.; Schneider, J.; Halle, M.; Scherr, J. Two dimensional and real-time three dimensional ultrasound measurements of left ventricular diastolic function after marathon running: Results from a substudy of the BeMaGIC trial. Int. J. Cardiovasc. Imaging 2019, 35, 1861–1869. [Google Scholar] [CrossRef]
- Rothwell, O.; George, K.; Somauroo, J.; Lord, R.; Stembridge, M.; Shave, R.; Hoffman, M.D.; Wilson, M.; Ashley, E.; Haddad, F.; et al. Right Ventricular Structure and Function in the Veteran Ultramarathon Runner: Is There Evidence for Chronic Maladaptation? J. Am. Soc. Echocardiogr. 2018, 31, 598–605.e1. [Google Scholar] [CrossRef]
- La Gerche, A.; Roberts, T.; Claessen, G. The Response of the Pulmonary Circulation and Right Ventricle to Exercise: Exercise-Induced Right Ventricular Dysfunction and Structural Remodeling in Endurance Athletes (2013 Grover Conference Series). Pulm. Circ. 2014, 4, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Rowland, T.; Unnithan, V. Stroke volume dynamics during progressive exercise in healthy adolescents. Pediatr. Exerc. Sci. 2013, 25, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Parry-Williams, G.; Sharma, S. The effects of endurance exercise on the heart: Panacea or poison? Nat. Rev. Cardiol. 2020, 17, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Petot, H.; Landrain, M.; Meilland, R.; Koralsztein, J.P.; Mille-Hamard, L. Cardiac output and performance during a marathon race in middle-aged recreational runners. Sci. World J. 2012, 2012, 810859. [Google Scholar] [CrossRef]
- Maufrais, C.; Millet, G.P.; Schuster, I.; Rupp, T.; Nottin, S. Progressive and biphasic cardiac responses during extreme mountain ultramarathon. Am. J. Physiol.-Heart Circ. Physiol. 2016, 310, H1340–H1348. [Google Scholar] [CrossRef]
- Zilinski, J.L.; Contursi, M.E.; Isaacs, S.K.; Deluca, J.R.; Lewis, G.D.; Weiner, R.B.; Hutter, A.M.; d’Hemecourt, P.A.; Troyanos, C.; Dyer, K.S.; et al. Myocardial adaptations to recreational marathon training among middle-aged men. Circ. Cardiovasc. Imaging 2015, 8, e002487. [Google Scholar] [CrossRef]
- Imai, K.; Sato, H.; Hori, M.; Kusuoka, H.; Ozaki, H.; Yokoyama, H.; Takeda, H.; Inoue, M.; Kamada, T. Vagally mediated heart rate recovery after exercise is accelerated in athletes but blunted in patients with chronic heart failure. J. Am. Coll. Cardiol. 1994, 24, 1529–1535. [Google Scholar] [CrossRef]
- Eijsvogels, T.M.H.; Fernandez, A.B.; Thompson, P.D. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise? Physiol. Rev. 2016, 96, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Opondo, M.A.; Aiad, N.; Cain, M.A.; Sarma, S.; Howden, E.; Stoller, D.A.; Ng, J.; van Rijckevorsel, P.; Hieda, M.; Tarumi, T.; et al. Does High-Intensity Endurance Training Increase the Risk of Atrial Fibrillation? A Longitudinal Study of Left Atrial Structure and Function. Circ. Arrhythm. Electrophysiol. 2018, 11, e005598. [Google Scholar] [CrossRef]
- la Garza, M.S.-D.; Grazioli, G.; Bijnens, B.H.; Sarvari, S.I.; Guasch, E.; Pajuelo, C.; Brotons, D.; Subirats, E.; Brugada, R.; Roca, E.; et al. Acute, Exercise Dose-Dependent Impairment in Atrial Performance During an Endurance Race: 2D Ultrasound Speckle-Tracking Strain Analysis. JACC Cardiovasc. Imaging 2016, 9, 1380–1388. [Google Scholar] [CrossRef]
- Peake, J.M.; Neubauer, O.; Della Gatta, P.A.; Nosaka, K. Muscle damage and inflammation during recovery from exercise. J. Appl. Physiol. 2017, 122, 559–570. [Google Scholar] [CrossRef]
- Hody, S.; Croisier, J.-L.; Bury, T.; Rogister, B.; Leprince, P. Eccentric Muscle Contractions: Risks and Benefits. Front. Physiol. 2019, 10, 536. [Google Scholar] [CrossRef]
- Goff, C.L.; Lennartz, L.; Vranken, L.; Kaux, J.-F.; Cavalier, E. Comparison of cardiac biomarker dynamics in marathon, semi-marathon and untrained runners: What is the impact on results interpretation? J. Lab. Precis. Med. 2019, 4, 6. [Google Scholar] [CrossRef]
- Żebrowska, A.; Waśkiewicz, Z.; Nikolaidis, P.T.; Mikołajczyk, R.; Kawecki, D.; Rosemann, T.; Knechtle, B. Acute Responses of Novel Cardiac Biomarkers to a 24-h Ultra-Marathon. J. Clin. Med. 2019, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- La Gerche, A.; Inder, W.J.; Roberts, T.J.; Brosnan, M.J.; Heidbuchel, H.; Prior, D.L. Relationship between Inflammatory Cytokines and Indices of Cardiac Dysfunction following Intense Endurance Exercise. PLoS ONE 2015, 10, e0130031. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Sanchis-Gomar, F.; Guidi, G.C. Serum copeptin and midregion proadrenomedullin (MR-proADM) after an ultramarathon. J. Clin. Lab. Anal. 2015, 29, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Bernecker, C.; Scherr, J.; Schinner, S.; Braun, S.; Scherbaum, W.A.; Halle, M. Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scand. J. Med. Sci. Sports 2013, 23, 207–214. [Google Scholar] [CrossRef]
- Aakre, K.M.; Kleiven, Ø.; Skadberg, Ø.; Bjørkavoll-Bergseth, M.F.; Melberg, T.; Strand, H.; Hagve, T.-A.; Ørn, S. The copeptin response after physical activity is not associated with cardiac biomarkers or asymptomatic coronary artery disease: The North Sea Race Endurance Exercise Study (NEEDED) 2013. Clin. Biochem. 2018, 52, 8–12. [Google Scholar] [CrossRef]
- Popovic, M.; Timper, K.; Seelig, E.; Nordmann, T.; Erlanger, T.E.; Donath, M.Y.; Christ-Crain, M. Exercise upregulates copeptin levels which is not regulated by interleukin-1. PLoS ONE 2019, 14, e0217800. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhou, S.; Ryu, S.; Adams, K.; Gao, Z. Effects of Long-Term Endurance Exercise on Cardiac Morphology, Function, and Injury Indicators among Amateur Marathon Runners. Int. J. Environ. Res. Public Health 2023, 20, 2600. [Google Scholar] [CrossRef]
- Ellison, G.M.; Waring, C.D.; Vicinanza, C.; Torella, D. Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart 2012, 98, 5–10. [Google Scholar] [CrossRef]
- Hanssen, H.; Keithahn, A.; Hertel, G.; Drexel, V.; Stern, H.; Schuster, T.; Lorang, D.; Beer, A.J.; Schmidt-Trucksäss, A.; Nickel, T.; et al. Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running. Clin. Sci. 2011, 120, 143–152. [Google Scholar] [CrossRef]
- Carbone, A.; D’Andrea, A.; Riegler, L.; Scarafile, R.; Pezzullo, E.; Martone, F.; America, R.; Liccardo, B.; Galderisi, M.; Bossone, E.; et al. Cardiac damage in athlete’s heart: When the “supernormal” heart fails! World J. Cardiol. 2017, 9, 470–480. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Baggish, A.L.; Chung, E.H.; George, K.; Kleiven, Ø.; Mingels, A.M.A.; Ørn, S.; Shave, R.E.; Thompson, P.D.; Eijsvogels, T.M.H. Exercise-Induced Cardiac Troponin Elevations: From Underlying Mechanisms to Clinical Relevance. Circulation 2021, 144, 1955–1972. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Papadakis, M.; Whyte, G. Chronic ultra-endurance exercise: Implications in arrhythmogenic substrates in previously normal hearts. Heart 2010, 96, 1255–1256. [Google Scholar] [CrossRef]
- Sierra, A.P.R.; da Silveira, A.D.; Francisco, R.C.; Barretto, R.; Sierra, C.A.; Meneghelo, R.S.; Kiss, M.A.P.D.M.; Ghorayeb, N.; Stein, R. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners? Arq. Bras. De Cardiol. 2016, 106. [Google Scholar] [CrossRef]
- Aschar-Sobbi, R.; Izaddoustdar, F.; Korogyi, A.S.; Wang, Q.; Farman, G.P.; Yang, F.; Yang, W.; Dorian, D.; Simpson, J.A.; Tuomi, J.M.; et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat. Commun. 2015, 6, 6018. [Google Scholar] [CrossRef]
- Regouski, M.; Galenko, O.; Doleac, J.; Olsen, A.L.; Jacobs, V.; Liechty, D.; White, K.L.; Bunch, T.J.; Lee, P.M.; Rutigliano, H.M.; et al. Spontaneous Atrial Fibrillation in Transgenic Goats with TGF (Transforming Growth Factor)-β1 Induced Atrial Myopathy with Endurance Exercise. Circ. Arrhythm. Electrophysiol. 2019, 12, e007499. [Google Scholar] [CrossRef] [PubMed]
- Lasocka-Koriat, Z.; Lewicka-Potocka, Z.; Kaleta-Duss, A.; Bulman, N.; Marciniak, E.; Kalinowski, L.; Lewicka, E.; Dąbrowska-Kugacka, A. Morphological, functional and biochemical differences in cardiac adaptation to endurance exercise among male and female amateur marathon runners. Front. Physiol. 2025, 16, 1547894. [Google Scholar] [CrossRef] [PubMed]
- Hättasch, R.; Spethmann, S.; de Boer, R.A.; Ruifrok, W.P.T.; Schattke, S.; Wagner, M.; Schroeckh, S.; Durmus, T.; Schimke, I.; Sanad, W.; et al. Galectin-3 increase in endurance athletes. Eur. J. Prev. Cardiol. 2014, 21, 1192–1199. [Google Scholar] [CrossRef]
- Le Goff, C.; Kaux, J.-F.; Segura, J.F.; Stojkovic, V.; Ancion, A.; Seidel, L.; Lancellotti, P.; Cavalier, E. Evolution of the slopes of ST2 and galectin-3 during marathon and ultratrail running compared to a control group. Clin. Chem. Lab. Med. 2020, 58, 314–321. [Google Scholar] [CrossRef]
- Lewicka-Potocka, Z.; Kaleta-Duss, A.M.; Lewicka, E.; Kubik, M.; Faran, A.; Szymeczko, P.; Ska, R.G.; Raczak, G.; Da Browska-Kugacka, A. Post-marathon Decline in Right Ventricular Radial Motion Component Among Amateur Sportsmen. Front. Physiol. 2021, 12, 811764. [Google Scholar] [CrossRef]
- de Sousa, C.A.Z.; Sierra, A.P.R.; Galán, B.S.M.; de Sousa Maciel, J.F.; Manoel, R.; Barbeiro, H.V.; de Souza, H.P.; Cury-Boaventura, M.F. Time Course and Role of Exercise-Induced Cytokines in Muscle Damage and Repair After a Marathon Race. Front. Physiol. 2021, 12, 752144. [Google Scholar] [CrossRef]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Durstine, J.L.; Koh, H.-J.; Carver, W.E.; Frizzell, N.; Carson, J.A. Acute myotube protein synthesis regulation by IL-6-related cytokines. Am. J. Physiol. Cell Physiol. 2017, 313, C487–C500. [Google Scholar] [CrossRef]
- Steyn, P.J.; Dzobo, K.; Smith, R.I.; Myburgh, K.H. Interleukin-6 Induces Myogenic Differentiation via JAK2-STAT3 Signaling in Mouse C2C12 Myoblast Cell Line and Primary Human Myoblasts. Int. J. Mol. Sci. 2019, 20, 5273. [Google Scholar] [CrossRef]
- Pilny, E.; Smolarczyk, R.; Jarosz-Biej, M.; Hadyk, A.; Skorupa, A.; Ciszek, M.; Krakowczyk, Ł.; Kułach, N.; Gillner, D.; Sokół, M.; et al. Human ADSC xenograft through IL-6 secretion activates M2 macrophages responsible for the repair of damaged muscle tissue. Stem Cell Res. Ther. 2019, 10, 93. [Google Scholar] [CrossRef]
- Domin, R.; Dadej, D.; Pytka, M.; Zybek-Kocik, A.; Ruchała, M.; Guzik, P. Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. Int. J. Environ. Res. Public Health 2021, 18, 1261. [Google Scholar] [CrossRef]
- Winbanks, C.E.; Weeks, K.L.; Thomson, R.E.; Sepulveda, P.V.; Beyer, C.; Qian, H.; Chen, J.L.; Allen, J.M.; Lancaster, G.I.; Febbraio, M.A.; et al. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin. J. Cell Biol. 2012, 197, 997–1008. [Google Scholar] [CrossRef]
- Lee, J.H.; Jun, H.-S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Hang, P.-Z.; Zhu, H.; Li, P.-F.; Liu, J.; Ge, F.-Q.; Zhao, J.; Du, Z.-M. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life 2021, 11, 70. [Google Scholar] [CrossRef]
- Tezze, C.; Romanello, V.; Sandri, M. FGF21 as Modulator of Metabolism in Health and Disease. Front. Physiol. 2019, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Oost, L.J.; Kustermann, M.; Armani, A.; Blaauw, B.; Romanello, V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J. Cachexia Sarcopenia Muscle 2019, 10, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Weigert, C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb. Perspect. Med. 2017, 7, a029793. [Google Scholar] [CrossRef] [PubMed]
- Piccirillo, R. Exercise-Induced Myokines with Therapeutic Potential for Muscle Wasting. Front. Physiol. 2019, 10, 287. [Google Scholar] [CrossRef]
- Pesce, M.; Ballerini, P.; Paolucci, T.; Puca, I.; Farzaei, M.H.; Patruno, A. Irisin and Autophagy: First Update. Int. J. Mol. Sci. 2020, 21, 7587. [Google Scholar] [CrossRef]
- Subbotina, E.; Sierra, A.; Zhu, Z.; Gao, Z.; Koganti, S.R.K.; Reyes, S.; Stepniak, E.; Walsh, S.A.; Acevedo, M.R.; Perez-Terzic, C.M.; et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl. Acad. Sci. USA 2015, 112, 16042–16047. [Google Scholar] [CrossRef]
- Aengevaeren, V.L.; Van Kimmenade, R.R.J.; Hopman, M.T.E.; Van Royen, N.; Snider, J.V.; Januzzi, J.L.; George, K.P.; Eijsvogels, T.M.H. Exercise-induced Changes in Soluble ST2 Concentrations in Marathon Runners. Med. Sci. Sports Exerc. 2019, 51, 405. [Google Scholar] [CrossRef]
- Pascual-Figal, D.A.; Januzzi, J.L. The biology of ST2: The International ST2 Consensus Panel. Am. J. Cardiol. 2015, 115, 3B–7B. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Spanos, M.; Li, G.; Lu, R.; Bei, Y.; Xiao, J. Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Sig Transduct. Target. Ther. 2022, 7, 306. [Google Scholar] [CrossRef] [PubMed]
- Bass-Stringer, S.; Tai, C.M.K.; McMullen, J.R. IGF1-PI3K-induced physiological cardiac hypertrophy: Implications for new heart failure therapies, biomarkers, and predicting cardiotoxicity. J. Sport. Health Sci. 2021, 10, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Bazgir, F.; Nau, J.; Nakhaei-Rad, S.; Amin, E.; Wolf, M.J.; Saucerman, J.J.; Lorenz, K.; Ahmadian, M.R. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023, 12, 1780. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, L.; Yang, M.; Li, B.; Hu, S. From Skeletal Muscle to Myocardium: Molecular Mechanisms of Exercise-Induced Irisin Regulation of Cardiac Fibrosis. Int. J. Mol. Sci. 2025, 26, 3550. [Google Scholar] [CrossRef]
- Cui, X.; Wang, K.; Zhang, J.; Cao, Z.-B. Aerobic Exercise Ameliorates Myocardial Fibrosis via Affecting Vitamin D Receptor and Transforming Growth Factor-β1 Signaling in Vitamin D-Deficient Mice. Nutrients 2023, 15, 741. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, Y.; Bo, W.; Liang, Q.; Zhu, W.; Cai, M.; Tian, Z. Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int. J. Mol. Sci. 2021, 22, 12341. [Google Scholar] [CrossRef]
- Ma, X.; Liu, B.; Jiang, Z.; Rao, Z.; Zheng, L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int. J. Mol. Sci. 2025, 26, 343. [Google Scholar] [CrossRef] [PubMed]
- Guasch, E.; Mont, L. Diagnosis, pathophysiology, and management of exercise-induced arrhythmias. Nat. Rev. Cardiol. 2017, 14, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.M.; Barkley, K.W.; Bhella, P.S.; Hastings, J.L.; Matulevicius, S.; Fujimoto, N.; Shibata, S.; Carrick-Ranson, G.; Palmer, M.D.; Gandhi, N.; et al. Lifelong Physical Activity Regardless of Dose Is Not Associated with Myocardial Fibrosis. Circ. Cardiovasc. Imaging 2016, 9, e005511. [Google Scholar] [CrossRef]
- Bohm, P.; Schneider, G.; Linneweber, L.; Rentzsch, A.; Krämer, N.; Abdul-Khaliq, H.; Kindermann, W.; Meyer, T.; Scharhag, J. Right and Left Ventricular Function and Mass in Male Elite Master Athletes: A Controlled Contrast-Enhanced Cardiovascular Magnetic Resonance Study. Circulation 2016, 133, 1927–1935. [Google Scholar] [CrossRef] [PubMed]
- Benito, B.; Gay-Jordi, G.; Serrano-Mollar, A.; Guasch, E.; Shi, Y.; Tardif, J.-C.; Brugada, J.; Nattel, S.; Mont, L. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. Circulation 2011, 123, 13–22. [Google Scholar] [CrossRef]
- la Garza, M.S.-D.; Rubies, C.; Batlle, M.; Bijnens, B.H.; Mont, L.; Sitges, M.; Guasch, E. Severity of structural and functional right ventricular remodeling depends on training load in an experimental model of endurance exercise. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H459–H468. [Google Scholar] [CrossRef]
- La Gerche, A.; Robberecht, C.; Kuiperi, C.; Nuyens, D.; Willems, R.; de Ravel, T.; Matthijs, G.; Heidbüchel, H. Lower than expected desmosomal gene mutation prevalence in endurance athletes with complex ventricular arrhythmias of right ventricular origin. Heart 2010, 96, 1268–1274. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Prior, D.L.; La Gerche, A. Ventricular arrhythmias associated with long-term endurance sports: What is the evidence? Br. J. Sports Med. 2012, 46 (Suppl. 1), i44–i50. [Google Scholar] [CrossRef]
- Lobo, H.M.; Naves, Í.G.; Marçal, S.B.; Canzi, C.C.; Rodrigues, A.B.S.; Menezes, A.S., Jr. Atrial Fibrillation in Endurance Training Athletes: Scoping Review. Rev. Cardiovasc. Med. 2023, 24, 155. [Google Scholar] [CrossRef]
- Ragab, H.; Lund, G.K.; Breitsprecher, L.; Sinn, M.R.; Muellerleile, K.; Cavus, E.; Stehning, C.; Tahir, E.; Blankenberg, S.; Patten, M.; et al. Prevalence and pattern of focal and potential diffuse myocardial fibrosis in male and female marathon runners using contrast-enhanced cardiac magnetic resonance. Eur. Radiol. 2023, 33, 4648–4656. [Google Scholar] [CrossRef]
- Pretorius, E.; Plooy, J.D.; Soma, P.; Gasparyan, A.Y. An ultrastructural analysis of platelets, erythrocytes, white blood cells, and fibrin network in systemic lupus erythematosus. Rheumatol. Int. 2014, 34, 1005–1009. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, H.; Ma, H.; Yang, C.; Hu, P.; Gao, F. Assessment of right ventricular structure and systolic function in amateur marathon runners using three-dimensional speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2023, 39, 1473–1482. [Google Scholar] [CrossRef]
- Jee, H.; Jin, Y. Effects of Prolonged Endurance Exercise on Vascular Endothelial and Inflammation Markers. J. Sports Sci. Med. 2012, 11, 719–726. [Google Scholar]
- Kuruvilla, S.; Janardhanan, R.; Antkowiak, P.; Keeley, E.C.; Adenaw, N.; Brooks, J.; Epstein, F.H.; Kramer, C.M.; Salerno, M. Increased extracellular volume and altered mechanics are associated with LVH in hypertensive heart disease, not hypertension alone. JACC Cardiovasc. Imaging 2015, 8, 172–180. [Google Scholar] [CrossRef]
- Tahir, E.; Scherz, B.; Starekova, J.; Muellerleile, K.; Fischer, R.; Schoennagel, B.; Warncke, M.; Stehning, C.; Cavus, E.; Bohnen, S.; et al. Acute impact of an endurance race on cardiac function and biomarkers of myocardial injury in triathletes with and without myocardial fibrosis. Eur. J. Prev. Cardiol. 2020, 27, 94–104. [Google Scholar] [CrossRef] [PubMed]
- von Knobelsdorff-Brenkenhoff, F.; Mueller, A.-K.; Prothmann, M.; Hennig, P.; Dieringer, M.A.; Schmacht, L.; Greiser, A.; Schulz-Menger, J. Cardiac Fibrosis in Aortic Stenosis and Hypertensive Heart Disease Assessed by Magnetic Resonance T1 Mapping. J. Heart Valve Dis. 2016, 25, 527–533. [Google Scholar] [PubMed]
- Bernardo, B.C.; McMullen, J.R. Molecular Aspects of Exercise-induced Cardiac Remodeling. Cardiol. Clin. 2016, 34, 515–530. [Google Scholar] [CrossRef]
- Seo, D.Y.; Kwak, H.-B.; Kim, A.H.; Park, S.H.; Heo, J.W.; Kim, H.K.; Ko, J.R.; Lee, S.J.; Bang, H.S.; Sim, J.W.; et al. Cardiac adaptation to exercise training in health and disease. Pflugers Arch. 2020, 472, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Mohiaddin, R.H. Cardiovascular magnetic resonance in systemic hypertension. J. Cardiovasc. Magn. Reson. 2012, 14, 28. [Google Scholar] [CrossRef]
- Lovic, D.; Narayan, P.; Pittaras, A.; Faselis, C.; Doumas, M.; Kokkinos, P. Left ventricular hypertrophy in athletes and hypertensive patients. J. Clin. Hypertens. 2017, 19, 413–417. [Google Scholar] [CrossRef]
- Maeda, S.; Miyauchi, T.; Kakiyama, T.; Sugawara, J.; Iemitsu, M.; Irukayama-Tomobe, Y.; Murakami, H.; Kumagai, Y.; Kuno, S.; Matsuda, M. Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-derived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sci. 2001, 69, 1005–1016. [Google Scholar] [CrossRef]
- Waśkiewicz, Z.; Bezuglov, E.; Talibov, O.; Gajda, R.; Mukhambetov, Z.; Azerbaev, D.; Bondarev, S. Divergent Cardiac Adaptations in Endurance Sport: Atrial Fibrillation Markers in Marathon Versus Ultramarathon Athletes. J. Cardiovasc. Dev. Dis. 2025, 12, 260. [Google Scholar] [CrossRef] [PubMed]
- Kourek, C.; Briasoulis, A.; Tsougos, E.; Paraskevaidis, I. Atrial Fibrillation in Elite Athletes: A Comprehensive Review of the Literature. J. Cardiovasc. Dev. Dis. 2024, 11, 315. [Google Scholar] [CrossRef]
- Ostojic, M.; Ostojic, M.; Petrovic, O.; Nedeljkovic-Arsenovic, O.; Perone, F.; Banovic, M.; Stojmenovic, T.; Stojmenovic, D.; Giga, V.; Beleslin, B.; et al. Endurance Sports and Atrial Fibrillation: A Puzzling Conundrum. J. Clin. Med. 2024, 13, 7691. [Google Scholar] [CrossRef] [PubMed]
- Nyborg, C.; Melsom, H.S.; Bonnevie-Svendsen, M.; Melau, J.; Seljeflot, I.; Hisdal, J. Transient Reduction of FMD-Response and L-Arginine Accompanied by Increased Levels of E-Selectin, VCAM, and ICAM after Prolonged Strenuous Exercise. Sports 2021, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Grandys, M.; Majerczak, J.; Frolow, M.; Chlopicki, S.; Zoladz, J.A. Training-induced impairment of endothelial function in track and field female athletes. Sci. Rep. 2023, 13, 3502. [Google Scholar] [CrossRef]
- Tiller, N.B.; Chiesa, S.T.; Roberts, J.D.; Turner, L.A.; Jones, S.; Romer, L.M. Physiological and Pathophysiological Consequences of a 25-Day Ultra-Endurance Exercise Challenge. Front. Physiol. 2019, 10, 589. [Google Scholar] [CrossRef]
- King, T.J.; Coates, A.M.; Tremblay, J.C.; Slysz, J.T.; Petrick, H.L.; Pignanelli, C.; Millar, P.J.; Burr, J.F. Vascular Function Is Differentially Altered by Distance after Prolonged Running. Med. Sci. Sports Exerc. 2021, 53, 597–605. [Google Scholar] [CrossRef]
- Awan, Z.; Genest, J. Inflammation modulation and cardiovascular disease prevention. Eur. J. Prev. Cardiol. 2015, 22, 719–733. [Google Scholar] [CrossRef]
- Siegel, A.J.; Stec, J.J.; Lipinska, I.; Van Cott, E.M.; Lewandrowski, K.B.; Ridker, P.M.; Tofler, G.H. Effect of marathon running on inflammatory and hemostatic markers. Am. J. Cardiol. 2001, 88, 918–920. [Google Scholar] [CrossRef]
- Traiperm, N.; Chaunchaiyakul, R.; Burtscher, M.; Gatterer, H. Cardiac Biomarkers Following Marathon Running: Is Running Time a Factor for Biomarker Change? Int. J. Sports Physiol. Perform. 2021, 16, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Salinero, J.J.; Gallo-Salazar, C.; Areces, F.; Ruiz-Vicente, D.; Martinez, M.; Del Coso, J. Elevation of Cardiac Troponins After Endurance Running Competitions. Circulation 2019, 139, 709–711. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef]
- Martínez-Navarro, I.; Sánchez-Gómez, J.; Sanmiguel, D.; Collado, E.; Hernando, B.; Panizo, N.; Hernando, C. Immediate and 24-h post-marathon cardiac troponin T is associated with relative exercise intensity. Eur. J. Appl. Physiol. 2020, 120, 1723–1731. [Google Scholar] [CrossRef]
- Szałek-Goralewska, A.; Dankowski, R.; Sacharczuk, W.; Ożegowski, S.; Baszko, A.; Szyszka, A. Assessment of atrial strain variations in amateur runners: A 10-week unsupervised training program and half-Marathon impact study using 2D and speckle-tracking echocardiography. Int. J. Cardiol. 2025, 421, 132880. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Anselmi, F.; Focardi, M.; Mondillo, S. Atrial Enlargement in the Athlete’s Heart: Assessment of Atrial Function May Help Distinguish Adaptive from Pathologic Remodeling. J. Am. Soc. Echocardiogr. 2018, 31, 148–157. [Google Scholar] [CrossRef]
- Lee, K.S.; Kronbichler, A.; Eisenhut, M.; Lee, K.H.; Shin, J.I. Cardiovascular involvement in systemic rheumatic diseases: An integrated view for the treating physicians. Autoimmun. Rev. 2018, 17, 201–214. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Ho, C.-M.; Huang, C.-J.; Hsu, S.-S.; Jiann, B.-P.; Chen, J.-S.; Huang, J.-K.; Chang, H.-T.; Lo, Y.-K.; Yeh, J.-H.; et al. Defect in regulation of Ca2+ movement in platelets from patients with systemic lupus erythematosus. Pharmacology 2005, 73, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, P.; Hrycek, A.; Kłuciński, P. Uszkodzenie i zapalenie naczyń w toczniu rumieniowatym układowym. Pol. Arch. Med. Wewn. 2008, 118, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Oomah, S.R.; Mousavi, N.; Bhullar, N.; Kumar, K.; Walker, J.R.; Lytwyn, M.; Colish, J.; Wassef, A.; Kirkpatrick, I.D.C.; Sharma, S.; et al. The Role of Three-Dimensional Echocardiography in the Assessment of Right Ventricular Dysfunction after a Half Marathon: Comparison with Cardiac Magnetic Resonance Imaging. J. Am. Soc. Echocardiogr. 2011, 24, 207–213. [Google Scholar] [CrossRef]
- Luo, T.; Kim, J.K. The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview. Can. J. Cardiol. 2016, 32, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Somani, Y.B.; Pawelczyk, J.A.; De Souza, M.J.; Kris-Etherton, P.M.; Proctor, D.N. Aging women and their endothelium: Probing the relative role of estrogen on vasodilator function. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H395–H404. [Google Scholar] [CrossRef] [PubMed]
- SenthilKumar, G.; Katunaric, B.; Bordas-Murphy, H.; Sarvaideo, J.; Freed, J.K. Estrogen and the Vascular Endothelium: The Unanswered Questions. Endocrinology 2023, 164, bqad079. [Google Scholar] [CrossRef] [PubMed]
- Ujka, K.; Bastiani, L.; D’Angelo, G.; Catuzzo, B.; Tonacci, A.; Mrakic-Sposta, S.; Vezzoli, A.; Giardini, G.; Pratali, L. Enhanced Right-Chamber Remodeling in Endurance Ultra-Trail Athletes Compared to Marathon Runners Detected by Standard and Speckle-Tracking Echocardiography. Front. Physiol. 2017, 8, 527. [Google Scholar] [CrossRef]
- Claessen, G.; Claus, P.; Ghysels, S.; Vermeersch, P.; Dymarkowski, S.; Gerche, A.L.A.; Heidbuchel, H. Right ventricular fatigue developing during endurance exercise: An exercise cardiac magnetic resonance study. Med. Sci. Sports Exerc. 2014, 46, 1717–1726. [Google Scholar] [CrossRef]
- Andersen, M.J.; Ersbøll, M.; Gustafsson, F.; Axelsson, A.; Hassager, C.; Køber, L.; Boesgaard, S.; Pellikka, P.A.; Møller, J.E. Exercise-induced changes in left ventricular filling pressure after myocardial infarction assessed with simultaneous right heart catheterization and Doppler echocardiography. Int. J. Cardiol. 2013, 168, 2803–2810. [Google Scholar] [CrossRef]
- Elshazly, M.B.; Senn, T.; Wu, Y.; Lindsay, B.; Saliba, W.; Wazni, O.; Cho, L. Impact of Atrial Fibrillation on Exercise Capacity and Mortality in Heart Failure with Preserved Ejection Fraction: Insights from Cardiopulmonary Stress Testing. J. Am. Heart Assoc. 2017, 6, e006662. [Google Scholar] [CrossRef]
- Heidbüchel, H.; La Gerche, A. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther. Elektrophysiol. 2012, 23, 82–86. [Google Scholar] [CrossRef]
- Castelletti, S.; Pieles, G.E. The athlete’s heart from Philippides to the modern marathon runners. Eur. Heart J. 2022, 43, 2538–2541. [Google Scholar] [CrossRef]
- Zeppilli, P.; Pirrami, M.M.; Sassara, M.; Fenici, R. T wave abnormalities in top-ranking athletes: Effects of isoproterenol, atropine, and physical exercise. Am. Heart J. 1980, 100, 213–222. [Google Scholar] [CrossRef]
- Palermi, S.; Tardini, L.; Graziano, F.; Bianco, M.; Bina, A.; Castelletti, S.; Cavarretta, E.; Contursi, M.; Corrado, D.; D’Ascenzi, F.; et al. Interpretation and management of T wave inversion in athletes: An expert opinion statement of the Italian Society of Sports Cardiology (SICSPORT). Int. J. Cardiol. 2025, 422, 132968. [Google Scholar] [CrossRef] [PubMed]
- Drezner, J.A.; Ackerman, M.J.; Anderson, J.; Ashley, E.; Asplund, C.A.; Baggish, A.L.; Börjesson, M.; Cannon, B.C.; Corrado, D.; DiFiori, J.P.; et al. Electrocardiographic interpretation in athletes: The “Seattle Criteria”. Br. J. Sports Med. 2013, 47, 122–124. [Google Scholar] [CrossRef]
- Ousaka, D.; Hirai, K.; Sakano, N.; Morita, M.; Haruna, M.; Hirano, K.; Yamane, T.; Teraoka, A.; Sanou, K.; Oozawa, S.; et al. Initial evaluation of a novel electrocardiography sensor-embedded fabric wear during a full marathon. Heart Vessels 2022, 37, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Drezner, J.A.; Baggish, A.; Papadakis, M.; Wilson, M.G.; Prutkin, J.M.; La Gerche, A.; Ackerman, M.J.; Borjesson, M.; Salerno, J.C.; et al. International recommendations for electrocardiographic interpretation in athletes. Eur. Heart J. 2018, 39, 1466–1480. [Google Scholar] [CrossRef]
- Kaleta, A.M.; Lewicka, E.; Dąbrowska-Kugacka, A.; Lewicka-Potocka, Z.; Wabich, E.; Szerszyńska, A.; Dyda, J.; Sobolewski, J.; Koenner, J.; Raczak, G. Electrocardiographic abnormalities in amateur male marathon runners. Adv. Clin. Exp. Med. 2018, 27, 1091–1098. [Google Scholar] [CrossRef]
- Lasocka, Z.; Dąbrowska-Kugacka, A.; Kaleta, A.M.; Lewicka-Potocka, Z.; Faran, A.; Szołkiewicz, E.; Przybyłowski, K.; Szołkiewicz, A.; Daniluk, P.; Raczak, G.; et al. Electrocardiographic Changes in Male and Female Amateur Marathon Runners: A Comparison Study. Int. J. Sports Med. 2021, 42, 936–944. [Google Scholar] [CrossRef]
- McClean, G.; Riding, N.R.; Ardern, C.L.; Farooq, A.; Pieles, G.E.; Watt, V.; Adamuz, C.; George, K.P.; Oxborough, D.; Wilson, M.G. Electrical and structural adaptations of the paediatric athlete’s heart: A systematic review with meta-analysis. Br. J. Sports Med. 2018, 52, 230. [Google Scholar] [CrossRef]
- Bessem, B.; De Bruijn, M.C.; Nieuwland, W.; Zwerver, J.; Van Den Berg, M. The electrocardiographic manifestations of athlete’s heart and their association with exercise exposure. Eur. J. Sport Sci. 2018, 18, 587–593. [Google Scholar] [CrossRef]
- Calò, L.; Panattoni, G.; Tatangelo, M.; Brunetti, G.; Graziano, F.; Monzo, L.; Danza, M.L.; Fedele, E.; Grieco, D.; Crescenzi, C.; et al. Electrocardiographic characteristics of right-bundle-branch-block premature ventricular complexes predicting absence of left ventricular scar in athletes with apparently structural normal heart. Europace 2023, 25, euad217. [Google Scholar] [CrossRef] [PubMed]
- Herm, J.; Töpper, A.; Wutzler, A.; Kunze, C.; Krüll, M.; Brechtel, L.; Lock, J.; Fiebach, J.B.; Heuschmann, P.U.; Haverkamp, W.; et al. Frequency of exercise-induced ST-T-segment deviations and cardiac arrhythmias in recreational endurance athletes during a marathon race: Results of the prospective observational Berlin Beat of Running study. BMJ Open 2017, 7, e015798. [Google Scholar] [CrossRef]
- Pingitore, A.; Peruzzi, M.; Clarich, S.C.; Palamà, Z.; Sciarra, L.; Cavarretta, E. An overview of the electrocardiographic monitoring devices in sports cardiology: Between present and future. Clin. Cardiol. 2023, 46, 1028–1037. [Google Scholar] [CrossRef]
- Lampert, R.; Chung, E.H.; Ackerman, M.J.; Arroyo, A.R.; Darden, D.; Deo, R.; Dolan, J.; Etheridge, S.P.; Gray, B.R.; Harmon, K.G.; et al. 2024 HRS expert consensus statement on arrhythmias in the athlete: Evaluation, treatment, and return to play. Heart Rhythm. 2024, 21, e151–e252. [Google Scholar] [CrossRef] [PubMed]
- Lasocka-Koriat, Z.; Lewicka-Potocka, Z.; Kaleta-Duss, A.; Siekierzycka, A.; Kalinowski, L.; Lewicka, E.; Dąbrowska-Kugacka, A. Differences in cardiac adaptation to exercise in male and female athletes assessed by noninvasive techniques: A state-of-the-art review. Am. J. Physiol. Heart Circ. Physiol. 2024, 326, H1065–H1079. [Google Scholar] [CrossRef]
- Sørensen, E.; Myrstad, M.; Solberg, M.G.; Øie, E.; Tveit, A.; Aarønæs, M. Left atrial function in male veteran endurance athletes with paroxysmal atrial fibrillation. Eur. Heart J. Cardiovasc. Imaging 2021, 23, 137–146. [Google Scholar] [CrossRef]
- Herrera, C.; Bruña, V.; Comella, A.; de la Rosa, A.; Díaz-González, L.; Ruiz-Ortiz, M.; Lacalzada-Almeida, J.; Lucía, A.; Boraita, A.; Bayés-de-Luna, A.; et al. Left atrial enlargement in competitive athletes and atrial electrophysiology. Rev. Esp. Cardiol. 2022, 75, 421–428. [Google Scholar] [CrossRef]
- Babio, G.D.; Janavel, G.V.; Constantin, I.; Masson, G.; Carrero, C.; Botta, T.G.; Mezzadra, M.; Stutzbach, P. Atrial size and sports. A great training for a greater left atrium: How much is too much? Int. J. Cardiovasc. Imaging 2021, 37, 981–988. [Google Scholar] [CrossRef]
- Cheema, B.; Kinno, M.; Gu, D.; Ryan, J.; Mitter, S.; Rigolin, V.; Thomas, J.; Puthumana, J. Left atrial size and strain in elite athletes: A cross-sectional study at the NBA Draft Combine. Echocardiography 2020, 37, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Christou, G.A.; O’Driscoll, J.M. The impact of demographic, anthropometric and athletic characteristics on left atrial size in athletes. Clin. Cardiol. 2020, 43, 834–842. [Google Scholar] [CrossRef]
- Cuspidi, C.; Sala, C.; Tadic, M.; Baccanelli, G.; Gherbesi, E.; Grassi, G.; Mancia, G. Left atrial volume in elite athletes: A meta-analysis of echocardiographic studies. Scand. J. Med. Sci. Sports 2019, 29, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Cousergue, C.; Saloux, E.; Reboursière, E.; Rocamora, A.; Milliez, P.; Normand, H.; Hodzic, A. Age impacts left atrial functional remodeling in athletes. PLoS ONE 2022, 17, e0271628. [Google Scholar] [CrossRef]
- Albaeni, A.; Davis, J.W.; Ahmad, M. Echocardiographic evaluation of the Athlete’s heart. Echocardiography 2021, 38, 1002–1016. [Google Scholar] [CrossRef]
- Cuspidi, C.; Tadic, M.; Sala, C.; Gherbesi, E.; Grassi, G.; Mancia, G. Left atrial function in elite athletes: A meta-analysis of two-dimensional speckle tracking echocardiographic studies. Clin. Cardiol. 2019, 42, 579–587. [Google Scholar] [CrossRef]
- D’Ascenzi, F.; Cameli, M.; Padeletti, M.; Lisi, M.; Zacà, V.; Natali, B.; Malandrino, A.; Alvino, F.; Morelli, M.; Vassallo, G.M.; et al. Characterization of right atrial function and dimension in top-level athletes: A speckle tracking study. Int. J. Cardiovasc. Imaging 2013, 29, 87–94. [Google Scholar] [CrossRef]
- Zholshybek, N.; Khamitova, Z.; Toktarbay, B.; Jumadilova, D.; Khissamutdinov, N.; Dautov, T.; Rakhmanov, Y.; Bekbossynova, M.; Gaipov, A.; Salustri, A. Cardiac imaging in athlete’s heart: Current status and future prospects. Cardiovasc. Ultrasound 2023, 21, 21. [Google Scholar] [CrossRef]
- Zimmermann, P.; Eckstein, M.L.; Moser, O.; Schöffl, I.; Zimmermann, L.; Schöffl, V.; Ventricular, L. Left Atrial and Right Ventricular Strain Modifications after Maximal Exercise in Elite Ski-Mountaineering Athletes: A Feasibility Speckle Tracking Study. Int. J. Environ. Res. Public Health 2022, 19, 13153. [Google Scholar] [CrossRef] [PubMed]
- Prada, E.O.; Morita, L.A.; Longo, A.F.; Cianciulli, T.F.; Lax, J.A.; Balardini, E.D. Cardiovascular adaptive response to training in elite athletes. Comparison between endurance and non-endurance athletes. Medicina 2024, 84, 415–425. [Google Scholar] [PubMed]
- Slankamenac, J.; Milovancev, A.; Klasnja, A.; Gavrilovic, T.; Sekulic, D.; Kesic, M.G.; Trivic, T.; Kolarov, V.; Drid, P. Echocardiographic Characterization of Left Heart Morphology and Function in Highly Trained Male Judo Athletes. Int. J. Environ. Res. Public Health 2022, 19, 8842. [Google Scholar] [CrossRef]
- Lewicka-Potocka, Z.; Dąbrowska-Kugacka, A.; Lewicka, E.; Kaleta, A.M.; Dorniak, K.; Daniłowicz-Szymanowicz, L.; Fijałkowski, M.; Nabiałek-Trojanowska, I.; Ratkowski, W.; Potocki, W.; et al. The “athlete’s heart” features in amateur male marathon runners. Cardiol. J. 2021, 28, 707–715. [Google Scholar] [CrossRef]
- Starekova, J.; Thottakara, T.; Lund, G.K.; Welsch, G.H.; Brunner, F.J.; Muellerleile, K.; Adam, G.; Regier, M.; Tahir, E. Increased myocardial mass and attenuation of myocardial strain in professional male soccer players and competitive male triathletes. Int. J. Cardiovasc. Imaging 2020, 36, 2187–2197. [Google Scholar] [CrossRef] [PubMed]
- Cantinotti, M.; Koestenberger, M.; Santoro, G.; Assanta, N.; Franchi, E.; Paterni, M.; Iervasi, G.; D’Andrea, A.; D’Ascenzi, F.; Giordano, R.; et al. Normal basic 2D echocardiographic values to screen and follow up the athlete’s heart from juniors to adults: What is known and what is missing. A critical review. Eur. J. Prev. Cardiol. 2020, 27, 1294–1306. [Google Scholar] [CrossRef]
- Park, S.; Moon, Y.J.; Nam, G.-B.; Kim, Y.-J. Changes in Doppler echocardiography depending on type of elite athletes immediately after maximal exercise. J. Sports Med. Phys. Fitness 2019, 59, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Churchill, T.W.; Petek, B.J.; Wasfy, M.M.; Guseh, J.S.; Weiner, R.B.; Singh, T.K.; Schmied, C.; O’Malley, H.; Chiampas, G.; Baggish, A.L. Cardiac Structure and Function in Elite Female and Male Soccer Players. JAMA Cardiol. 2021, 6, 316–325. [Google Scholar] [CrossRef]
- von Lueder, T.G.; Hodt, A.; Gjerdalen, G.F.; Steine, K. Left ventricular biomechanics in professional football players. Scand. J. Med. Sci. Sports 2018, 28, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sun, M.; Li, L.; Li, P.; Hou, S.; Li, Z.; Sun, X.; Hua, S. Left atrial function in young strength athletes: Four-dimensional automatic quantitation study. Int. J. Cardiovasc. Imaging 2022, 38, 1929–1937. [Google Scholar] [CrossRef]
- Fábián, A.; Ujvári, A.; Tokodi, M.; Lakatos, B.K.; Kiss, O.; Babity, M.; Zámodics, M.; Sydó, N.; Csulak, E.; Vágó, H.; et al. Biventricular mechanical pattern of the athlete’s heart: Comprehensive characterization using three-dimensional echocardiography. Eur. J. Prev. Cardiol. 2022, 29, 1594–1604. [Google Scholar] [CrossRef] [PubMed]
- Churchill, T.W.; Groezinger, E.; Loomer, G.; Guseh, J.S.; Weiner, R.B.; Wasfy, M.M.; Levine, B.D.; Baggish, A.L. Training-Associated Changes in Ventricular Volumes and Function in Elite Female Runners. Circ. Cardiovasc. Imaging 2020, 13, e010567. [Google Scholar] [CrossRef]
- Pagourelias, E.D.; Christou, G.A.; Kouidi, E.J. The acute effects of an ultramarathon on biventricular function in master athletes: Everything in moderation or not? Eur. Heart J. Cardiovasc. Imaging 2022, 23, e303. [Google Scholar] [CrossRef]
- D’Andrea, A.; Radmilovic, J.; Carbone, A.; Mandoli, G.E.; Santoro, C.; Evola, V.; Bandera, F.; D’Ascenzi, F.; Bossone, E.; Galderisi, M.; et al. Speckle tracking evaluation in endurance athletes: The “optimal” myocardial work. Int. J. Cardiovasc. Imaging 2020, 36, 1679–1688. [Google Scholar] [CrossRef]
- Conti, V.; Migliorini, F.; Pilone, M.; Barriopedro, M.I.; Ramos-Álvarez, J.J.; Montero, F.J.C.; Maffulli, N. Right heart exercise-training-adaptation and remodelling in endurance athletes. Sci. Rep. 2021, 11, 22532. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Yang, C.; Hu, P.; Ma, H.; Ma, Y.; Gao, F. Right ventricular function in athletes engaged in endurance exercise using speckle tracking echocardiography: A meta-analysis. BMC Cardiovasc. Disord. 2025, 25, 6. [Google Scholar] [CrossRef]
- Dawkins, T.G.; Curry, B.A.; Wright, S.P.; Meah, V.L.; Yousef, Z.; Eves, N.D.; Shave, R.E.; Stembridge, M. Right Ventricular Function and Region-Specific Adaptation in Athletes Engaged in High-Dynamic Sports: A Meta-Analysis. Circ. Cardiovasc. Imaging 2021, 14, e012315. [Google Scholar] [CrossRef] [PubMed]
- Claeys, M.; Claessen, G.; Claus, P.; De Bosscher, R.; Dausin, C.; Voigt, J.-U.; Willems, R.; Heidbuchel, H.; La Gerche, A. Right ventricular strain rate during exercise accurately identifies male athletes with right ventricular arrhythmias. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 282–290. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Type/Role | Post-Exercise Changes | Clinical Significance | Mechanism/Notes |
---|---|---|---|---|
Cardiac Troponins T/I (cTnT, cTnI) | Cardiomyocyte injury | Increase (often transient) | Reversible myocardial injury, may mimic ACS | Increased sarcolemmal permeability, mechanical stress, reactive oxygen species (ROS) |
CK-MB | Myocardial injury | Increase, especially in RV | Classical marker of necrosis; elevated in ~8% of athletes | Released from damaged cardiomyocytes |
NT-proBNP | Cardiac wall stress | 5–10× increase | Indicates volume overload, neurohormonal adaptation | Correlates with duration and intensity of exercise |
MR-proADM | Hemodynamic stress | Increase | Reflects hemodynamic overload | Indirectly associated with endothelial function |
sST2 | IL-33 receptor/mechanical strain | Increase (notably in males) | Marker of mechanical stress and overload | IL-33/ST2 axis activation; fibrosis inhibition |
Galectin-3 (Gal-3) | Fibrosis/cardiac remodeling | Increase, especially with reduced LVEF | Marker of myocardial fibrosis and remodeling | Secreted by macrophages; correlates with RV function and LVEF |
TIMP-1, CITP, PICP | Collagen turnover | Increase | Reflect myocardial remodeling and fibrosis | Indicators of collagen synthesis and degradation |
sVCAM-1 | Inflammation/LA remodeling | Increase | Correlates with LA volume; reflects atrial remodeling | Involved in leukocyte adhesion |
IL-6, TNF-α, IL-8, IL-10 | Pro- and anti-inflammatory cytokines | Increase (variable dynamics) | Inflammatory response, tissue regeneration | IL-6 promotes M2 activation and supports regeneration |
Copeptin | Endogenous stress | Increase | Early marker of stress and dehydration | Correlates with AVP; used in acute syndrome diagnostics |
GDF-15 | Metabolic/mitochondrial stress | Increase | Marker of systemic stress and adaptation | Induced by cellular stress |
FGF-21 | Muscle metabolism/mitochondria | Increase | Involved in mitophagy and muscle fiber regulation | Activates PI3K-Akt, ATF4 pathways |
BDNF | Cardiomyocyte proliferation/protection | Increase | Supports cardiomyocyte survival and angiogenesis | Acts via TrkB receptor |
Follistatin | Myogenesis/myostatin inhibition | Increase | Promotes protein synthesis and muscle regeneration | Inhibits SMAD3; activates mTOR/S6K signaling |
Myostatin | Inhibits muscle growth | Decrease | Reduces muscle mass and strength | Activates SMAD2/3; promotes muscle catabolism |
Musclin | Muscle adaptation/oxidation | Decrease | May support mitochondrial biogenesis | Correlates with IL-10 and IL-8 |
LDH | Tissue injury | Increase | Correlates with cytokines, not with myokines | Indicates cellular breakdown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janik, M.; Blachut, D.; Czogalik, Ł.; Tomasik, A.R.; Wojciechowska, C.; Kukulski, T. Adaptive Changes in Endurance Athletes: A Review of Molecular, Echocardiographic and Electrocardiographic Findings. Int. J. Mol. Sci. 2025, 26, 8329. https://doi.org/10.3390/ijms26178329
Janik M, Blachut D, Czogalik Ł, Tomasik AR, Wojciechowska C, Kukulski T. Adaptive Changes in Endurance Athletes: A Review of Molecular, Echocardiographic and Electrocardiographic Findings. International Journal of Molecular Sciences. 2025; 26(17):8329. https://doi.org/10.3390/ijms26178329
Chicago/Turabian StyleJanik, Michał, Dominika Blachut, Łukasz Czogalik, Andrzej Robert Tomasik, Celina Wojciechowska, and Tomasz Kukulski. 2025. "Adaptive Changes in Endurance Athletes: A Review of Molecular, Echocardiographic and Electrocardiographic Findings" International Journal of Molecular Sciences 26, no. 17: 8329. https://doi.org/10.3390/ijms26178329
APA StyleJanik, M., Blachut, D., Czogalik, Ł., Tomasik, A. R., Wojciechowska, C., & Kukulski, T. (2025). Adaptive Changes in Endurance Athletes: A Review of Molecular, Echocardiographic and Electrocardiographic Findings. International Journal of Molecular Sciences, 26(17), 8329. https://doi.org/10.3390/ijms26178329