Site-Specific Changes in Cytosine Methylation in Promoters of the Genes Encoding the Membrane Subunits of Succinate Dehydrogenase During Germination of Maize Seeds
Abstract
1. Introduction
2. Results
2.1. Analysis of the Cytosine Methylation Status in Symmetric and Asymmetric Sites of the Promoter of the Sdh3-1 and Sdh3-2 Genes
2.2. Analysis of the Cytosine Methylation Status in Symmetric and Asymmetric Sites of the Promoters of the SDH Subunit D Gene
2.3. Changes in the Methylation Patterns of Sdh3-2, Sdh3-2, and Sdh4 Genes During Germination
2.4. Changes in the Activity of Cytosine DNA Methyltransferases During Germination
2.5. Changes in Isocitrate Lyase Activity and Expression
3. Discussion
4. Materials and Methods
4.1. Object of Investigation
4.2. DNA Extraction and Bisulfite Sequencing
4.3. DNA Methyltransferase Activity
4.4. Isocitrate Lyase Activity and Expression
4.5. Statistical Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMT | chromomethylase |
DNMT | DNA methyltransferase |
DRM | DOMAINS REARRANGED METHYLTRANSFERASE |
RdDM | RNA-dependent DNA methylation |
SDH | succinate dehydrogenase |
TCA cycle | tricarboxylic acid cycle |
References
- Yankovskaya, V.; Horsefield, R.; Tornroth, S.; Luna-Chavez, C.; Miyoshi, H.; Leger, C.; Byrne, B.; Cecchini, G.; Iwata, S. Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 2003, 299, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, I.E. Molecular genetics of succinate:quinone oxidoreductase in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 1998, 60, 267–315. [Google Scholar] [CrossRef]
- Figueroa, P.; Leon, G.; Elorza, A.; Holuigue, L.; Araya, A.; Jordana, X. The four subunits of mitochondrial respiratory complex II are encoded by multiple nuclear genes and targeted to mitochondria in Arabidopsis thaliana. Plant Mol. Biol. 2002, 50, 725–734. [Google Scholar] [CrossRef]
- Eubel, H.; Jänsch, L.; Braun, H.P. New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol. 2003, 133, 274–286. [Google Scholar] [CrossRef]
- Millar, A.H.; Eubel, H.; Jänsch, L.; Kruft, V.; Heazlewood, J.L.; Braun, H.P. Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant-specific subunits. Plant Mol. Biol. 2004, 56, 77–90. [Google Scholar] [CrossRef]
- Huang, S.; Braun, H.P.; Gawryluk, R.M.R.; Millar, A.H. Mitochondrial complex II of plants: Subunit composition, assembly, and function in respiration and signaling. Plant J. 2019, 98, 405–417. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Karabutova, L.A.; Igamberdiev, A.U. Expression of genes encoding subunits A and B of succinate dehydrogenase in germinating maize seeds is regulated by methylation of their promoters. J. Plant Physiol. 2016, 205, 33–40. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Flores Caro, O.J. Epigenetic mechanism for regulation of gene expression of membrane-bound subunit C of succinate dehydrogenase in sprouting corn seeds. Russ. J. Plant Physiol. 2022, 69, 24. [Google Scholar] [CrossRef]
- Logan, D.C.; Millar, A.H.; Sweetlove, L.J.; Hill, S.A.; Leaver, C.J. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 2001, 125, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.L.; Behal, R.H.; Xiang, C.; Oliver, D.J. Metabolic bypass of the tricarboxylic acid cycle during lipid mobilization in germinating oilseeds. Regulation of NAD+-dependent isocitrate dehydrogenase versus fumarase. Plant Physiol. 1998, 117, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Igamberdiev, A.U.; Popov, V.N.; Falaleeva, M.I. Alternative system of succinate oxidation in glyoxysomes of higher plants. FEBS Lett. 1995, 367, 287–290. [Google Scholar] [CrossRef]
- Runquist, M.; Kruger, N.J. Control of gluconeogenesis by isocitrate lyase in endosperm of germinating castor bean seedlings. Plant J. 1999, 19, 423–431. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Dobychina, M.A.; Igamberdiev, A.U. Expression and promoter methylation of succinate dehydrogenase and fumarase genes in maize under anoxic conditions. J. Plant Physiol. 2017, 216, 197–201. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Igamberdiev, A.U. Light-Dependent Expression and Promoter Methylation of the Genes Encoding Succinate Dehydrogenase, Fumarase, and NAD-Malate Dehydrogenase in Maize (Zea mays L.) Leaves. Int. J. Mol. Sci. 2023, 24, 10211. [Google Scholar] [CrossRef]
- Lucibelli, F.; Valoroso, M.C.; Aceto, S. Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution. Int. J. Mol. Sci. 2022, 23, 8299. [Google Scholar] [CrossRef]
- Erdmann, R.M.; Picard, C.L. RNA-directed DNA Methylation. PLoS Genet. 2020, 16, e1009034. [Google Scholar] [CrossRef]
- Cokus, S.J.; Feng, S.; Zhang, X.; Chen, Z.; Merriman, B.; Haudenschild, C.D.; Pradhan, S.; Nelson, S.F.; Pellegrini, M.; Jacobsen, S.E. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008, 452, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Foerster, A.M.; Mittelsten Scheid, O. Analysis of DNA methylation in plants by bisulfite sequencing. Methods Mol. Biol. 2010, 631, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lang, Z.; Zhu, J.K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018, 19, 489–506. [Google Scholar] [CrossRef]
- Chan, S.W.; Henderson, I.R.; Jacobsen, S.E. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat. Rev. Genet. 2005, 6, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Parrilla-Doblas, J.T.; Roldán-Arjona, T.; Ariza, R.R.; Córdoba-Cañero, D. Active DNA Demethylation in Plants. Int. J. Mol. Sci. 2019, 20, 4683. [Google Scholar] [CrossRef]
- Fang, J.; Jiang, J.; Leichter, S.M.; Liu, J.; Biswal, M.; Khudaverdyan, N.; Zhong, X.; Song, J. Mechanistic basis for maintenance of CHG DNA methylation in plants. Nat. Commun. 2022, 13, 3877. [Google Scholar] [CrossRef]
- Eastmond, P.J.; Graham, I.A. Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 2001, 6, 72–78. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Lea, P.J. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms. Phytochemistry 2002, 60, 651–674. [Google Scholar] [CrossRef]
- Eprintsev, A.T.; Fedorin, D.N.; Selivanova, N.V.; Akhmad, G.A.; Popov, V.N. Role of differential expression of sdh1-1 and sdh1-2 genes in alteration of isoenzyme composition of succinate dehydrogenase in germinating maize seeds. Izv. Akad. Nauk. Ser. Biol. 2010, 3, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Affourtit, C.; Krab, K.; Leach, G.R.; Whitehouse, D.G.; Moore, A.L. New insights into the regulation of plant succinate dehydrogenase. On the role of the protonmotive force. J. Biol. Chem. 2001, 276, 32567–32574. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tollefsbol, T.O. DNA methylation detection: Bisulfite genomic sequencing analysis. Methods Mol. Biol. 2011, 791, 11–21. [Google Scholar] [CrossRef]
- Chen, M.; Lin, J.Y.; Hur, J.; Pelletier, J.M.; Baden, R.; Pellegrini, M.; Harada, J.J.; Goldberg, R.B. Seed genome hypomethylated regions are enriched in transcription factor genes. Proc. Natl Acad. Sci. USA 2018, 115, E8315–E8322. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Le, B.H.; Chen, M.; Henry, K.F.; Hur, J.; Hsieh, T.F.; Chen, P.Y.; Pelletier, J.M.; Pellegrini, M.; Fischer, R.L.; et al. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development. Proc. Natl Acad. Sci. USA 2017, 114, E9730–E9739. [Google Scholar] [CrossRef]
- An, Y.C.; Goettel, W.; Han, Q.; Bartels, A.; Liu, Z.; Xiao, W. Dynamic Changes of Genome-Wide DNA Methylation during Soybean Seed Development. Sci. Rep. 2017, 7, 12263. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Barciszewska, M.Z.; Barciszewski, J.; Plitta, B.P.; Chmielarz, P. Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PLoS ONE 2013, 8, e70693. [Google Scholar] [CrossRef] [PubMed]
- Sulimova, G.E.; Vaniushin, B.F.; Khoíka, L.; Fridrikh, A.; Bulgakov, R.; Cherny, B. On the impossibility of the incorporation of 5-methylcytosine and its nucleosides into higher plant DNA. Biochemistry 1978, 43, 240–245. [Google Scholar] [PubMed]
- Antequera, F.; Bird, A. CpG islands as genomic footprints of promoters that are associated with replication origins. Curr. Biol. 1999, 9, R661–R667. [Google Scholar] [CrossRef]
- Kass, S.U.; Landsberger, N.; Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 1997, 7, 157–165. [Google Scholar] [CrossRef]
- Fraga, M.F.; Rodríguez, R.; Cañal, M.J. Genomic DNA methylation-demethylation during aging and reinvigoration of Pinus radiata. Tree Physiol. 2002, 22, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Baurens, F.C.; Nicolleau, J.; Legavre, T.; Verdeil, J.L.; Monteuuis, O. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker. Tree Physiol. 2004, 24, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.Z.; Xu, C.G.; Saghai Maroof, M.A.; Zhang, Q. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol. Gen. Genet. 1999, 261, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Patterson, K.; Molloy, L.; Qu, W.; Clark, S. DNA methylation: Bisulphite modification and analysis. J. Vis. Exp. 2011, 56, 3170. [Google Scholar] [CrossRef]
- Burgos, E.S.; Walters, R.O.; Huffman, D.M.; Shechter, D. A simplified characterization of S-adenosyl-L-methionine-consuming enzymes with 1-Step EZ-MTase: A universal and straightforward coupled-assay for in vitro and in vivo setting. Chem. Sci. 2017, 8, 6601–6612. [Google Scholar] [CrossRef]
- Cao, X.; Aufsatz, W.; Zilberman, D.; Mette, M.F.; Huang, M.S.; Matzke, M.; Jacobsen, S.E. Role of the DRM and CMT3 methyltransferases in RNA-directed DNA methylation. Curr. Biol. 2003, 13, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Kornberg, H.L.; Krebs, H.A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature 1957, 179, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis; Pearson: Hoboken, NJ, USA, 1999; ISBN 978-0130815422. [Google Scholar]
Sdh3-1 | Sdh3-2 | Sdh4 | |||||||
---|---|---|---|---|---|---|---|---|---|
Day 1 | Day 4 | Day 8 | Day 1 | Day 4 | Day 8 | Day 1 | Day 4 | Day 8 | |
CG sites | |||||||||
Number of CG | 7 | 7 | 7 | 20 | 20 | 20 | 7 | 7 | 7 |
Number of un-methylated CG | 4 | 4 | 6 | 2 | 5 | 11 | 2 | 2 | 4 |
Methylation (%) | 42.9 | 42.9 | 14.3 | 90.0 | 75.0 | 45.0 | 71.4 | 71.4 | 42.9 |
CNG sites | |||||||||
Number of CNG | 6 | 6 | 6 | 12 | 12 | 12 | 12 | 12 | 12 |
Number of un-methylated CNG | 1 | 2 | 1 | 3 | 2 | 8 | 5 | 5 | 5 |
Methylation (%) | 83.3 | 66.7 | 83.3 | 75.5 | 83.3 | 33.3 | 58.3 | 58.3 | 58.3 |
CNN sites | |||||||||
Number of CNN | 36 | 36 | 36 | 48 | 48 | 48 | 43 | 43 | 43 |
Number of un-methylated CNN | 6 | 8 | 10 | 26 | 28 | 21 | 16 | 15 | 15 |
Methylation (%) | 83.3 | 77.7 | 75.6 | 45.8 | 41.7 | 56.3 | 62.8 | 65.1 | 65.1 |
Bisulfite conver-sion of DNA (%) | 87.8 | 84.1 | 85.4 | 81.1 | 87.7 | 84.5 | 78.3 | 80.7 | 81.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedorin, D.N.; Eprintsev, A.T.; Igamberdiev, A.U. Site-Specific Changes in Cytosine Methylation in Promoters of the Genes Encoding the Membrane Subunits of Succinate Dehydrogenase During Germination of Maize Seeds. Int. J. Mol. Sci. 2025, 26, 8010. https://doi.org/10.3390/ijms26168010
Fedorin DN, Eprintsev AT, Igamberdiev AU. Site-Specific Changes in Cytosine Methylation in Promoters of the Genes Encoding the Membrane Subunits of Succinate Dehydrogenase During Germination of Maize Seeds. International Journal of Molecular Sciences. 2025; 26(16):8010. https://doi.org/10.3390/ijms26168010
Chicago/Turabian StyleFedorin, Dmitry N., Alexander T. Eprintsev, and Abir U. Igamberdiev. 2025. "Site-Specific Changes in Cytosine Methylation in Promoters of the Genes Encoding the Membrane Subunits of Succinate Dehydrogenase During Germination of Maize Seeds" International Journal of Molecular Sciences 26, no. 16: 8010. https://doi.org/10.3390/ijms26168010
APA StyleFedorin, D. N., Eprintsev, A. T., & Igamberdiev, A. U. (2025). Site-Specific Changes in Cytosine Methylation in Promoters of the Genes Encoding the Membrane Subunits of Succinate Dehydrogenase During Germination of Maize Seeds. International Journal of Molecular Sciences, 26(16), 8010. https://doi.org/10.3390/ijms26168010