Methodological Development of a Test for Salivary Proteome Analysis Useful in Lung Cancer Screening
Abstract
1. Introduction
2. Results
2.1. Saliva Collection and First Phase of the Experimental Protocol
- In unstimulated saliva samples, we evaluated the effect of the length of the sample cryopreservation period at −80 °C (2, 6, and 12 months) on the quantity and quality of proteins extracted at the end of the cryopreservation period or before cryopreservation;
- Based on the results obtained in the previous point, in stimulated saliva samples, i.e., those collected with the Salivette device, we evaluated the effect of shorter sample cryopreservation periods (1, 15, and 30 days) on the protein yield and electrophoretic profile. The evaluation of sample protein concentration was performed only at the end of the cryopreservation time.
2.1.1. Evaluation of Protein Stability in Unstimulated Saliva Samples in Relation to Protein Extraction Times and Cryopreservation Duration
2.1.2. Evaluation of Protein Stability in Stimulated Saliva Samples in Relation to a Shorter Duration of Their Cryopreservation
2.2. Second Phase of the Experimental Protocol: Comparison Between 2DE Maps of Unstimulated and Stimulated Saliva Samples Cryopreserved for 1 Week and Assayed for Protein Concentration at the End of the Cryopreservation Period
2.3. Effect of the Removal of High Abundant Proteins (HAPs) from the Saliva Samples
2.4. Building a Reference Proteome Using Unstimulated and Stimulated Saliva Samples
2.5. Bioinformatic Analysis of the Proteins Extracted from Unstimulated and Stimulated Saliva Samples, Selected from 2DE Electrophoretic Runs and Analyzed by MS
2.6. Comparative Analysis Between the Salivary Proteome of CT-Negative and CT-Positive Subjects for the Presence of a Solitary Pulmonary Nodule
3. Discussion
4. Materials and Methods
4.1. Materials and Instruments
4.2. Saliva Collection and Sample Preparation
4.3. Protein Extraction from Stimulated and Unstimulated Saliva and Measurement of Their Amount
4.4. 2DE Analysis
4.5. Protein Digestion and MALDI-TOF/TOF-MS Analysis
4.6. Database MS/MS Searching
4.7. Bioinformatics Analysis of Proteomic Data
4.8. Western Blot Analysis
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2DE | Two-dimensional electrophoresis |
ACTB | Actin, cytoplasmic 1 |
ACTG | Actin, cytoplasmic 2 |
AKR1A1 | Aldo-keto-reductase family 1, isoform A1 |
AMY1A | Alpha-amylase 1A |
ARP3 | Actin-related protein 3 |
BPIA2 | BPI fold-containing family A member 2 |
CAH6 | Carbonic anhydrase 6 |
CT | Computed tomography |
CYTN | Cystatin SN |
CYTS | Cystatin S |
D | Differently expressed |
ENOB | Alpha-enolase isoform3 |
ERI1 | 3′5′ Exoribonuclease 1 |
FDR | False Discovery Rate |
GGO | Ground Glass Opacity |
GML | Glycosyl-phosphatidylinositol-anchored molecule |
HAP(s) | High-Abundance Protein(s) |
HS71A AMYP | Heat shock protein 70 kDa protein 1A Pancreatic alpha-amylase |
HSPB3 | Lung cancer |
IFNA1 | Interferon |
ILEU | Leukocyte elastase inhibitor |
LCNE | Large cell neuroendocrine carcinoma |
LDCT | Low-dose computed tomography |
M | Matched |
MS | Mass spectrometry |
NSCLC | Non-small cell lung carcinoma |
PMF | Peptide mass finger printing |
PDXK | Pyridoxal kinase |
PIGR | Polymeric immunoglobulin receptor |
PSA5 | Proteasome subunit alpha type 5 |
S100A9 | S100A9 protein |
S100A14 | S100A14 protein |
SCLC | Small cell lung carcinoma |
SERP3 | Serpin B3 |
References
- Mazzone, P.J.; Lam, L. Evaluating the Patient with a Pulmonary Nodule: A Review. JAMA 2022, 327, 264–273. [Google Scholar] [CrossRef]
- Pan, S.; Flores, J.; Lin, C.T.; Stayman, J.W.; Gang, G.J. Generative Adversarial Networks and Radiomics Supervision for Lung Lesion Synthesis. Proc. SPIE Int. Soc. Opt. Eng. 2021, 11595, 115950O. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Łukasiewicz, H.; Samulak, D.; Piekarska, E.; Kołaciński, R.; Romanowicz, H. Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). Int. J. Mol. Sci. 2025, 26, 2049. [Google Scholar] [CrossRef]
- Cangut, B.; Akinlusi, R.; Mohseny, A.; Ghesani, N.; Ghesani, M. Evolving Paradigms in Lung Cancer: Latest Trends in Diagnosis, Management, and Radiopharmaceuticals. Semin. Nucl. Med. 2025, 55, 264–276. [Google Scholar] [CrossRef]
- Silva, M.; Milanese, G.; Ledda, R.E.; Pastorino, U.; Sverzellati, N. Screen-detected solid nodules: From detection of nodule to structured reporting. Transl. Lung Cancer Res. 2021, 10, 2335–2346. [Google Scholar] [CrossRef]
- Kashima, J.; Kitadai, R.; Okuma, Y. Molecular and Morphological Profiling of Lung Cancer: A Foundation for “Next-Generation” Pathologists and Oncologists. Cancers 2019, 11, 599. [Google Scholar] [CrossRef]
- Mogavero, A.; Bironzo, P.; Righi, L.; Merlini, A.; Benso, F.; Novello, S.; Passiglia, F. Deciphering Lung Adenocarcinoma Heterogeneity: An Overview of Pathological and Clinical Features of Rare Subtypes. Life 2023, 13, 1291. [Google Scholar] [CrossRef]
- Stephens, E.K.H.; Guayco Sigcha, J.; Lopez-Loo, K.; Yang, I.A.; Marshall, H.M.; Fong, K.M. Biomarkers of lung cancer for screening and in never-smokers—A narrative review. Transl. Lung Cancer Res. 2023, 12, 2129–2145. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sun, S.; Lam, S.; Lockwood, W.W. New insights into the biology and development of lung cancer in never smokers-implications for early detection and treatment. J. Transl. Med. 2023, 21, 585. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Jin, Y.; Zhao, H.; Wu, M.; Zhang, K.; Wei, Z.; Wang, X.; Wang, Z.; Li, Y.; Yang, F.; et al. Potential clinical utility of liquid biopsy in early-stage non-small cell lung cancer. BMC Med. 2022, 20, 480. [Google Scholar] [CrossRef]
- Granger, D.A.; Kivlighan, K.T.; Fortunato, C.; Harmon, A.G.; Hibel, L.C.; Schwartz, E.B.; Whembolua, G.L. Integration of salivary biomarkers into developmental and behaviorally-oriented research: Problems and solutions for collecting specimens. Physiol. Behav. 2007, 92, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Skallevold, H.E.; Vallenari, E.M.; Sapkota, D. Salivary Biomarkers in Lung Cancer. Mediators Inflamm. 2021, 2021, 6019791. [Google Scholar] [CrossRef]
- Hu, S.; Loo, J.A.; Wong, D.T. Human saliva proteome analysis and disease biomarker discovery. Exp. Rev. Proteom. 2007, 4, 531–538. [Google Scholar] [CrossRef]
- Gao, K.; Zhou, H.; Zhang, L.; Lee, J.W.; Zhou, Q.; Hu, S.; Wolinsky, L.E.; Farrell, J.; Eibl, G.; Wong, D.T. Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer. PLoS ONE 2009, 4, e5875. [Google Scholar] [CrossRef] [PubMed]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- O’Sullivan, E.M.; Dowling, P.; Swandulla, D.; Ohlendieck, K. Proteomic Identification of Saliva Proteins as Noninvasive Diagnostic Biomarkers. Methods Mol. Biol. 2023, 2596, 147–167. [Google Scholar] [CrossRef]
- Bellei, E.; Monari, E.; Bergamini, S.; Ozben, T.; Tomasi, A. Optimizing protein recovery yield from serum samples treated with beads technology. Electrophoresis 2011, 32, 1414–1421. [Google Scholar] [CrossRef]
- El Rassi, Z.; Puangpila, C. Liquid-phase based separation systems for depletion.; prefractionation.; and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis—An update covering the period 2014–2016. Electrophoresis 2017, 38, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, V. Multifunctional alpha-enolase: Its role in diseases. Cell Mol. Life Sci. 2001, 58, 902–920. [Google Scholar] [CrossRef] [PubMed]
- Kaetzel, C.S. The polymeric immunoglobulin receptor: Bridging innate and adaptive immune responses at mucosal surfaces. Immunol. Rev. 2005, 206, 83–99. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Meroni, M.; Aiello, G.; D’Amato, A.; Cenzato, N.; Casati, S.; Damiani, G.; Fenoglio, C.; Galimberti, D.; Grossi, E.; et al. Salivary proteomic profile of young healthy subjects. Front. Mol. Biosci. 2023, 10, 1327233. [Google Scholar] [CrossRef]
- Foratori-Junior, G.A.; Ventura, T.M.O.; Grizzo, L.T.; Carpenter, G.H.; Buzalaf, M.A.R.; Sales-Peres, S.H.C. Label-Free Quantitative Proteomic Analysis Reveals Inflammatory Pattern Associated with Obesity and Periodontitis in Pregnant Women. Metabolites 2022, 12, 1091. [Google Scholar] [CrossRef]
- Foratori-Junior, G.A.; Ventura, T.M.O.; Grizzo, L.T.; Jesuino, B.G.; Castilho, A.V.S.S.; Buzalaf, M.A.R.; Sales-Peres, S.H.C. Is There a Difference in the Proteomic Profile of Stimulated and Unstimulated Saliva Samples from Pregnant Women with/without Obesity and Periodontitis? Cells 2023, 12, 1389. [Google Scholar] [CrossRef]
- Xia, P.; Ji, X.; Yan, L.; Lian, S.; Chen, Z.; Luo, Y. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity. Immunology 2024, 171, 365–376. [Google Scholar] [CrossRef]
- Blanco-Pintos, T.; Regueira-Iglesias, A.; Suárez-Rodríguez, B.; Seijas-Otero, N.; Relvas, M.; Bravo, S.B.; Balsa-Castro, C.; Tomás, I. Characterisation of the periodontal proteome in gingival crevicular fluid and saliva using SWATH-MS. Front. Cell Infect. Microbiol. 2025, 15, 1576906. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhan, F. Type 2 Cystatins and Their Roles in the Regulation of Human Immune Response and Cancer Progression. Cancers 2023, 15, 5363. [Google Scholar] [CrossRef] [PubMed]
- Dsamou, M.; Palicki, O.; Septier, C.; Chabanet, C.; Lucchi, G.; Ducoroy, P.; Chagnon, M.C.; Morzel, M. Salivary protein profiles and sensitivity to the bitter taste of caffeine. Chem. Senses 2012, 37, 87–95. [Google Scholar] [CrossRef]
- Chan, H.H.; Rahim, Z.H.A.; Jessie, K.; Hashim, O.H.; Taiyeb-Ali, T.B. Salivary proteins associated with periodontitis in patients with Type 2 diabetes mellitus. Int. J. Mol. Sci. 2012, 13, 4642–4654. [Google Scholar] [CrossRef] [PubMed]
- Indrischek, H.; Hammer, J.; Machate, A.; Hecker, N.; Kirilenko, B.; Roscito, J.; Hans, S.; Norden, C.; Brand, M.; Hiller, M. Vision-related convergent gene losses reveal SERPINE3’s unknown role in the eye. Elife 2022, 11, e77999. [Google Scholar] [CrossRef] [PubMed]
- Asthana, A.; Raman, B.; Ramakrishna, T.; Rao, C.M. Structural aspects and chaperone activity of human HspB3: Role of the “C-terminal extension”. Cell Biochem. Biophys. 2012, 64, 61–72. [Google Scholar] [CrossRef]
- Nandula, S.R.; Huxford, I.; Wheeler, T.T.; Aparicio, C.; Gorr, S.U. The parotid secretory protein BPIFA2 is a salivary surfactant that affects lipopolysaccharide action. Exp. Physiol. 2020, 105, 1280–1292. [Google Scholar] [CrossRef]
- Hanna, S.; El-Sibai, M. Signaling networks of Rho GTPases in cell motility. Cell Signal 2013, 25, 1955–1961. [Google Scholar] [CrossRef]
- Finamore, F.; Cecchettini, A.; Ceccherini, E.; Signore, G.; Ferro, F.; Rocchiccioli, S.; Baldini, C. Characterization of Extracellular Vesicle Cargo in Sjögren’s Syndrome through a SWATH-MS Proteomics Approach. Int. J. Mol. Sci. 2021, 22, 4864. [Google Scholar] [CrossRef]
- Sun, Y.; Sheshadri, N.; Zong, W.X. SERPINB3 and B4: From biochemistry to biology. Semin. Cell Dev. Biol. 2017, 62, 170–177. [Google Scholar] [CrossRef]
- Fujii, J.; Homma, T.; Miyata, S.; Takahashi, M. Pleiotropic actions of Aldehyde Reductase (AKR1A). Metabolites 2021, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Wang, D.; Li, X.K.; Yang, L.; Liu, H.Y.; Cui, W.; Liu, Z.H.; Che, Y.Q. Overexpression of S100A14 contributes to malignant progression and predicts poor prognosis of lung adenocarcinoma. Thorac. Cancer 2018, 9, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; Thangavel, G.; Pujar, P.; Pant, A.; Nath, A. An umbrella review of systematic evidence on the Low Dose Computed Tomography (LDCT) for lung cancer screening. Future Oncol. 2025, 15, 1–13. [Google Scholar] [CrossRef]
- Li, W.; Zheng, X.; Huang, J. Value of CT diagnostic techniques based on imaging post-processing systems in the early diagnosis and treatment of lung cancer. Am. J. Transl. Res. 2024, 16, 7396–7404. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, P.; Gong, Y.; Song, L. Development and clinical applications of liquid biopsy assays in cancer screening. Transl. Cancer Res. 2025, 14, 3846–3859. [Google Scholar] [CrossRef]
- Mortazavi, H.; Yousefi-Koma, A.A.; Yousefi-Koma, H. Extensive comparison of salivary collection, transportation, preparation, and storage methods: A systematic review. BMC Oral Health 2024, 24, 168. [Google Scholar] [CrossRef]
- Chevalier, F.; Hirtz, C.; Chay, S.; Cuisinier, F.; Sommerer, N.; Rossignol, M.; de Periere, D.D. Proteomic Studies of Saliva: A Proposal for a Standardized Handling of Clinical Samples. Clin. Proteom. 2007, 3, 13–21. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, F. Effects of different preservation methods on biomacromolecules and microbial flora. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2020, 45, 909–915. [Google Scholar] [CrossRef]
- Lane, J.; Martin, T.; Weeks, H.P.; Jiang, W.G. Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genom. Proteom. 2014, 11, 155–165. [Google Scholar]
- Crosas-Molist, E.; Samain, R.; Kohlhammer, L.; Orgaz, J.L.; George, S.L.; Maiques, O.; Barcelo, J.; Sanz-Moreno, V. Rho GTPase signaling in cancer progression and dissemination. Physiol. Rev. 2022, 102, 455–510. [Google Scholar] [CrossRef]
- Rana, P.S.; Alkrekshi, A.; Wang, W.; Markovic, V.; Sossey-Alaoui, K. The Role of WAVE2 Signaling in Cancer. Biomedicines 2021, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.H.; Chao, Y.C.; Hung, P.F.; Chen, H.Y.; Yang, S.C.; Chang, Y.L.; Wu, C.T.; Chang, C.C.; Wang, W.L.; Chan, W.K.; et al. The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. J. Clin. Investig. 2011, 121, 3189–3205. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Pan, G.; Poncz, M.; Wei, J.; Ran, M.; Zhou, Z. Serpin functions in host-pathogen interactions. PeerJ 2018, 6, e4557. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Minamiya, Y.; Takahashi, N. Prognostic impact of S100A9 overexpression in non-small cell lung cancer. Tumour Biol. 2011, 32, 641–646. [Google Scholar] [CrossRef]
- Huang, H.; Huang, Q.; Tang, T.; Gu, L.; Du, J.; Li, Z.; Lu, X.; Zhou, X. Clinical significance of calcium-binding protein S100A8 and S100A9 expression in non-small cell lung cancer. Thorac. Cancer 2018, 9, 800–804. [Google Scholar] [CrossRef]
- Elshoeibi, A.M.; Elsayed, B.; Kaleem, M.Z.; Elhadary, M.R.; Abu-Haweeleh, M.N.; Haithm, Y.; Krzyslak, H.; Vranic, S.; Pedersen, S. Proteomic Profiling of Small-Cell Lung Cancer: A Systematic Review. Cancers 2023, 15, 5005. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Pan, S.; Gu, B.; Zhen, Y.; Yan, J.; Zhou, Y. Amylase: Sensitive tumor marker for amylase-producing lung adenocarcinoma. J. Thorac. Dis. 2013, 5, E167–E169. [Google Scholar] [CrossRef]
- Basannavar, A.A.; Bhargava, A.; Sahoo, A.; Dhakar, N.; Shetty, R.R.; Giri, D. Estimation of Alpha-Amylase in Smokers with and without Leukoplakia and Oral Cancer—A Comparative Study. J. Pharm. Bioallied Sci. 2024, 16 (Suppl. 4), S3200–S3202. [Google Scholar] [CrossRef]
- Nakamura, Y.; Tomita, N.; Nishide, T.; Emi, M.; Horii, A.; Ogawa, M.; Mori, T.; Kosaki, G.; Okabe, T.; Fujisawa, M.; et al. Production of salivary type alpha-amylase in human lung cancer. Gene 1989, 77, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Lenler-Petersen, P.; Grove, A.; Brock, A.; Jelnes, R. Alpha-Amylase in resectable lung cancer. Eur. Respir. J. 1994, 7, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Remold-O’Donnell, E.; Chin, J.; Alberts, M. Sequence and molecular characterization of human monocyte/neutrophil elastase inhibitor. Proc. Natl. Acad. Sci. USA 1992, 89, 5635–5639. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, J.H.; Karsdal, M.A.; Sand, J.M.; Willumsen, N.; Diefenbach, C.; Svensson, B.; Hägglund, P.; Oersnes-Leeming, D.J. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling. BMC Pulm. Med. 2015, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Remori, V.; Airoldi, M.; Alberio, T.; Fasano, M.; Azzi, L. Prediction of Oral Cancer Biomarkers by Salivary Proteomics Data. Int. J. Mol. Sci. 2024, 25, 11120. [Google Scholar] [CrossRef]
- Ding, X.; Hou, L.; Zhang, H.; Chen, Z.; Liu, Z.; Gong, J.; Tang, Z.; Hu, R. EIF3C Promotes Lung Cancer Tumorigenesis by Regulating the APP/HSPA1A/LMNB1 Axis. Dis. Markers 2022, 2022, 9464094. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Fang, Z.; Wang, H.; Zhang, J.; Zhang, L.; Huang, H.; Jiang, Z.; Jin, Y.; Han, X.; et al. Targeting HSPA1A in ARID2-deficient lung adenocarcinoma. Natl. Sci. Rev. 2021, 8, nwab014. [Google Scholar] [CrossRef]
- Lu, F.; Zhou, J.; Chen, Q.; Zhu, J.; Zheng, X.; Fang, N.; Qiao, L. PSMA5 contributes to progression of lung adenocarcinoma in association with the JAK/STAT pathway. Carcinogenesis 2022, 43, 624–634. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th edition of the AJCC cancer staging manual and the future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, L.; Zhou, H.; Lee, J.M.; Garon, E.B.; Wong, D.T. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol. Cell Proteom. 2012, 11, M111.012112. [Google Scholar] [CrossRef]
- Fernandes, A.; Skinner, M.L.; Woelfel, T.; Carpenter, T.; Haggerty, K.P. Implementing Self-collection of Biological Specimens With a Diverse Sample. Field Methods 2013, 25, 58–73. [Google Scholar] [CrossRef]
- Topkas, E.; Keith, P.; Dimeski, G.; Cooper-White, J.; Punyadeera, C. Evaluation of saliva collection devices for the analysis of proteins. Clin. Chim. Acta 2012, 413, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Xie, Y.; Ramachandran, P.; Ogorzalek Loo, R.R.; Li, Y.; Loo, J.A.; Wong, D.T. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and twodimensional gel electrophoresis-mass spectrometry. Proteomics 2005, 5, 1714–1728. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Poland, J.; Schnölzer, M.; Rabilloud, T. A new silver staining apparatus and procedure for matrix-assisted laser desorption/ionization-time of flight analysis of proteins after two-dimensional electrophoresis. Proteomics 2001, 1, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Eleuterio, E.; Trubiani, O.; Sulpizio, M.; Di Giuseppe, F.; Pierdomenico, L.; Marchisio, M.; Giancola, R.; Giammaria, G.; Miscia, S.; Caputi, S.; et al. Proteome of human stem cells from periodontal ligament and dental pulp. PLoS ONE 2013, 8, e71101. [Google Scholar] [CrossRef] [PubMed]
- Di Giuseppe, F.; Ricci-Vitiani, L.; Pallini, R.; Di Pietro, R.; Di Iorio, P.; Ascani, G.; Ciccarelli, R.; Angelucci, S. Changes Induced by P2X7 Receptor Stimulation of Human Glioblastoma Stem Cells in the Proteome of Extracellular Vesicles Isolated from Their Secretome. Cells 2024, 13, 571. [Google Scholar] [CrossRef]
- Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965. [Google Scholar] [CrossRef]
Sample | Duration of Cryopreservation | Mean (µg/µL) | SD |
---|---|---|---|
83C 45C 77C | 0 months (T0) | 3.124 | 0.23 |
2 months | 3.023 (NS) | 0.11 | |
51C 44C 68C | T0 | 2.968 | 0.15 |
6 months | 2.054 (***) | 0.14 | |
11C 17C 27C | T0 | 3.57 | 0.12 |
12 months | 2.54 (***) | 0.16 |
Sample Used for 2D Gels | Cryopreservation Period | All Spots | # Matched Spots (vs. 12-Month Sample) | % Matched Spots (vs. 12-Month Sample) |
---|---|---|---|---|
83C | 2 months | 173 | 92 | 17 |
51C | 6 months | 102 | 67 | 12 |
11C | 12 months | 541 | 541 | 100 |
Sample | Duration of Cryopreservation | Mean (µg/µL) | SD |
---|---|---|---|
11C | 0 months (T0) | 3.640 | 0.11 |
11C | 2 months | 3.174 (*) | 0.17 |
11C | 6 months | 2.721 (**) | 0.04 |
11C | 12 months | 2.608 (***) | 0.20 |
Sample Used for 2D Gel | Cryopreservation Period | All Spots | # Matched Spots (vs. 12-Month Sample) | % Matched Spots (vs. 12-Month Sample) |
---|---|---|---|---|
11C | (2 months) | 318 | 150 | 40 |
11C | (6 months) | 295 | 210 | 56 |
11C | (12 months) | 373 | 373 | 100 |
Sample | Duration of Cryopreservation | Mean (µg/µL) | SD |
---|---|---|---|
C31S C44S C53S | 1 day | 1.940 | 0.097 |
C86S C89S C101S C95S | 15 days | 1.750 (**) | 0.11 |
C128S C132S C141S | 30 days | 1.563 (***) | 0.080 |
Sample Used for 2D Gel | Cryopreservation Period | All Spots | # Matched Spots (vs. 1 Day Sample) | % Matched Spots (vs. 1 Day Sample) |
---|---|---|---|---|
C31S | 1 day | 496 | 496 | 100 |
C86S | 15 days | 466 | 255 | 51 |
C128S | 30 days | 299 | 170 | 34 |
Sample Used for 2D Gel | All Spots | # Unmatched Spots (vs. 153S Sample) | # Matched Spots (vs. 153S Sample) | % Matched Spots (vs. 153S Sample) |
---|---|---|---|---|
125C | 386 | 126 | 260 | 52.5 |
133C | 307 | 180 | 127 | 25.6 |
137C | 295 | 82 | 213 | 43.0 |
C147S | 468 | 102 | 366 | 73.9 |
C149S | 397 | 59 | 338 | 68.3 |
C153S | 495 | 0 | 495 | 100 |
Label | Protein Name | Abbreviation | Swiss-Prot/NCBInr Ac a | Score b _Sc c | Matching Peptides # | Theoretical Mr_pI | Expression in Stimulated (SS) vs. Unstimulated Samples |
---|---|---|---|---|---|---|---|
M2 | Interferon alpha-1/13 | IFNA1 | P01562 | 45_32 | 5 | 22,110_5.32 | _ |
M3 | Protein S100 A9 | S100A9 | P06702 | 101_90 | 13 | 13,291_5.71 | _ |
M8 | Cystatin SN | CYTN | P01037 | 70_68 | 11 | 16,605_6.73 | _ |
M11 | Alpha-enolase isoform 3 | ENOB | P13929 | 102_67 | 27 | 47,696_6.5 | _ |
M12 | Carbonic anhydrase 6 | CAH6 | P23280 | 94_25 | 11 | 35,459_6.51 | _ |
M19 | Polymeric immunoglobulin receptor | PIGR | P01833 | 93_39 | 29 | 84,429_5.58 | _ |
M21 | Alpha-amylase 1A | AMY1A | P0DUB6 | 160_49 | 27 | 58,415_6.47 | _ |
M25 | Polymeric immunoglobulin receptor | PIGR | P01833 | 40_43 | 21 | 84,429_5.58 | _ |
M22 | Cystatin S | CYTS | P01036 | 83_73 | 13 | 16,489_4.95 | _ |
M24 | Heat shock protein 70 kDa protein 1A | HS71A | P0DMV8 | 126_39 | 19 | 70,294_5.48 | _ |
M29 | Cystatin SN | CYTN | P01037 | 138_37 | 4 | 16,605_6.73 | _ |
M50 | Pancreatic alpha-amylase | AMYP | P04746 | 160_49 | 27 | 58,415_6.47 | _ |
D9 | Leukocyte elastase inhibitor | ILEU | P30740 | 54_39 | 19 | 42,829_5.90 | Only in SS (p < 0.0037) |
D10 | Actin, cytoplasmic 1 | ACTB | P60709 | 100_48 | 27 | 42,052_5.29 | Only in SS (p < 0.0006) |
D11 | 3′5′ exoribonuclease 1 | ERI1 | Q81V48 | 37_29 | 17 | 40,494_6.29 | Only in SS (p < 0.0018) |
D13 | Actin, cytoplasmic 2 | ACTG | P63261 | 102_60 | 29 | 42,108_5.31 | >expression in S (p < 0.0008) |
D15 | Serpin E3 | SERP3 | A8MV23 | 54_48 | 26 | 44,594_6.35 | Only in SS (p < 0.0019) |
D16 | Actin-related protein 3 | ARP3 | P61158 | 85_53 | 35 | 47,797_5.61 | Only in SS (p < 0.0024) |
D38 | BPI fold-containing family A member 2 | BPIA2 | Q96DR5 | 90_56 | 14 | 27,166_5.35 | <expression in SS (p < 0.0005) |
D39 | BPI fold-containing family A member 2 | BPIA2 | Q96DR5 | 96_55 | 14 | 27,166_5.35 | <expression (p < 0.0001) |
D44 | Proteasome subunit alpha type 5 | PSA5 | P28066 | 52_58 | 15 | 26,565_4.74 | Only in SS (p < 0.0041) |
D49 | Glycosyl-phosphatidylinositol-anchored molecule | GML | Q99445 | 41_62 | 9 | 18,345_6.10 | >expression in SS (p < 0.0007) |
D51 | Heat shock protein beta-3 | HSPB3 | Q12988 | 29_32 | 4 | 17,069_5.36 | >expression in SS (p < 0.0029) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barra, L.; Carestia, E.; Ferri, G.; Kazemi, M.; Ramahi, M.; Priyadarshi, U.; Di Resta, V.; Di Giuseppe, F.; Ciccarelli, R.; Lococo, A.; et al. Methodological Development of a Test for Salivary Proteome Analysis Useful in Lung Cancer Screening. Int. J. Mol. Sci. 2025, 26, 7924. https://doi.org/10.3390/ijms26167924
Barra L, Carestia E, Ferri G, Kazemi M, Ramahi M, Priyadarshi U, Di Resta V, Di Giuseppe F, Ciccarelli R, Lococo A, et al. Methodological Development of a Test for Salivary Proteome Analysis Useful in Lung Cancer Screening. International Journal of Molecular Sciences. 2025; 26(16):7924. https://doi.org/10.3390/ijms26167924
Chicago/Turabian StyleBarra, Leonarda, Elena Carestia, Giulia Ferri, Mohammad Kazemi, Massoumeh Ramahi, Uditanshu Priyadarshi, Velia Di Resta, Fabrizio Di Giuseppe, Renata Ciccarelli, Achille Lococo, and et al. 2025. "Methodological Development of a Test for Salivary Proteome Analysis Useful in Lung Cancer Screening" International Journal of Molecular Sciences 26, no. 16: 7924. https://doi.org/10.3390/ijms26167924
APA StyleBarra, L., Carestia, E., Ferri, G., Kazemi, M., Ramahi, M., Priyadarshi, U., Di Resta, V., Di Giuseppe, F., Ciccarelli, R., Lococo, A., & Angelucci, S. (2025). Methodological Development of a Test for Salivary Proteome Analysis Useful in Lung Cancer Screening. International Journal of Molecular Sciences, 26(16), 7924. https://doi.org/10.3390/ijms26167924