A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency
Abstract
1. Introduction
2. Results
2.1. The RBCS Gene Family Exhibits a Distinct Copy Number Separation Between Phylogenetic Groupings Strongly Correlated with Genome Size
2.2. The Expanded RBCS Gene Family Shows Syntenic Associations Between Representatives of the Triticeae/Aveneae
2.3. Cis-Regulatory Element Profiles of Grass Family RBCS Are Dominated by a Light- and Drought-Receptive Landscape
2.4. Unique Distribution of Terminal Cis-Regulatory Elements in the RBCS Promoters of Select Members of the Triticeae Exhibit Concordantly Enhanced Expression
2.5. Divergent RBCS Expression Profiles Are Observed Between H. vulgare Pangenome Accessions Possessing a Spring and Winter-Type Growth Habit
2.6. Barley Mutant Rubisco Possessing Amino Acid Substitution Derived from Wildtype Maize RBCS Exhibits Superior Protein Stability
2.7. Natural Selection Analysis Reveals Distinct Selection Pressures in the RBCS Gene Family Lineages of Distinct Phylogenetic Groupings
3. Discussion
3.1. Expanded RBCS Arrays in the Triticeae/Aveneae May Compensate for Reduced Catalytic Efficacy and/or Enhance Adaptability to Temperate Environments
3.2. Exploring the Terminal I Box Element Pair as a Potential Enhancer of Rubisco Expression and Modulator of Photosynthetic Rate
3.3. Native C4 Polymorphisms in the βA-βB Loop Serve as Novel Polymorphisms for the Targeted Improvement of C3 Rubisco Complexes
3.4. Specific Selection Pressures in the Expanded RBCS Gene Family Are Suggestive of Potential Adaptive Divergence of RBCS Copies in the Triticeae
4. Materials and Methods
4.1. Phylogenetic Characterisation of the RBCS Gene Family and Assessment of Copy Number Variation Across True Grass Genera
4.2. Investigation of Relative Copy Number of the RBCS Gene Family in the Expanded Barley Pangenome
4.3. Synteny Analysis of the Expanded RBCS Gene Family in the Triticaeae/Aveneae
4.4. Extraction of Upstream RBCS Gene Regions and Identification of Cis-Regulatory Elements in the True Grasses and the Barley Pangenome
4.5. Investigation of RBCS Gene Family Copy Relative Expression Observed in H. vulgare, A. tauschii and S. cereale
4.6. Assessment of Relative RBCS Expression in the Barley Pan-Transcriptome
4.7. Molecular Dynamics Analysis of in Silico Rubisco Hybrid Complexes
4.8. Natural Selection Analysis of RBCS Sequences in the True Grasses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RBCS | Rubisco Small Subunit |
RBCL | Rubisco Large Subunit |
References
- Erb, T.J.; Zarzycki, J. A Short History of Rubisco: The Rise and Fall (?) of Nature’s Predominant CO2 Fixing Enzyme. Curr. Opin. Biotechnol. 2018, 49, 100–107. [Google Scholar] [CrossRef]
- Andralojc, P.J.; Carmo-Silva, E.; Degen, G.E.; Parry, M.A.; Gutteridge, S. Increasing Metabolic Potential: C-Fixation. Essays Biochem. 2018, 62, 109–118. [Google Scholar] [CrossRef]
- Meloni, M.; Gurrieri, L.; Fermani, S.; Velie, L.; Sparla, F.; Crozet, P.; Henri, J.; Zaffagnini, M. Ribulose-1,5-Bisphosphate Regeneration in the Calvin-Benson-Bassham Cycle: Focus on the Last Three Enzymatic Steps that Allow the Formation of Rubisco Substrate. Front. Plant Sci. 2023, 14, 1130430. [Google Scholar] [CrossRef]
- Chen, J.-H.; Tang, M.; Jin, X.-Q.; Li, H.; Chen, L.-S.; Wang, Q.-L.; Sun, A.-Z.; Yi, Y.; Guo, F.-Q. Regulation of Calvin—Benson Cycle Enzymes under High Temperature Stress. aBIOTECH 2022, 3, 65–77. [Google Scholar] [CrossRef]
- Jensen, R.G. Activation of Rubisco Regulates Photosynthesis at High Temperature and CO2. Proc. Natl. Acad. Sci. USA 2000, 97, 12937–12938. [Google Scholar] [CrossRef]
- Lorimer, G.H.; Miziorko, H.M. Carbamate Formation on the.Epsilon.-Amino Group of a Lysyl Residue as the Basis for the Activation of Ribulosebisphosphate Carboxylase by Carbon Dioxide and Magnesium(2+). Biochemistry 1980, 19, 5321–5328. [Google Scholar] [CrossRef] [PubMed]
- Amaral, J.; Lobo, A.K.M.; Carmo-Silva, E. Regulation of Rubisco Activity in Crops. New Phytol. 2023, 241, 35–51. [Google Scholar] [CrossRef]
- Brooks, A.; Farquhar, G.D. Effect of Temperature on the CO2/O2 Specificity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase and the Rate of Respiration in the Light. Planta 1985, 165, 397–406. [Google Scholar] [CrossRef]
- Cavanagh, A.P.; Slattery, R.; Kubien, D.S.; Sharwood, R. Temperature-Induced Changes in Arabidopsis Rubisco Activity and Isoform Expression. J. Exp. Bot. 2022, 74, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Bracher, A.; Whitney, S.M.; Hartl, F.U.; Hayer-Hartl, M. Biogenesis and Metabolic Maintenance of Rubisco. Annu. Rev. Plant Biol. 2017, 68, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Sapir, Y.; Shapira, M. A Conserved Mechanism Controls Translation of Rubisco Large Subunit in Different Photosynthetic Organisms. Plant Physiol. 2006, 141, 1089–1097. [Google Scholar] [CrossRef]
- Whitney, S.M.; Houtz, R.L.; Alonso, H. Advancing Our Understanding and Capacity to Engineer Nature’s CO2-Sequestering Enzyme, Rubisco. Plant Physiol. 2010, 155, 27–35. [Google Scholar] [CrossRef]
- Liu, D.; Ramya, R.C.S.; Mueller-Cajar, O. Surveying the Expanding Prokaryotic Rubisco Multiverse. FEMS Microbiol. Lett. 2017, 364, fnx156. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Catherall, E.; Díaz-Ramos, A.; Greiff, G.R.L.; Azinas, S.; Gunn, L.; McCormick, A.J.; Sharwood, R. The Small Subunit of Rubisco and Its Potential as an Engineering Target. J. Exp. Bot. 2022, 74, 543–561. [Google Scholar] [CrossRef] [PubMed]
- Hauser, T.; Popilka, L.; Hartl, F.U.; Hayer-Hartl, M. Role of Auxiliary Proteins in Rubisco Biogenesis and Function. Nat. Plants 2015, 1, 15065. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.F. Variation in the Kcat of Rubisco in C3 and C4 Plants and Some Implications for Photosynthetic Performance at High and Low Temperature. J. Exp. Bot. 2002, 53, 609–620. [Google Scholar] [CrossRef]
- Whitney, S.M.; Sharwood, R.E.; Orr, D.; White, S.J.; Alonso, H.; Galmés, J. Isoleucine 309 Acts as a C4 Catalytic Switch that Increases Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Carboxylation Rate in Flaveria. Proc. Natl. Acad. Sci. USA 2011, 108, 14688–14693. [Google Scholar] [CrossRef]
- Galmés, J.; Capó-Bauçà, S.; Niinemets, Ü.; Iñiguez, C. Potential Improvement of Photosynthetic CO2 Assimilation in Crops by Exploiting the Natural Variation in the Temperature Response of Rubisco Catalytic Traits. Curr. Opin. Plant Biol. 2019, 49, 60–67. [Google Scholar] [CrossRef]
- Bouvier, J.W.; Emms, D.M.; Kelly, S. Rubisco is Evolving for Improved Catalytic Efficiency and CO2 Assimilation in Plants. Proc. Natl. Acad. Sci. USA 2024, 121, e2321050121. [Google Scholar] [CrossRef]
- Matsumura, H.; Shiomi, K.; Yamamoto, A.; Taketani, Y.; Kobayashi, N.; Yoshizawa, T.; Tanaka, S.; Yoshikawa, H.; Endo, M.; Fukayama, H. Hybrid Rubisco with Complete Replacement of Rice Rubisco Small Subunits by Sorghum Counterparts Confers C4 Plant-like High Catalytic Activity. Mol. Plant 2020, 13, 1570–1581. [Google Scholar] [CrossRef]
- Gowik, U.; Westhoff, P. The Path from C3 to C4 Photosynthesis. Plant Physiol. 2010, 155, 56–63. [Google Scholar] [CrossRef]
- Galmés, J.; Conesa, M.À.; Díaz-Espejo, A.; Mir, A.; Perdomo, J.A.; Niinemets, Ü.; Flexas, J. Rubisco Catalytic Properties Optimized for Present and Future Climatic Conditions. Plant Sci. 2014, 226, 61–70. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Erenstein, O.; Chamberlin, J.; Sonder, K. Estimating the Global Number and Distribution of Maize and Wheat Farms. Glob. Food Secur. 2021, 30, 100558. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, M.; Hu, H.; Chapman, B.; Watt, C.; Buerte, B.; Han, N.; Zhu, M.; Bian, H.; Li, C.; et al. Comparative Gene Retention Analysis in Barley, Wild Emmer, and Bread Wheat Pangenome Lines Reveals Factors Affecting Gene Retention Following Gene Duplication. BMC Biol. 2023, 21, 25. [Google Scholar] [CrossRef]
- Mascher, M.; Wicker, T.; Jenkins, J.; Plott, C.; Lux, T.; Koh, C.S.; Ens, J.; Gundlach, H.; Boston, L.B.; Tulpová, Z.; et al. Long-Read Sequence Assembly: A Technical Evaluation in Barley. Plant Cell 2021, 33, 1888–1906. [Google Scholar] [CrossRef]
- Wicker, T.; Gundlach, H.; Spannagl, M.; Uauy, C.; Borrill, P.; Ramírez-González, R.H.; De Oliveira, R.; International Wheat Genome Sequencing Consortium; Mayer, K.F.X.; Paux, E.; et al. Impact of Transposable Elements on Genome Structure and Evolution in Bread Wheat. Genome Biol. 2018, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Linardopoulou, E.V.; Williams, E.M.; Fan, Y.; Friedman, C.; Young, J.M.; Trask, B.J. Human Subtelomeres are Hot Spots of Interchromosomal Recombination and Segmental Duplication. Nature 2005, 437, 94–100. [Google Scholar] [CrossRef]
- Hanada, K.; Zou, C.; Lehti-Shiu, M.D.; Shinozaki, K.; Shiu, S.-H. Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli. Plant Physiol. 2008, 148, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Desta, K.T.; Choi, Y.-M.; Yoon, H.; Lee, S.; Yi, J.; Jeon, Y.; Wang, X.; Park, J.-C.; Kim, K.-M.; Shin, M.-J. Comprehensive Characterization of Global Barley (Hordeum vulgare L.) Collection Using Agronomic Traits, β-Glucan Level, Phenolic Content, and Antioxidant Activities. Plants 2024, 13, 169. [Google Scholar] [CrossRef] [PubMed]
- Blackman, G.E.; Wilson, G.L. Physiological and Ecological Studies in the Analysis of Plant Environment. Ann. Bot. 1951, 15, 373–408. [Google Scholar] [CrossRef]
- Huang, Y.-L.; Zhang, L.-K.; Zhang, K.; Chen, S.-M.; Hu, J.-B.; Cheng, F. The Impact of Tandem Duplication on Gene Evolution in Solanaceae Species. J. Integr. Agric. 2022, 21, 1004–1014. [Google Scholar] [CrossRef]
- Cai, H.; Des Marais, D.L. Expression variability following gene duplication facilitates gene retention. bioXiv 2024, 11, 622370. [Google Scholar] [CrossRef]
- Huner, N.P.A.; Öquist, G.; Hurry, V.M.; Krol, M.; Falk, S.; Griffith, M. Photosynthesis, Photoinhibition and Low Temperature Acclimation in Cold Tolerant Plants. Photosynth. Res. 1993, 37, 19–39. [Google Scholar] [CrossRef]
- Sui, N.; Li, M.; Meng, Q.-W.; Tian, J.-C.; Zhao, S.-J. Photosynthetic Characteristics of a Super High Yield Cultivar of Winter Wheat during Late Growth Period. Agric. Sci. China 2010, 9, 346–354. [Google Scholar] [CrossRef]
- Yiğit, A.; Chmielewski, F.-M. A Deeper Insight into the Yield Formation of Winter and Spring Barley in Relation to Weather and Climate Variability. Agronomy 2024, 14, 1503. [Google Scholar] [CrossRef]
- Chen, J.; Manevski, K.; Lærke, P.E.; Jørgensen, U. Biomass yield, Yield Stability and Soil Carbon and Nitrogen Content Under Cropping Systems Destined for Biorefineries. Soil Tillage Res. 2022, 221, 105397. [Google Scholar] [CrossRef]
- del Río, Á.R.; Monteagudo, A.; Contreras-Moreira, B.; Kiss, T.; Mayer, M.; Karsai, I.; Igartua, E.; Casas, A.M. Diversity of Gene Expression Responses to Light Quality in Barley. Sci. Rep. 2023, 13, 17143. [Google Scholar] [CrossRef]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M. Sample Size, Power and Effect Size Revisited: Simplified and Practical Approaches in Pre-Clinical, Clinical and Laboratory Studies. Biochem. Medica 2021, 31, 27–53. [Google Scholar] [CrossRef]
- Goncharov, A.A.; Safonov, T.A.; Malko, A.M.; Bocharov, G.A.; Goncharov, S.V. Climate Change Expected to Increase Yield of Spring Cereals and Reduce Yield of Winter Cereals in the Western Siberian Grain Belt. Field Crop. Res. 2023, 302, 109038. [Google Scholar] [CrossRef]
- Donald, R.G.; Cashmore, A.R. Mutation of Either G Box or I Box Sequences Profoundly Affects Expression from the Arabidopsis rbcS-1A Promoter. EMBO J. 1990, 9, 1717–1726. [Google Scholar] [CrossRef]
- Rose, A.; Meier, I.; Wienand, U. The Tomato I-Box Binding Factor LeMYBI is a Member of a Novel Class of Myb-Like Proteins. Plant J. 1999, 20, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Heinen, J.L.; Burns, T.H.; Allen, R.D. Expression of Two Tissue-Specific Promoters in Transgenic Cotton Plants. J. Cotton Sci. 2000, 4, 217–223. [Google Scholar]
- Mukherjee, S.; Stasolla, C.; Brûlé-Babel, A.; Ayele, B.T. Isolation and Characterization of Rubisco Small Subunit Gene Promoter from Common Wheat (Triticum aestivum L.). Plant Signal. Behav. 2015, 10, e989033. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.; López-Ochoa, L.; Argüello-Astorga, G.; Herrera-Estrella, L. Functional Properties and Regulatory Complexity of a MinimalRbcs Light-Responsive Unit Activated by Phytochrome, Cryptochrome, and Plastid Signals. Plant Physiol. 2002, 128, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- López-Ochoa, L.; Acevedo-Hernández, G.; Martínez-Hernández, A.; Argüello-Astorga, G.; Herrera-Estrella, L. Structural Relationships between Diverse Cis-Acting Elements are Critical for the Functional Properties of a Rbcs Minimal Light Regulatory Unit. J. Exp. Bot. 2007, 58, 4397–4406. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Nakabayashi, K.; Yoshizawa, R.; Mae, T.; Makino, A. Differences in Expression of the RBCS Multigene Family and Rubisco Protein Content in Various Rice Plant Tissues at Different Growth Stages. Plant Cell Physiol. 2009, 50, 1851–1855. [Google Scholar] [CrossRef]
- Suzuki, Y.; Makino, A. Availability of Rubisco Small Subunit Up-Regulates the Transcript Levels of Large Subunit for Stoichiometric Assembly of Its Holoenzyme in Rice. Plant Physiol. 2012, 160, 533–540. [Google Scholar] [CrossRef]
- Liang, F.; Lindblad, P. Synechocystis PCC 6803 Overexpressing Rubisco Grow Faster with Increased Photosynthesis. Metab. Eng. Commun. 2017, 4, 29–36. [Google Scholar] [CrossRef]
- Ludwig, Y.; Dueñas, C.; Arcillas, E.; Macalalad-Cabral, R.J.; Kohli, A.; Reinke, R.; Slamet-Loedin, I.H. CRISPR-Mediated Promoter Editing of a Cis-Regulatory Element of OSNAS2 Increases ZN Uptake/Translocation and Plant Yield in Rice. Front. Genome Ed. 2024, 5, 1308228. [Google Scholar] [CrossRef]
- Sharwood, R.E.; Ghannoum, O.; Whitney, S.M. Prospects for improving CO2 Fixation in C3-Crops through Understanding C4-Rubisco Biogenesis and Catalytic Diversity. Curr. Opin. Plant Biol. 2016, 31, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Spreitzer, R.J. Role of the Small Subunit in Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Arch. Biochem. Biophys. 2003, 414, 141–149. [Google Scholar] [CrossRef]
- Valegård, K.; Hasse, D.; Andersson, I.; Gunn, L.H. Structure of Rubisco from Arabidopsis thalianain Complex with 2-Carboxyarabinitol-1,5-Bisphosphate. Acta Crystallogr. Sect. D Struct. Biol. 2018, 74, 1–9. [Google Scholar] [CrossRef]
- Pace, C.N.; Fu, H.; Fryar, K.; Landua, J.; Trevino, S.R.; Schell, D.; Thurlkill, R.L.; Imura, S.; Scholtz, J.M.; Gajiwala, K.; et al. Contribution of Hydrogen Bonds to Protein Stability. Protein Sci. 2014, 23, 652–661. [Google Scholar] [CrossRef]
- Li, G.; Mao, H.; Ruan, X.; Xu, Q.; Gong, Y.; Zhang, X.; Zhao, N. Association of Heat-Induced Conformational Change with Activity Loss of Rubisco. Biochem. Biophys. Res. Commun. 2002, 290, 1128–1132. [Google Scholar] [CrossRef]
- Ruuska, S.A.; Schwender, J.; Ohlrogge, J.B. The Capacity of Green Oilseeds to Utilize Photosynthesis to Drive Biosynthetic Processes. Plant Physiol. 2004, 136, 2700–2709. [Google Scholar] [CrossRef]
- Whitney, S.M.; Andrews, T.J. The Gene for the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (Rubisco) Small Subunit Relocated to the Plastid Genome of Tobacco Directs the Synthesis of Small Subunits That Assemble into Rubisco. Plant Cell 2001, 13, 193–205. [Google Scholar] [CrossRef]
- Pottier, M.; Gilis, D.; Boutry, M. The Hidden Face of Rubisco. Trends Plant Sci. 2018, 23, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Hatanaka, T.; Misoo, S.; Fukayama, H. Unusual Small Subunit That Is Not Expressed in Photosynthetic Cells Alters the Catalytic Properties of Rubisco in Rice. Plant Physiol. 2013, 164, 69–79. [Google Scholar] [CrossRef]
- Khumsupan, P.; Kozlowska, M.A.; Orr, D.J.; Andreou, A.I.; Nakayama, N.; Patron, N.; Carmo-Silva, E.; McCormick, A.J.; Sharwood, R. Generating and Characterizing Single- and Multigene Mutants of the Rubisco Small Subunit Family in Arabidopsis. J. Exp. Bot. 2020, 71, 5963–5975. [Google Scholar] [CrossRef] [PubMed]
- Meier, I.; Callan, K.L.; Fleming, A.J.; Gruissem, W. Organ-Specific Differential Regulation of a Promoter Subfamily for the Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Small Subunit Genes in Tomato. Plant Physiol. 1995, 107, 1105–1118. [Google Scholar] [CrossRef]
- Martin-Avila, E.; Lim, Y.-L.; Birch, R.; Dirk, L.M.A.; Buck, S.; Rhodes, T.; Sharwood, R.E.; Kapralov, M.V.; Whitney, S.M. Modifying Plant Photosynthesis and Growth via Simultaneous Chloroplast Transformation of Rubisco Large and Small Subunits. Plant Cell 2020, 32, 2898–2916. [Google Scholar] [CrossRef]
- Lin, M.T.; Salihovic, H.; Clark, F.K.; Hanson, M.R. Improving the Efficiency of Rubisco by Resurrecting its Ancestors in the Family Solanaceae. Sci. Adv. 2022, 8, eabm6871. [Google Scholar] [CrossRef]
- Maughan, P.J.; Lee, R.; Walstead, R.; Vickerstaff, R.J.; Fogarty, M.C.; Brouwer, C.R.; Reid, R.R.; Jay, J.J.; Bekele, W.A.; Jackson, E.W.; et al. Genomic Insights from the First Chromosome-Scale Assemblies of Oat (Avena spp.) Diploid Species. BMC Biol. 2019, 17, 92. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-H.; Ma, P.-F.; Yang, G.-Q.; Hu, J.-Y.; Liu, Y.-L.; Xia, E.-H.; Zhong, M.-C.; Zhao, L.; Sun, G.-L.; Xu, Y.-X.; et al. Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos. Mol. Plant 2019, 12, 1353–1365. [Google Scholar] [CrossRef]
- Edler, D.; Klein, J.; Antonelli, A.; Silvestro, D.; Matschiner, M. raxmlGUI 2.0: A Graphical Interface and Toolkit for Phylogenetic Analyses Using Raxml. Methods Ecol. Evol. 2020, 12, 373–377. [Google Scholar] [CrossRef]
- Jayakodi, M.; Lu, Q.; Pidon, H.; Rabanus-Wallace, M.T.; Bayer, M.; Lux, T.; Guo, Y.; Jaegle, B.; Badea, A.; Bekele, W.; et al. Structural Variation in the Pangenome of Wild and Domesticated Barley. Nature 2024, 636, 654–662. [Google Scholar] [CrossRef]
- Keilwagen, J.; Hartung, F.; Grau, J. GEMOMA: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-Seq Data. Methods Mol. Biol. 2019, 1962, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Pertea, G.; Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Research 2020, 9, 304. [Google Scholar] [CrossRef]
- Steinegger, M.; Söding, J. MMSEQS2 Enables Sensitive Protein Sequence Searching for the Analysis of Massive Data Sets. Nat. Biotechnol. 2017, 35, 1026–1028. [Google Scholar] [CrossRef]
- Tang, H.; Krishnakumar, V.; Zeng, X.; Xu, Z.; Taranto, A.; Lomas, J.S.; Zhang, Y.; Huang, Y.; Wang, Y.; Yim, W.C.; et al. JCVI: A Versatile Toolkit for Comparative Genomics Analysis. iMeta 2024, 3, e211. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Baloch, F.S.; Bakhsh, A.; Asim, M. RuBisCo Small Subunit as Strong Green Tissue Specific Promoter. Curr. Opin. Biotechnol. 2011, 22, S139. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.; Shangguan, H.; Bian, J.; Luo, R.; Tian, Y.; Li, Z.; Nie, X.; Cui, L. BarleyExpDB: An Integrative Gene Expression Database for Barley. BMC Plant Biol. 2023, 23, 170. [Google Scholar] [CrossRef] [PubMed]
- Dorostkar, S.; Dadkhodaie, A.; Ebrahimie, E.; Heidari, B.; Ahmadi-Kordshooli, M. Comparative Transcriptome Analysis of Two Contrasting Resistant and Susceptible Aegilops Tauschii Accessions to Wheat Leaf Rust (Puccinia triticina) Using RNA-Sequencing. Sci. Rep. 2022, 12, 821. [Google Scholar] [CrossRef] [PubMed]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Wang, L.-G.; Lam, T.T.-Y.; Xu, S.; Dai, Z.; Zhou, L.; Feng, T.; Guo, P.; Dunn, C.W.; Jones, B.R.; Bradley, T.; et al. Treeio: An R Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data. Mol. Biol. Evol. 2019, 37, 599–603. [Google Scholar] [CrossRef]
- Xu, S.; Li, L.; Luo, X.; Chen, M.; Tang, W.; Zhan, L.; Dai, Z.; Lam, T.T.; Guan, Y.; Yu, G. Ggtree: A Serialized Data Object for Visualization of a Phylogenetic Tree and Annotation Data. iMeta 2022, 1, e56. [Google Scholar] [CrossRef]
- Yu, G. Aplot: Decorate a “ggplot” with Associated Information, R Package Version 0.2.3; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://CRAN.R-project.org/package=aplot (accessed on 1 July 2025).
- Waugh, R.; Guo, W.; Schreiber, M.; Marosi, V.; Bagnaresi, P.; Chalmers, K.; Chapman, B.; Dang, V.; Dockter, C.; Fiebig, A.; et al. A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity. Nat. Genet. 2024, 57, 441–450. [Google Scholar] [CrossRef]
- Rodrigues, C.H.M.; Pires, D.E.V.; Ascher, D.B. Dynamut2: Assessing Changes in Stability and Flexibility upon Single and Multiple Point Missense Mutations. Protein Sci. 2020, 30, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, M.L.; Bowler, B.E. Propensities of Aromatic Amino Acids versus Leucine and Proline to Induce Residual Structure in the Denatured-State Ensemble of ISO-1-Cytochrome C. J. Mol. Biol. 2010, 403, 495–504. [Google Scholar] [CrossRef]
- Park, C.; Robinson, F.; Kim, D. On the Choice of Different Water Model in Molecular Dynamics Simulations of Nanopore Transport Phenomena. Membranes 2022, 12, 1109. [Google Scholar] [CrossRef] [PubMed]
- Sweere, A.J.; Fraaije, J.G. Accuracy Test of the OPLS-AA Force Field for Calculating Free Energies of Mixing and Comparison with Pac-Mac. J. Chem. Theory Comput. 2017, 13, 1911–1923. [Google Scholar] [CrossRef]
- Lemkul, J. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the Gromacs-2018 Molecular Simulation Package [Article V1.0]. Living J. Comput. Mol. Sci. 2019, 1, 5068. [Google Scholar] [CrossRef]
- Rampogu, S.; Son, M.; Baek, A.; Park, C.; Rana, R.M.; Zeb, A.; Parameswaran, S.; Lee, K.W. Targeting Natural Compounds Against HER2 Kinase Domain as Potential Anticancer Drugs Applying Pharmacophore Based Molecular Modelling Approaches. Comput. Biol. Chem. 2018, 74, 327–338. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S.; Battistuzzi, F.U. Mega11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
Model Type | np | lnL | Parameter Value(s) | Sites Under Selection |
---|---|---|---|---|
One-ratio | ||||
ωC4 = ωCh5 = ωCh2 = ωrest | 1 | −8845.89 | ωC4 = ωCh5 = ωCh2 = ωrest = 0.04908 | Not Applicable (NA) |
Branch-specific | ||||
ωC4 ≠ ωCh5 = ωCh2 = ωrest | 2 | −8841.77 | ωCh5 = ωCh2 = ωrest = 0.0479; ωC4 = 0.1999 | NA |
ωCh5 ≠ ωC4 = ωrest ≠ ωCh2 | 3 | −8843.84 | ωC4 = ωrest = 0.04908; ωCh2 = 0.02328; ωCh5 = 0.40993 | NA |
ωC4 ≠ ωCh5 ≠ ωCh2 ≠ ωrest | 4 | −8839.68 | ωrest = 0.04755; ωC4 = 0.20165; ωCh2 = 0.02307; ωCh5 = 0.44535 | NA |
Branch and Site-specific (Foreground lineage: C4 branch RBCS) | ||||
Model A (assume positive selection on foreground) | 4 | −8802.28 | p0 = 0.92048, p1 = 0.00571 (p2 + p3 = 0.0738); ω0 = 0.04573, (ω1 = 1.0), ω2 = 106.09735 | 34A (Probability > 0.7), 111R (Probability > 0.8), 7A, 8S, 35S, 36L, 37G, 70T, 102N, 103A, 143A (Probability > 0.9) |
Model A Null (assume no positive selection on foreground) | 3 | −8810.99 | p0 = 0.88145, p1 = 0.00543 (p2 + p3 = 0.11312), ω0 = 0.04575, (ω1 = 1.0, ω2 = 1.0) | NA |
Branch and Site-specific (Foreground lineage: Chr5 Triticeae RBCS) | ||||
Model A (assume positive selection on foreground) | 4 | −8818.62 | p0 = 0.98593, p1 = 0.00602 (p2 + p3 = 0.00805); ω0 = 0.04726, (ω1 = 1.0), ω2 = 70.04518 | 103A (Probability > 0.98) |
Model A Null (assume no positive selection on foreground) | 3 | −8820.80 | p0 = 0.92467, p1 = 0.00560 (p2 + p3 = 0.06973), ω0 = 0.04723 (ω1 = 1.0, ω2 = 1.0) | NA |
Species | Metabolism | Family/Subfamily | Assembly Source |
---|---|---|---|
Pharus latifolius | C3 | Pharoideae | V1.1 https://phytozome-next.jgi.doe.gov/info/Platifolius_v1_1 (accessed on 22 March 2023) |
Oryza sativa | C3 | Oryzoideae | IRGSP-1.0 https://rapdb.dna.affrc.go.jp/download/irgsp1.html (accessed on 10 February 2023) |
Brachypodium distachyon | C3 | Pooideae | V3.1 https://phytozome-next.jgi.doe.gov/info/Bdistachyon_v3_1 (accessed on 25 February 2023) |
Avena atlantica | C3 | Pooideae | https://genomevolution.org; Maughan et al. [64] (accessed on 25 March 2023) |
Triticum urartu | C3 | Pooideae | Tu2.0 (IGDB) [64] https://plants.ensembl.org/Triticum_urartu/Info/Index (accessed on 25 March 2023) |
Secale cereale | C3 | Pooideae | Lo7_2018_HC https://wheat.pw.usda.gov/GG3/content/secale-cereale-lo7-files-2021 (accessed on 19 February 2023) |
Hordeum vulgare | C3 | Pooideae | MorexV3_2020_HC https://wheat.pw.usda.gov/GG3/content/morex-v3-files-2021 (accessed on 7 February 2023) |
Aegilops tauschii | C3 | Pooideae | Aet v5.0 https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=200361 (accessed on 26 March 2023) |
Olyra latifolia | C3 | Bambusoideae | http://www.genobank.org/bamboo#2 (accessed on 4 April 2023); Guo et al. [65] |
Raddia guianensis | C3 | Bambusoideae | http://www.genobank.org/bamboo#2 (accessed on 4 April 2023); Guo et al. [65] |
Arabidopsis thaliana | C3 | Brassicaceae | TAIR10 https://phytozome-next.jgi.doe.gov/info/Athaliana_TAIR10 (accessed on 9 February 2023) |
Setaria italica | C4 | Panicoideae | V2.2 https://phytozome-next.jgi.doe.gov/info/Sitalica_v2_2 (accessed on 3 March 2023) |
Panicum hallii | C4 | Panicoideae | V3.1 https://phytozome-next.jgi.doe.gov/info/Phallii_v3_1 (accessed on 3 March 2023) |
Urochloa fusca | C4 | Panicoideae | V1.1 https://phytozome-next.jgi.doe.gov/info/Ufusca_v1_1 (accessed on 3 March 2023) |
Zea mays | C4 | Panicoideae | RefGen_V4 https://phytozome-next.jgi.doe.gov/info/Zmays_RefGen_V4 (accessed on 19 February 2023) |
Sorghum bicolor | C4 | Panicoideae | V3.1.1 https://phytozome-next.jgi.doe.gov/info/Sbicolor_v3_1_1 (accessed on 19 February 2023) |
Oropetium thomaeum | C4 | Chloridoideae | V1.0 https://phytozome-next.jgi.doe.gov/info/Othomaeum_v1_0 (accessed on 12 April 2023) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thornbury, B.C.; He, T.; Jia, Y.; Li, C. A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency. Int. J. Mol. Sci. 2025, 26, 7424. https://doi.org/10.3390/ijms26157424
Thornbury BC, He T, Jia Y, Li C. A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency. International Journal of Molecular Sciences. 2025; 26(15):7424. https://doi.org/10.3390/ijms26157424
Chicago/Turabian StyleThornbury, Brittany Clare, Tianhua He, Yong Jia, and Chengdao Li. 2025. "A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency" International Journal of Molecular Sciences 26, no. 15: 7424. https://doi.org/10.3390/ijms26157424
APA StyleThornbury, B. C., He, T., Jia, Y., & Li, C. (2025). A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency. International Journal of Molecular Sciences, 26(15), 7424. https://doi.org/10.3390/ijms26157424