Development and Future Prospects of Bamboo Gene Science
Abstract
1. Introduction
2. Development of Bamboo Gene Science
2.1. Application of Molecular Markers in Bamboo Classification
2.2. Application of Gene Cloning and Functional Analysis in Bamboo
2.3. Widespread Application of Sequencing Technologies in Bamboo
2.4. Application of Transgenic Overexpression and Gene Editing in Bamboo
3. Opportunities and Challenges in Bamboo Genomics
3.1. Policy Support, Social Impact, and Challenges
3.2. Future Research Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, Z.; Upadhyay, A.; Ding, Y.; Emamverdian, A.; Shahzad, A. Bamboo: Origin, habitat, distributions and global prospective. In Biotechnological Advances in Bamboo; Ahmad, Z., Ding, Y., Shahzad, A., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Li, D.Z.; Wang, Z.P.; Guo, Z.G.; Yang, G.Y.; Stapleton, C. Poaceae tribe Bambuseae. In Flora of China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2013; Volume 22, Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=20753 (accessed on 1 June 2025).
- Gao, Z. Research advances in bamboo genetics and breeding. World Bamboo Ratt. 2023, 21, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Feng, P.; Li, Y. China’s Bamboo resources in 2021. World Bamboo Ratt. 2023, 21, 100–103. (In Chinese) [Google Scholar]
- Yang, S.; Liu, X.; Shang, L.; Ma, J.; Tian, G.; Jiang, Z. The characteristics and representation methods of lignin for bamboo. Mater. Rep. 2020, 34, 7177–7182. (In Chinese) [Google Scholar]
- Li, Z.; Chen, C.; Mi, R.; Gan, W.; Dai, J.; Jiao, M.; Xie, H.; Yao, Y.; Xiao, S.; Hu, L. A strong, tough, and scalable structural material from fast-growing bamboo. Adv. Mater. 2020, 32, e1906308. [Google Scholar] [CrossRef]
- Li, Z.; Chen, C.; Xie, H.; Yao, Y.; Zhang, X.; Brozena, A.; Li, J.; Ding, Y.; Zhao, X.; Hong, M.; et al. Sustainable high-strength macrofibres extracted from natural bamboo. Nat. Sustain. 2022, 5, 235–244. [Google Scholar] [CrossRef]
- Sun, H.; Wang, J.; Li, H.; Li, T.; Gao, Z. Advancements and challenges in bamboo breeding for sustainable development. Tree Physiol. 2023, 43, 1705–1717. [Google Scholar] [CrossRef]
- Rajeevkumar, S.; Anunanthini, P.; Sathishkumar, R. Epigenetic silencing in transgenic plants. Front. Plant Sci. 2015, 6, 693. [Google Scholar] [CrossRef]
- Kurz, S. Bamboo and its use. Indian For. 1876, 1, 219–269. [Google Scholar]
- Janzen, D.H. Why bamboos wait so long to flower. Annu. Rev. Ecol. Syst. 1976, 7, 347–391. [Google Scholar] [CrossRef]
- Zheng, X.; Lin, S.; Fu, H.; Wan, Y.; Ding, Y. The bamboo flowering cycle sheds light on flowering diversity. Front. Plant Sci. 2020, 11, 381. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Cai, C.; Ren, H.; Wang, W.; Xiang, M.; Tang, X.; Zhu, C.; Yin, T.; Zhang, L.; Zhu, Q. An efficient plant regeneration and transformation system of Ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front. Plant Sci. 2017, 8, 1298. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, J.; Qiao, G.; Liu, M.Y.; Yang, H.Q.; Zhuo, R.Y. Getting trans-codA gene regeneration bamboo of Dendrocalamus latiflorus Munro through Agrobacterium mediated method. Bamboo Res. 2012, 31, 1–6. (In Chinese) [Google Scholar]
- Qiao, G.; Yang, H.; Zhang, L.; Han, X.; Liu, M.; Jiang, J.; Jiang, Y. Enhanced cold stress tolerance of transgenic Dendrocalamus latiflorus Munro (Ma bamboo) plants expressing a bacterial CodA gene. In Vitro Cell. Dev. Biol.–Plant 2014, 50, 385–391. [Google Scholar] [CrossRef]
- Huang, B.; Zhuo, R.; Fan, H.; Wang, Y.; Xu, J.; Jin, K.; Qiao, G. An efficient genetic transformation and CRISPR/Cas9-based genome editing system for moso bamboo (Phyllostachys edulis). Front. Plant Sci. 2022, 13, 822022. [Google Scholar] [CrossRef]
- Sun, H.; Di, X.; Gao, Z. Leveraging artificial intelligence for bamboo breeding in the context of “Bamboo as a Substitute for Plastic” initiative. Ind. Crops Prod. 2025, 228, 120896. [Google Scholar] [CrossRef]
- Liu, Y.; Xiao, X.; Li, G.; Zhu, C.; Yang, K.; Feng, X.; Lou, Y.; Gao, Z. Comprehensive analyses of simple sequence repeat (SSR) in bamboo genomes and development of SSR markers with peroxidase genes. Genes 2022, 13, 1518. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wang, S.; Zhu, C.; Li, H.; Gao, Z. A new biotechnology for in-planta gene editing and its application in promoting flavonoid biosynthesis in bamboo leaves. Plant Methods 2023, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Friar, E.; Kochert, G. A study of genetic variation and evolution of Phyllostachys (Bambusoideae: Poaceae) using nuclear restriction fragment length polymorphisms. Theor. Appl. Genet. 1994, 89, 265–270. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, L.; Peng, Z.; Sun, H.; Yue, X.; Lou, Y.; Dong, L.; Wang, L.; Gao, Z. Developing genome-wide microsatellite markers of bamboo and their applications on molecular marker assisted taxonomy for accessions in the genus Phyllostachys. Sci. Rep. 2015, 5, 8018. [Google Scholar] [CrossRef] [PubMed]
- Gielis, J.; Everaert, I.; Goetghebeur, P.; Deloose, M. Bamboo and molecular markers. In Proceedings of the Vth International Bamboo Workshop and the IV International Bamboo Congress, Bali, Indonesia, 19–22 June 1995; Volume 2, pp. 27–39. Available online: https://www.academia.edu/104738656/ (accessed on 1 June 2025).
- Wu, Y.M.; Huang, C.N.; Wang, J.H. Preliminary study on RAPD fingerprinting of four bamboo species. J. Bamboo Res. 1998, 17, 10–14. (In Chinese) [Google Scholar]
- Das, M.; Bhattacharya, S.; Pal, A. Generation and characterization of SCARs by cloning and sequencing of RAPD products: A strategy for species-specific marker development in bamboo. Ann. Bot. 2005, 95, 835–841. [Google Scholar] [CrossRef]
- Nayak, S.; Rout, G.R. Isolation and characterization of microsatellites in Bambusa arundinacea and cross species amplification in other bamboos. Plant Breed. 2005, 124, 599–602. [Google Scholar] [CrossRef]
- Li, L.; Guo, X.; Peng, Z.; Liu, G.; Yuan, H.; Zhu, B.; Yang, K. Effect of the quantity of AFLP primer combinations on accurately identifying bamboo genetic relationships. Chin. Bull. Bot. 2008, 25, 449–454. (In Chinese) [Google Scholar]
- Tang, D.; Lu, J.; Fang, W.; Zhang, S.; Zhou, M. Development, characterization and utilization of GenBank microsatellite markers in Phyllostachys pubescens and related species. Mol. Breed. 2010, 25, 299–311. [Google Scholar] [CrossRef]
- Lin, X.C.; Lou, Y.F.; Liu, J.; Peng, J.S.; Liao, G.L.; Fang, W. Crossbreeding of Phyllostachys species (Poaceae) and identification of their hybrids using ISSR markers. Genet. Mol. Res. 2010, 9, 1398–1404. [Google Scholar] [CrossRef]
- Wang, X.Q.; Zhao, L.; Eaton, D.A.R.; Li, D.Z.; Guo, Z.H. Identification of SNP markers for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using RAD sequencing. Mol. Ecol. Resour. 2013, 13, 938–945. [Google Scholar] [CrossRef]
- Zhao, H.; Sun, S.; Ding, Y.; Wang, Y.; Yue, X.; Du, X.; Wei, Q.; Fan, G.; Sun, H.; Lou, Y.; et al. Analysis of 427 genomes reveals moso bamboo population structure and genetic basis of property traits. Nat. Commun. 2021, 12, 5466. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Zhu, L.; Zhang, K.; Li, L.; Zhao, Z.; Zeng, W.; Lin, X. Development and characterization of EST-SSR markers from RNA-seq data in Phyllostachys violascens. Front. Plant Sci. 2019, 10, 50. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Luo, M.; Chen, X.; Ding, C. Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in different bamboo species using the candidate gene approach. Phyton 2021, 90, 1697. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Bano, N.; Sahoo, H. Detection of plastid-based SNPs to resolve Bambusa tuldalongispiculata-nutans-teres complex in bamboo taxonomy. Indian J. Ecol. 2023, 50, 1315–1320. [Google Scholar]
- Zhou, M.; Xu, C.; Shen, L.; Xiang, W.; Tang, D. Evolution of genome sizes in Chinese Bambusoideae (Poaceae) in relation to karyotype. Trees 2017, 31, 41–48. [Google Scholar] [CrossRef]
- Guo, Z.H.; Ma, P.F.; Yang, G.Q.; Hu, J.Y.; Liu, Y.L.; Xia, E.H.; Zhong, M.C.; Zhao, L.; Sun, G.L.; Xu, Y.X.; et al. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol. Plant 2019, 12, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.Y.; Lin, E.P.; Peng, H.Z.; Sang, Q.L.; Hua, Q.Q. Cloning and expression analyzing of TB1 homologous gene in Phyllostachys violascens. Sci. Silvae Sin. 2007, 8, 41–47. (In Chinese) [Google Scholar]
- Gao, Z.M.; Li, X.P.; Peng, Z.H.; Yue, Y.D. Cloning and characterization of a full-length gene encoding the light harvesting chlorophyll a/b-binding protein in bamboo. Sci. Silvae Sin. 2007, 3, 34–38. (In Chinese) [Google Scholar]
- Liang, Y.Y. Diversity of PIF-like Transposable Elements in Bambusoideae Subfamily and the Cloning of PIF-like Transposable Elements in Phyllostachys pubescens. Master’s Thesis, Zhejiang Forestry University, Hangzhou, China, 2008. (In Chinese). [Google Scholar]
- Kuo, C.J.; Liao, Y.C.; Yang, J.H.; Huang, L.C.; Chang, C.T.; Sung, H.Y. Cloning and characterization of an antifungal class III chitinase from suspension-cultured bamboo (Bambusa oldhamii) cells. J. Agric. Food Chem. 2008, 56, 11507–11514. [Google Scholar] [CrossRef]
- Yuan, L.C. Study on the Gene Involved in the Cellulose Biosynthesis of Moso Bamboo (Phyllostachys edulis); Chinese Academy of Forestry: Beijing, China, 2009. (In Chinese) [Google Scholar]
- He, S.E. cDNA Library Construction and Molecular Cloning of Cellulosesynthase Genes (PeCesA12 and PeCesA11) from Moso Bamboo. Master’s Thesis, Zhejiang Forestry University, Hangzhou, China, 2009. (In Chinese). [Google Scholar]
- Li, Z.; Wang, X.; Yang, K.; Zhu, C.; Yuan, T.; Wang, J.; Li, Y.; Gao, Z. Identification and expression analysis of the glycosyltransferase GT43 family members in bamboo reveal their potential function in xylan biosynthesis during rapid growth. BMC Genom. 2021, 22, 867. [Google Scholar] [CrossRef]
- Chen, M.; Ju, Y.; Ahmad, Z.; Yin, Z.; Ding, Y.; Que, F.; Yan, J.; Chu, J.; Wei, Q. Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage. Tree Physiol. 2021, 41, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Li, X.; Yao, P.; Cheng, Z.; Cai, M.; Liu, C.; Wang, Z.; Gao, J. Alternative splicing of PheNAC23 from moso bamboo impacts flowering regulation and drought tolerance in transgenic. Arab. Plants 2024, 13, 3452. [Google Scholar] [CrossRef]
- Zhuo, J.; Tang, Q.; Pei, J.; Ma, H.; Hou, D.; Lin, X. F-box protein PeFKF1 promotes flowering by cooperating with PeID1 and PeHd1 in Phyllostachys edulis. Int. J. Biol. Macromol. 2024, 283, 137593. [Google Scholar] [CrossRef]
- Yao, W.; Shen, P.; Yang, M.; Meng, Q.; Zhou, R.; Li, L.; Lin, S. Integrated analysis of microRNAs and transcription factor targets in floral transition of Pleioblastus pygmaeus. Plants 2024, 13, 3033. [Google Scholar] [CrossRef]
- Lin, Q.; Shan, X.; Si, Q.; Liu, Y.; Wu, M. Identification of PP2C gene family in moso bamboo (Phyllostachys edulis) and function analysis of PhePP2CA13. Plant Physiol. Biochem. 2025, 224, 109929. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Jia, Y.; Jin, X.; Wu, H.; Yang, S.; Zhao, L.; Zhang, H.; Gu, L. The RNA m6A methyltransferase PheMTA1 and PheMTA2 of moso bamboo regulate root development and resistance to salt stress in plant. Plant Cell Environ. 2025, 48, 5184–5197. [Google Scholar] [CrossRef]
- Chiu, W.B.; Lin, C.H.; Chang, C.J.; Hsieh, M.H.; Wang, A.Y. Molecular characterization and expression of four cDNAs encoding sucrose synthase from green bamboo Bambusa oldhamii. New Phytol. 2006, 170, 53–63. [Google Scholar] [CrossRef]
- Peng, Z.; Lu, T.; Li, L.; Liu, X.; Gao, Z.; Hu, T.; Yang, X.; Feng, Q.; Guan, J.; Weng, Q.; et al. Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol. 2010, 10, 116. [Google Scholar] [CrossRef]
- Hsieh, C.W.; Liu, L.K.; Yeh, S.H.; Chen, C.F.; Lin, H.I.; Sung, H.Y.; Wang, A.Y. Molecular cloning and functional identification of invertase isozymes from green bamboo Bambusa oldhamii. J. Agric. Food Chem. 2006, 54, 3101–3107. [Google Scholar] [CrossRef]
- Tian, B.; Chen, Y.; Li, D.; Yan, Y. Cloning and characterization of a bamboo Leafy Hull Sterile1 homologous gene. DNA Seq. 2006, 17, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.Z.; Lin, E.P.; Sang, Q.L.; Yao, S.; Jin, Q.Y.; Hua, X.Q.; Zhu, M.Y. Molecular cloning, expression analyses and primary evolution studies of REV-and TB1-like genes in bamboo. Tree Physiol. 2007, 27, 1273–1281. [Google Scholar] [CrossRef]
- Peng, Z.; Lu, Y.; Li, L.; Zhao, Q.; Feng, Q.; Gao, Z.; Lu, H.; Hu, T.; Yao, N.; Liu, K.; et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat. Genet. 2013, 45, 456–461. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, Z.; Wang, L.; Wang, J.; Wang, S.; Fei, B.; Chen, C.; Shi, C.; Liu, X.; Zhang, H.; et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). Gigascience 2018, 7, giy115. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, C.; Zhang, Y.; Hu, T.; Mu, S.; Li, X.; Gao, J. Transcriptome sequencing and analysis of the fast growing shoots of moso bamboo (Phyllostachys edulis). PLoS ONE 2013, 8, e78944. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, M.; Yrjälä, K.; Vinod, K.K.; Sharma, A.; Cho, J.; Satheesh, V.; Zhou, M. Genetics and genomics of moso bamboo (Phyllostachys edulis): Current status, future challenges, and biotechnological opportunities toward a sustainable bamboo industry. Food Energy Secur. 2020, 9, e229. [Google Scholar] [CrossRef]
- Cheng, Z.; Hou, D.; Ge, W.; Li, X.; Xie, L.; Zheng, H.; Cai, M.; Liu, J.; Gao, J. Integrated mRNA, MicroRNA transcriptome and degradome analyses provide insights into stamen development in moso bamboo. Plant Cell Physiol. 2020, 61, 76–87. [Google Scholar] [CrossRef]
- Wang, N.; Wang, W.; Cheng, Y.; Cai, C.; Zhu, Q. Uncovering the miRNA-mediated regulatory network involved in Ma bamboo (Dendrocalamus latiflorus) de novo shoot organogenesis. Hortic. Res. 2023, 10, uhad223. [Google Scholar] [CrossRef]
- Yuan, T.; Zhu, C.; Li, G.; Liu, Y.; Yang, K.; Li, Z.; Song, X.; Gao, Z. An integrated regulatory network of mRNAs, microRNAs, and lncRNAs involved in nitrogen metabolism of moso bamboo. Front. Genet. 2022, 13, 854346. [Google Scholar] [CrossRef]
- Zhu, C.; Yuan, T.; Yang, K.; Liu, Y.; Li, Y.; Gao, Z. Identification and characterization of CircRNA-associated CeRNA networks in moso bamboo under nitrogen stress. BMC Plant Biol. 2023, 23, 142. [Google Scholar] [CrossRef]
- Hsieh, L.S.; Ma, G.J.; Yang, C.C.; Lee, P.D. Cloning, expression, site-directed mutagenesis and immunolocalization of phenylalanine ammonia-lyase in Bambusa oldhamii. Phytochemistry 2010, 71, 1999–2009. [Google Scholar] [CrossRef]
- Hsieh, L.S.; Yeh, C.S.; Pan, H.C.; Cheng, C.Y.; Yang, C.C.; Lee, P.D. Cloning and expression of a phenylalanine ammonia-lyase gene (BoPAL2) from Bambusa oldhamii in Escherichia coli and Pichia pastoris. Protein Expr. Purif. 2010, 71, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lou, Y.; Peng, Z.; Zhao, H.; Sun, H.; Gao, Z. Molecular characterization and primary functional analysis of PeMPEC, a magnesium-protoporphyrin IX monomethyl ester cyclase gene of bamboo (Phyllostachys edulis). Plant Cell Rep. 2015, 34, 2001–2011. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, H.; Chen, D.; Li, L.; Sun, H.; Lou, Y.; Gao, Z. Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Rep. 2016, 35, 1371–1383. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Lou, Y.; Zhao, H.; Yang, Y.; Gao, Z. Cloning and preliminary functional analysis of PeUGE gene from moso bamboo (Phyllostachys edulis). DNA Cell Biol. 2016, 35, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Sun, H.; Li, L.; Zhao, H.; Gao, Z. Characterization and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis. DNA Cell Biol. 2017, 36, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, L.; Lou, Y.; Zhao, H.; Yang, Y.; Wang, S.; Gao, Z. The bamboo aquaporin gene PeTIP4;1-1 confers drought and salinity tolerance in transgenic Arabidopsis. Plant Cell Rep. 2017, 36, 597–609. [Google Scholar] [CrossRef]
- Lou, Y.; Sun, H.; Wang, S.; Xu, H.; Li, L.; Zhao, H.; Gao, Z. Expression and functional analysis of two PsbS genes in bamboo (Phyllostachys edulis). Physiol. Plant. 2018, 163, 459–471. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Lou, Y.; Zhu, C.; Zhao, H.; Li, Y.; Li, X.; Gao, Z. A bamboo leaf-specific aquaporin gene PePIP2;7 is involved in abiotic stress response. Plant Cell Rep. 2021, 40, 1101–1114. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wang, Y.; Zhang, S.; Xiang, Y. A LBD transcription factor from moso bamboo, PheLBD12, regulates plant height in transgenic rice. Plant Mol. Biol. 2024, 114, 95. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Chang, Y.; Zhang, W.; Chu, T.; Tian, H.; Deng, Y.; Jiang, Z.; Ma, Y.; Hu, T. Identification and functional validation of the PeDHN gene family in moso bamboo. Plants 2025, 14, 1520. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, M.; Zhu, C.; Yang, K.; Li, Q.; Song, X.; Gao, Z.; Cao, T.; Zhu, D.; Song, X. Stable isotope labelling and gene expression analysis reveal dynamic nitrogen-supply mechanisms for rapid growth of moso bamboo. Hortic. Res. 2025, 12, uhaf062. [Google Scholar] [CrossRef]
- Zhu, C.; Lin, Z.; Liu, Y.; Li, H.; Di, X.; Li, T.; Wang, J.; Gao, Z. A bamboo HD-Zip transcription factor PeHDZ72 conferred drought tolerance by promoting sugar and water transport. Plant Cell Environ. 2025, 48, 310–322. [Google Scholar] [CrossRef]
- Li, X.; Hu, S.; Cao, Y.; Lu, X.; Ren, P.; Wu, X.; Zhou, M. Agrobacterium-mediated genetic transformation of 4CL gene from Neosinocalamus affinis into Dendrocalamus farinosus. Sci. Silvae Sin. 2012, 48, 38–44. (In Chinese) [Google Scholar]
- Ye, S.; Chen, G.; Kohnen, M.V.; Wang, W.; Cai, C.; Ding, W.; Wu, C.; Gu, L.; Zheng, Y.; Ma, X.; et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol. J. 2020, 18, 1501–1503. [Google Scholar] [CrossRef]
- Ma, P.-F.; Liu, Y.-L.; Guo, C.; Jin, G.; Guo, Z.-H.; Mao, L.; Yang, Y.-Z.; Niu, L.-Z.; Wang, Y.-J.; Clark, L.G.; et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat. Genet. 2024, 56, 710–720. [Google Scholar] [CrossRef]
- Zhang, X.M.; Zhao, L.; Larson-Rabin, Z.; Li, D.Z.; Guo, Z.H. De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS ONE 2012, 7, e42082. [Google Scholar] [CrossRef]
- Xiang, M.Q.; Ding, W.S.; Wu, C.; Wang, W.J.; Ye, S.W.; Cai, C.Y.; Hu, X.; Wang, N.N.; Bai, W.Y.; Tang, X.S.; et al. Production of purple Ma bamboo (Dendrocalamus latiflorus Munro) with enhanced drought and cold stress tolerance by engineering anthocyanin biosynthesis. Planta 2021, 254, 50. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Cai, C.; Zhu, Q. Auxin response factors fine-tune lignin biosynthesis in response to mechanical bending in bamboo. New Phytol. 2024, 241, 1161–1176. [Google Scholar] [CrossRef]
- Lin, C.-S.; Hsu, C.-T.; Yang, L.-H.; Lee, L.-Y.; Fu, J.-Y.; Cheng, Q.-W.; Wu, F.-H.; Hsiao, H.C.-W.; Zhang, Y.; Zhang, R.; et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis: From single-cell mutation detection to mutant plant regeneration. Plant Biotechnol. J. 2018, 16, 1295–1310. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-M.; Zhang, S.-C.; Gao, H.-L.; Wang, Q.; Zhou, L.; Zhao, H.-Y.; Li, X.-Y.; Gong, M.; Pan, X.-F.; Cui, C.; et al. Mechanically robust bamboo node and its hierarchically fibrous structural design. Natl. Sci. Rev. 2023, 10, nwac195. [Google Scholar] [CrossRef]
- Hu, S.L.; Huang, Y.; Liao, Q.; Jiang, Y.; Cao, Y.; Xu, G. A Method for Genetic Transformation of Bamboo Using Gene Gun Technology. CN201710205876.3., 31 March 2017. [Google Scholar]
- Yuan, J.; Yue, J.; Gu, X. A Method for Genetic Transformation of Bamboo. CN108660151A, 16 October 2018. [Google Scholar]
- Zhang, M.; Hu, S.; Yi, F.; Gao, Y.; Zhu, D.; Wang, Y.; Cai, Y.; Hou, D.; Lin, X.; Shen, J. Organelle visualization with multicolored fluorescent markers in bamboo. Front. Plant Sci. 2021, 12, 658836. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, B.; Bao, M.; Li, Y.; Xiao, S.; Wang, Y.; Zhang, J.; Zhao, L.; Zhang, H.; Hsu, Y.H.; et al. Development of an efficient expression system with large cargo capacity for interrogation of gene function in bamboo based on bamboo mosaic virus. J. Integr. Plant Biol. 2023, 65, 1369–1382. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yang, J.; Gu, Y.; Wang, Q.; Zhang, Z.; Guo, H.; Zhao, L.; Zhang, H.; Gu, L. Bamboo mosaic virus-mediated transgene-free genome editing in bamboo. New Phytol. 2025, 245, 1810–1816. [Google Scholar] [CrossRef]
- Li, X.H.; Sun, H.Y. Bamboo Breeding Strategies in the Context of “Bamboo as a Substitute for Plastic Initiative”. Forests 2024, 15, 1180. [Google Scholar] [CrossRef]
- Chen, S.L. Study on Effects of Altitude on the Structure and Physio-Ecological Characteristics of Moso Bamboo Forest. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2009. (In Chinese). Available online: https://cdmd.cnki.com.cn/Article/CDMD-10298-2009201405.htm (accessed on 1 June 2025).
- Li, F.; Fang, H.; Zhou, J.; Hu, S.; Cao, F.; Guo, Q. Genomics reveal population structure, genetic diversity and evolutionary history of Phyllostachys edulis (moso bamboo) in global natural distribution. Front. Plant Sci. 2025, 16, 1532058. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lou, Y.; Li, H.; Di, X.; Gao, Z. Unveiling the intrinsic mechanism of photoprotection in bamboo under high light. Ind. Crops Prod. 2024, 209, 118049. [Google Scholar] [CrossRef]
- Huang, H.M.; Dong, R.; Xiang, Y.R.; He, D.N.; Chen, J.; Zhang, X.J.; Tao, J.P. Study on shooting rhythm of Fargesia decurvata under different canopy conditions. Plant Sci. J. 2018, 36, 696–704. (In Chinese) [Google Scholar]
- Shen, J.; Zeng, X.; Fan, S.; Liu, G. Impacts of intensive management practices on the long-term sustainability of soil and water conservation functions in bamboo forests: A mechanistic review from silvicultural perspectives. Forests 2025, 16, 787. [Google Scholar] [CrossRef]
- Zhu, L.; Wu, J.; Li, M.; Fang, H.; Zhang, J.; Chen, Y.; Chen, J.; Cheng, T. Genome-wide discovery of CBL genes in Nitraria tangutorum Bobr. and functional analysis of NtCBL1-1 under drought and salt stress. For. Res. 2023, 3, 28. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, X.; Chen, W.; Xia, X.; Zhang, Z.; Qing, D.; Nong, B.; Li, J.; Liang, S.; Luo, S.; et al. WD40 protein OsTTG1 promotes anthocyanin accumulation and CBF transcription factor-dependent pathways for rice cold tolerance. Plant Physiol. 2024, 197, kiae604. [Google Scholar] [CrossRef]
- Dong, L.; Huang, T.; Han, S.; Han, X.; Yin, J.; Hou, L.; Liu, Y. Comprehensive analysis of faba bean AP2/ERF genes suggests potential roles of VfAP2-1 and VfERF-99 in abiotic and biotic stress responses. Physiol. Plant. 2025, 177, e70356. [Google Scholar] [CrossRef]
- Qiang, Z.; Zeng, Z.; Ma, D.; Li, J.; Zhao, Y.; Qin, T. NAC transcription factor LpNAC22 positively regulates drought tolerance in perennial ryegrass. Plant Cell Environ. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Ma, X.; Ma, W.; Wang, Z.; Luo, D.; Zhou, Q.; Liu, W.; Fang, L.; Jin, J.; Searle, I.R.; et al. MsPYL6 and MsPYL9 improves drought tolerance by regulating stomata in alfalfa (Medicago sativa). Plant J. 2025, 122, e70265. [Google Scholar] [CrossRef]
- Shen, Y.; Cai, X.; Li, W.; Wu, H.; He, Z.; Meng, Q.; Jia, B.; Sun, M.; Sun, X. Rice-specific miR1850.1 targets NPR3 to regulate cold stress response. Plant Commun. 2025, 6, 101324. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Kalluri, A.; Tang, D.; Ding, J.; Zhai, L.; Gu, X.; Li, Y.; Yer, H.; Yang, X.; Tuskan, G.A.; et al. Engineered dsRNA-protein nanoparticles for effective systemic gene silencing in plants. Hortic. Res. 2024, 11, uhae045. [Google Scholar] [CrossRef] [PubMed]
- Cowan, Q.T.; Gu, S.; Gu, W.; Ranzau, B.L.; Simonson, T.S.; Komor, A.C. Development of multiplexed orthogonal base editor (MOBE) systems. Nat. Biotechnol. 2025, 43, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Gaff, M.; Wei, Y.; Tu, C. Engineered bamboo building materials: Types, production, and applications. Forests 2025, 16, 662. [Google Scholar] [CrossRef]
- Amjad, A.I. Bamboo fibre: A sustainable solution for textile manufacturing. Adv. Bamboo Sci. 2024, 7, 100088. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, G.; Huang, X.; Fang, Y.; Sui, W.; Parvez, A.M.; Si, C.; Jia, H. Formulation and application assessment of lignin-based biodegradable composite mulching film with emphasis on lignin enhancement. Ind. Crops Prod. 2024, 215, 118634. [Google Scholar] [CrossRef]
- Chandraraj, S.S.; Suyambulingam, I.; Edayadulla, N.; Divakaran, D.; Singh, M.K.; Sanjay, M.R.; Siengchin, S. Characterization of Calotropis gigantiea plant leaves biomass-based bioplasticizers for biofilm applications. Heliyon 2024, 10, e33641. [Google Scholar] [CrossRef]
- Hazrol, M.D.; Sapuan, S.M.; Zainudin, E.S.; Zuhri, M.Y.M.; Abdul Wahab, N.I. Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers 2021, 13, 242. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.S.; Saallah, S.; Misson, M.; Siddiquee, S.; Roslan, J.; Lenggoro, W. Development and characterization of carrageenan/nanocellulose/silver nanoparticles bionanocomposite film from Kappaphycus alvarezii seaweed for food packaging. Int. J. Biol. Macromol. 2025, 311, 143922. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, X.; Zou, X.; Wang, Q.; Sun, H. Development and Future Prospects of Bamboo Gene Science. Int. J. Mol. Sci. 2025, 26, 7259. https://doi.org/10.3390/ijms26157259
Di X, Zou X, Wang Q, Sun H. Development and Future Prospects of Bamboo Gene Science. International Journal of Molecular Sciences. 2025; 26(15):7259. https://doi.org/10.3390/ijms26157259
Chicago/Turabian StyleDi, Xiaolin, Xiaoming Zou, Qingnan Wang, and Huayu Sun. 2025. "Development and Future Prospects of Bamboo Gene Science" International Journal of Molecular Sciences 26, no. 15: 7259. https://doi.org/10.3390/ijms26157259
APA StyleDi, X., Zou, X., Wang, Q., & Sun, H. (2025). Development and Future Prospects of Bamboo Gene Science. International Journal of Molecular Sciences, 26(15), 7259. https://doi.org/10.3390/ijms26157259