Droplet Digital PCR Improves Detection of BRCA1/2 Copy Number Variants in Advanced Prostate Cancer
Abstract
1. Introduction
2. Results
2.1. MLPA Indicated the CNVs of BRCA1/2 in Advanced Prostate Cancer
2.2. BRCA1/2 Determination Using ddPCR
2.3. Correlation Between MLPA and ddPCR Results
3. Discussion
4. Materials and Methods
4.1. Specimen Collection
4.2. Cell Lines
4.3. DNA Extraction
4.4. Detection of BRCA1/2 Deletion Using Droplet Digital PCR
4.5. Identifying Exon Deletion of BRCA1/2 Using MLPA
4.6. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNVs | Copy number variants |
MLPA | Multiplex ligation-dependent probe amplification |
ddPCR | Droplet digital PCR |
APC | Advanced prostate cancer |
HRR | Homologous recombinant repair |
PSA | Prostate-specific antigen |
SNVs | Single-nucleotide variants |
LGR | Large genomic alteration |
PARP | Poly (ADP-ribose) polymerase |
NGS | Next-generation sequencing |
S.D. | Standard deviation |
HDFa | Primary dermal fibroblast |
HFDPCs | Human hair follicle dermal papilla cells |
AUC | Area under the curve |
ROC | Receiver operating characteristic |
aCGH | Array comparative genomic hybridization |
SMA | Spinal muscular atrophy |
IRBs | Institutional review boards |
ADT | Androgen deprivation therapy |
References
- Kalampokis, N.; Zabaftis, C.; Spinos, T.; Karavitakis, M.; Leotsakos, I.; Katafigiotis, I.; van der Poel, H.; Grivas, N.; Mitropoulos, D. Review on the Role of BRCA Mutations in Genomic Screening and Risk Stratification of Prostate Cancer. Curr. Oncol. 2024, 31, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Rachmat, R.; Enyioma, S.; Ghose, A.; Revythis, A.; Boussios, S. BRCA Mutations in Prostate Cancer: Assessment, Implications and Treatment Considerations. Int. J. Mol. Sci. 2021, 22, 12628. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xia, W.; Xue, S.; Huang, H.; Lin, Q.; Liu, Y.; Liu, T.; Zhang, Y.; Zhang, P.; Wang, J.; et al. Analysis of BRCA Germline Mutations in Chinese Prostate Cancer Patients. Front. Oncol. 2022, 12, 746102. [Google Scholar] [CrossRef] [PubMed]
- Junejo, N.N.; AlKhateeb, S.S. BRCA2 gene mutation and prostate cancer risk. Comprehensive review and update. Saudi Med. J. 2020, 41, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Mateo, J.; Walsh, M.F.; De Sarkar, N.; Abida, W.; Beltran, H.; Garofalo, A.; Gulati, R.; Carreira, S.; Eeles, R.; et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N. Engl. J. Med. 2016, 375, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Yadav, S.; Ogunleye, F.; Zakalik, D. Male BRCA mutation carriers: Clinical characteristics and cancer spectrum. BMC Cancer 2018, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- De Paolis, E.; De Bonis, M.; Concolino, P.; Piermattei, A.; Fagotti, A.; Urbani, A.; Scambia, G.; Minucci, A.; Capoluongo, E. Droplet digital PCR for large genomic rearrangements detection: A promising strategy in tissue BRCA1 testing. Clin. Chim. Acta 2021, 513, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Nukaya, T.; Sumitomo, M.; Sugihara, E.; Takeda, M.; Nohara, S.; Tanishima, S.; Takenaka, M.; Zennami, K.; Takahara, K.; Shiroki, R.; et al. Estimating copy number to determine BRCA2 deletion status and to expect prognosis in localized prostate cancer. Cancer Med. 2023, 12, 8154–8165. [Google Scholar] [CrossRef] [PubMed]
- Cusenza, V.Y.; Bisagni, A.; Rinaldini, M.; Cattani, C.; Frazzi, R. Copy Number Variation and Rearrangements Assessment in Cancer: Comparison of Droplet Digital PCR with the Current Approaches. Int. J. Mol. Sci. 2021, 22, 4732. [Google Scholar] [CrossRef] [PubMed]
- Valtcheva, N.; Nguyen-Sträuli, B.D.; Wagner, U.; Freiberger, S.N.; Varga, Z.; Britschgi, C.; Dedes, K.J.; Rechsteiner, M.P. Setting a diagnostic benchmark for tumor BRCA testing: Detection of BRCA1 and BRCA2 large genomic rearrangements in FFPE tissue—A pilot study. Exp. Mol. Pathol. 2021, 123, 104705. [Google Scholar] [CrossRef] [PubMed]
- Zannini, G.; Facchini, G.; De Sio, M.; De Vita, F.; Ronchi, A.; Orditura, M.; Vietri, M.T.; Ciardiello, F.; Franco, R.; Accardo, M.; et al. Implementation of BRCA mutations testing in formalin-fixed paraffin-embedded (FFPE) samples of different cancer types. Pathol. Res. Pract. 2023, 243, 154336. [Google Scholar] [CrossRef] [PubMed]
- McFarland, T.R.; Mathew Thomas, V.; Nussenzveig, R.; Gebrael, G.; Sayegh, N.; Tripathi, N.; Sahu, K.K.; Goel, D.; Maughan, B.L.; Sirohi, D.; et al. Detection of BRCA1, and BRCA2 Alterations in Matched Tumor Tissue and Circulating Cell-Free DNA in Patients with Prostate Cancer in a Real-World Setting. Biomedicines 2022, 10, 3170. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Corcoran, C.; Sibilla, C.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Mateo, J.; Olmos, D.; Mehra, N.; et al. Tumor Genomic Testing for >4,000 Men with Metastatic Castration-resistant Prostate Cancer in the Phase III Trial PROfound (Olaparib). Clin. Cancer Res. 2022, 28, 1518–1530. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.A.; Gurney, H.; Campbell, A.; Goh, J.C.; Rathi, V. BRCA Mutation Testing in Men With Metastatic Castration-Resistant Prostate Cancer: Practical Guidance for Australian Clinical Practice. Asia Pac. J. Clin. Oncol. 2025, 21, 345–358. [Google Scholar] [CrossRef] [PubMed]
- Samelak-Czajka, A.; Marszalek-Zenczak, M.; Marcinkowska-Swojak, M.; Kozlowski, P.; Figlerowicz, M.; Zmienko, A. MLPA-Based Analysis of Copy Number Variation in Plant Populations. Front. Plant Sci. 2017, 8, 222. [Google Scholar] [CrossRef] [PubMed]
- Stuppia, L.; Antonucci, I.; Palka, G.; Gatta, V. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases. Int. J. Mol. Sci. 2012, 13, 3245–3276. [Google Scholar] [CrossRef] [PubMed]
- Barnes, D.R.; Silvestri, V.; Leslie, G.; McGuffog, L.; Dennis, J.; Yang, X.; Adlard, J.; Agnarsson, B.A.; Ahmed, M.; Aittomäki, K.; et al. Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores. J. Natl. Cancer Inst. 2022, 114, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Preobrazhenskaya, E.V.; Bizin, I.V.; Kuligina, E.S.; Shleykina, A.Y.; Suspitsin, E.N.; Zaytseva, O.A.; Anisimova, E.I.; Laptiev, S.A.; Gorodnova, T.V.; Belyaev, A.M.; et al. Detection of BRCA1 gross rearrangements by droplet digital PCR. Breast Cancer Res. Treat. 2017, 165, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Oscorbin, I.; Kechin, A.; Boyarskikh, U.; Filipenko, M. Multiplex ddPCR assay for screening copy number variations in BRCA1 gene. Breast Cancer Res. Treat. 2019, 178, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Khalique, S.; Pettitt, S.J.; Kelly, G.; Tunariu, N.; Natrajan, R.; Banerjee, S.; Lord, C.J. Longitudinal analysis of a secondary BRCA2 mutation using digital droplet PCR. J. Pathol. Clin. Res. 2020, 6, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Fettke, H.; Dai, C.; Kwan, E.M.; Zheng, T.; Du, P.; Ng, N.; Bukczynska, P.; Docanto, M.; Kostos, L.; Foroughi, S.; et al. BRCA-deficient metastatic prostate cancer has an adverse prognosis and distinct genomic phenotype. EBioMedicine 2023, 95, 104738. [Google Scholar] [CrossRef] [PubMed]
- Gorodetska, I.; Kozeretska, I.; Dubrovska, A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J. Cancer 2019, 10, 2109–2127. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Ledermann, J.A.; Kohn, E.C. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann. Oncol. 2014, 25, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Zang, M.; Zou, D.; Yu, Z.; Li, F.; Yi, S.; Ai, X.; Qin, X.; Feng, X.; Zhou, W.; Xu, Y.; et al. Detection of recurrent cytogenetic aberrations in multiple myeloma: A comparison between MLPA and iFISH. Oncotarget 2015, 6, 34276–34287. [Google Scholar] [CrossRef] [PubMed]
- Woon, S.T.; Mayes, J.; Quach, A.; Longhurst, H.; Ferrante, A.; Ameratunga, R. Droplet digital PCR for identifying copy number variations in patients with primary immunodeficiency disorders. Clin. Exp. Immunol. 2022, 207, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Belgrader, P.; Tanner, S.C.; Regan, J.F.; Koehler, R.; Hindson, B.J.; Brown, A.S. Droplet digital PCR measurement of HER2 copy number alteration in formalin-fixed paraffin-embedded breast carcinoma tissue. Clin. Chem. 2013, 59, 991–994. [Google Scholar] [CrossRef] [PubMed]
- Tsherniak, A.; Vazquez, F.; Montgomery, P.G.; Weir, B.A.; Kryukov, G.; Cowley, G.S.; Gill, S.; Harrington, W.F.; Pantel, S.; Krill-Burger, J.M.; et al. Defining a Cancer Dependency Map. Cell 2017, 170, 564–576.e16. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.A.; Levin, A.M.; Zuhlke, K.A.; Ray, A.M.; Johnson, G.R.; Lange, E.M.; Wood, D.P.; Cooney, K.A. Common variation in the BRCA1 gene and prostate cancer risk. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Depypere, H.; Su, Y.; Dang, N.; Poppe, B.; Stanczyk, F.; Janssens, J.; Russo, J. Prolonged recombinant pregnancy hormone use in BRCA1 and BRCA2 mutation carriers. Eur. J. Cancer Prev. 2021, 30, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M. Systematic Review: Comprehensive Methods for Detecting BRCA1 and BRCA2 Mutations in Breast and Ovarian Cancer. Asian Pac. J. Cancer Biol. 2024, 10, 229–238. [Google Scholar] [CrossRef]
- Kerkhof, J.; Schenkel, L.C.; Reilly, J.; McRobbie, S.; Aref-Eshghi, E.; Stuart, A.; Rupar, C.A.; Adams, P.; Hegele, R.A.; Lin, H.; et al. Clinical Validation of Copy Number Variant Detection from Targeted Next-Generation Sequencing Panels. J. Mol. Diagn. 2017, 19, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Kondrashova, O.; Love, C.J.; Lunke, S.; Hsu, A.L.; Waring, P.M.; Taylor, G.R. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq. PLoS ONE 2015, 10, e0143006. [Google Scholar] [CrossRef] [PubMed]
- Niba, E.; Tran, V.; Tuan-Pham, L.; Vu, D.; Nguyen, K.; Ta, T.V.; Tran, T.; Lee, T.; Takeshima, Y.; Matsuo, M. Validation of ambiguous MLPA results by targeted next-generation sequencing discloses a nonsense mutation in the DMD gene. Clin. Chim. Acta 2014, 436, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Deng, H.; Yang, C.; Li, X.; Zhu, Y.; Chen, X.; Li, H.; Li, S.; Cui, H.; Zhang, X.; et al. A resolved discrepancy between multiplex PCR and multiplex ligation-dependent probe amplification by targeted next-generation sequencing discloses a novel partial exonic deletion in the Duchenne muscular dystrophy gene. J. Clin. Lab. Anal. 2018, 32, e22575. [Google Scholar] [CrossRef] [PubMed]
- Pazhoomand, R.; Keyhani, E.; Banan, M.; Najmabadi, H.; Khodadadi, F.; Iraniparast, A.; Feiz, F.; Majidzadeh, K.; Bahman, I.; Moghadam, F.A.; et al. Detection of HER2 status in breast cancer: Comparison of current methods with MLPA and real-time RT-PCR. Asian Pac. J. Cancer Prev. 2013, 14, 7621–7628. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xia, Z.; Zhou, Y.; Lu, X.; Du, X.; Guo, Q. Comparison of the accuracy of multiplex digital PCR versus multiplex ligation-dependent probe amplification in quantification of the survival of motor neuron genes copy numbers. Clin. Chim. Acta 2024, 553, 117708. [Google Scholar] [CrossRef] [PubMed]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Wu, W.; Wei, H.; Gao, C.; Zhang, L.; Wu, C.; Hou, L. Using droplet digital PCR in the detection of Mycobacterium tuberculosis DNA in FFPE samples. Int. J. Infect. Dis. 2020, 99, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef] [PubMed]
- De Soto, J.A.; Deng, C.X. PARP-1 inhibitors: Are they the long-sought genetically specific drugs for BRCA1/2-associated breast cancers? Int. J. Med. Sci. 2006, 3, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Filip, A.; Karczmarek-Borowska, B.; Wojcierowski, J.; Zmorzyński, S. Biological and clinical significance of BRCA2. Contemp. Oncol./Współczesna Onkol. 2011, 15, 309–316. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Zhang, L.; Zhao, K.; Zhao, Y.; Han, D. Multiple drug resistance caused by germline mutation of exon 27 of BRCA2 gene in triple-negative breast cancer: A case report and literature review. Front. Oncol. 2025, 15, 1602870. [Google Scholar] [CrossRef] [PubMed]
- Kreuzinger, C.; von der Decken, I.; Wolf, A.; Gamperl, M.; Koller, J.; Karacs, J.; Pfaffinger, S.; Bartl, T.; Reinthaller, A.; Grimm, C.; et al. Patient-derived cell line models revealed therapeutic targets and molecular mechanisms underlying disease progression of high grade serous ovarian cancer. Cancer Lett. 2019, 459, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Alinger-Scharinger, B.; Kronberger, C.; Hutarew, G.; Hitzl, W.; Reitsamer, R.; Frederike, K.F.; Hager, M.; Fischer, T.; Sotlar, K.; Jaksch-Bogensperger, H. HER2 copy number determination in breast cancer using the highly sensitive droplet digital PCR method. Virchows Arch. 2024, 485, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Young, F.P.; Becker, T.M.; Nimir, M.; Opperman, T.; Chua, W.; Balakrishnar, B.; de Souza, P.; Ma, Y. Biomarkers of Castrate Resistance in Prostate Cancer: Androgen Receptor Amplification and T877A Mutation Detection by Multiplex Droplet Digital PCR. J. Clin. Med. 2022, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Cochran, R.L.; Cravero, K.; Chu, D.; Erlanger, B.; Toro, P.V.; Beaver, J.A.; Zabransky, D.J.; Wong, H.Y.; Cidado, J.; Croessmann, S.; et al. Analysis of BRCA2 loss of heterozygosity in tumor tissue using droplet digital polymerase chain reaction. Hum. Pathol. 2014, 45, 1546–1550. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.B.; Coleman, V.A.; Hindson, C.M.; Herrmann, J.; Hindson, B.J.; Bhat, S.; Emslie, K.R. Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification. Anal. Chem. 2012, 84, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Zhao, M.; He, J.; Huang, X.J.; Zhao, Z.Y.; Chen, W.J.; Wang, N.; Li, J.J. Genetic screening method for analyzing survival motor neuron copy number in spinal muscular atrophy by multiplex ligation-dependent probe amplification and droplet digital polymerase chain reaction. Chin. Med. J. 2020, 133, 2510–2511. [Google Scholar] [CrossRef] [PubMed]
- Buleje, J.; Guevara-Fujita, M.; Acosta, O.; Huaman, F.D.P.; Danos, P.; Murillo, A.; Pinto, J.A.; Araujo, J.M.; Aguilar, A.; Ponce, J.; et al. Mutational analysis of BRCA1 and BRCA2 genes in Peruvian families with hereditary breast and ovarian cancer. Mol. Genet. Genom. Med. 2017, 5, 481–494. [Google Scholar] [CrossRef] [PubMed]
- McFadden, J.R.; Syku, M.; Barney, R.E.; Stevanovic, M.; Chaudhari, A.S.; O’Hern, K.J.; Chambers, M.; Baker, C.M.; LeBlanc, R.E.; Doan, L.; et al. A Novel Method to Detect Copy Number Variation in Melanoma: Droplet Digital PCR for Quantitation of the CDKN2A Gene, a Proof-of-Concept Study. Am. J. Dermatopathol. 2023, 45, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, D.B.; Aravindan, S.; Yu, Z.; Jayaraman, M.; Tran, N.T.B.; Li, S.; Herman, T.S.; Aravindan, N. Droplet digital PCR as an alternative to FISH for MYCN amplification detection in human neuroblastoma FFPE samples. BMC Cancer 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, E.-T.; Du, Z. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method. PLoS ONE 2016, 11, e0146784. [Google Scholar] [CrossRef] [PubMed]
- Wahl, L.; Hliabtsova, U.; Qian, X.; Klopf, A.; Hedemann, N.; Flörkemeier, I.; Rogmans, C.; Kalab, M.; Dempfle, A.; Maass, N.; et al. Detection of Genomic Copy Number Variations in Ovarian Cancer in the Peripheral Blood System. Cancers 2025, 17, 780. [Google Scholar] [CrossRef] [PubMed]
- Wolter, M.; Felsberg, J.; Malzkorn, B.; Kaulich, K.; Reifenberger, G. Droplet digital PCR-based analyses for robust, rapid, and sensitive molecular diagnostics of gliomas. Acta Neuropathol. Commun. 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
- Nadauld, L.; Regan, J.F.; Miotke, L.; Pai, R.K.; Longacre, T.A.; Kwok, S.S.; Saxonov, S.; Ford, J.M.; Ji, H.P. Quantitative and Sensitive Detection of Cancer Genome Amplifications from Formalin Fixed Paraffin Embedded Tumors with Droplet Digital PCR. Transl. Med. 2012, 2, 1000107. [Google Scholar] [CrossRef] [PubMed]
- Sawakwongpra, K.; Tangmansakulchai, K.; Ngonsawan, W.; Promwan, S.; Chanchamroen, S.; Quangkananurug, W.; Sriswasdi, S.; Jantarasaengaram, S.; Ponnikorn, S. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia. Biomed. Rep. 2021, 15, 82. [Google Scholar] [CrossRef] [PubMed]
- Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal Cut-point and Its Corresponding Youden Index to Discriminate Individuals Using Pooled Blood Samples. Epidemiology 2005, 16, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Bian, W.; Xie, Y.; Shang, Y.; Zhao, L.; Yang, Z.; Ma, X.; He, Y.; Yu, W.; Xi, W.; Yang, D.; et al. Relationship between clinical features and droplet digital PCR copy number in non-HIV patients with pneumocystis pneumonia. BMC Infect. Dis. 2023, 23, 833. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, Q.; Peng, M.; Lu, R.; Li, H.; Cai, Y.; Chen, J.; Xu, J.; Shen, B. Evaluation of droplet digital PCR for quantification of SARS-CoV-2 Virus in discharged COVID-19 patients. Aging 2020, 12, 20997–21003. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Luo, Z.; Wang, W.; Lu, X.; Xia, Z.; Xie, J.; Lu, M.; Wu, L.; Zhou, Y.; Guo, Q. Development of a low-cost and accurate carrier screening method for spinal muscular atrophy in developing countries. Eur. J. Med. Genet. 2024, 68, 104921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wu, T.; Wang, M.; Chen, X.; Liu, T.; Si, Y.; Zhou, Y.; Ying, B. A new droplet digital PCR assay: Improving detection of paucibacillary smear-negative pulmonary tuberculosis. Int. J. Infect. Dis. 2022, 122, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Frazzi, R.; Bizzarri, V.; Albertazzi, L.; Cusenza, V.Y.; Coppolecchia, L.; Luminari, S.; Ilariucci, F. Droplet digital PCR is a sensitive tool for the detection of TP53 deletions and point mutations in chronic lymphocytic leukaemia. Br. J. Haematol. 2020, 189, e49–e52. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y. Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinform. 2009, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Onakpojeruo, E.P.; Mustapha, M.T.; Ozsahin, D.U.; Ozsahin, I. Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework. Brain Commun. 2024, 6, fcae372. [Google Scholar] [CrossRef] [PubMed]
- Onakpojeruo, E.P.; Sancar, N. A Two-Stage Feature Selection Approach Based on Artificial Bee Colony and Adaptive LASSO in High-Dimensional Data. AppliedMath 2024, 4, 1522–1538. [Google Scholar] [CrossRef]
- Sancar, N.; Onakpojeruo, E.P.; Inan, D.; Ozsahin, D.U. Adaptive Elastic Net Based on Modified PSO for Variable Selection in Cox Model With High-Dimensional Data: A Comprehensive Simulation Study. IEEE Access 2023, 11, 127302–127316. [Google Scholar] [CrossRef]
- Nesic, K.; Krais, J.J.; Wang, Y.; Vandenberg, C.J.; Patel, P.; Cai, K.Q.; Kwan, T.; Lieschke, E.; Ho, G.Y.; Barker, H.E.; et al. BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance. Mol. Cancer 2024, 23, 158. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rungkamoltip, P.; Khongcharoen, N.; Nokchan, N.; Bostan Ali, Z.; Plikomol, M.; Bejrananda, T.; Boonchai, S.; Chamnina, S.; Srakhao, W.; Khongkow, P. Droplet Digital PCR Improves Detection of BRCA1/2 Copy Number Variants in Advanced Prostate Cancer. Int. J. Mol. Sci. 2025, 26, 6904. https://doi.org/10.3390/ijms26146904
Rungkamoltip P, Khongcharoen N, Nokchan N, Bostan Ali Z, Plikomol M, Bejrananda T, Boonchai S, Chamnina S, Srakhao W, Khongkow P. Droplet Digital PCR Improves Detection of BRCA1/2 Copy Number Variants in Advanced Prostate Cancer. International Journal of Molecular Sciences. 2025; 26(14):6904. https://doi.org/10.3390/ijms26146904
Chicago/Turabian StyleRungkamoltip, Phetploy, Natthapon Khongcharoen, Natakorn Nokchan, Zaukir Bostan Ali, Mooktapa Plikomol, Tanan Bejrananda, Sarayuth Boonchai, Sarawut Chamnina, Waritorn Srakhao, and Pasarat Khongkow. 2025. "Droplet Digital PCR Improves Detection of BRCA1/2 Copy Number Variants in Advanced Prostate Cancer" International Journal of Molecular Sciences 26, no. 14: 6904. https://doi.org/10.3390/ijms26146904
APA StyleRungkamoltip, P., Khongcharoen, N., Nokchan, N., Bostan Ali, Z., Plikomol, M., Bejrananda, T., Boonchai, S., Chamnina, S., Srakhao, W., & Khongkow, P. (2025). Droplet Digital PCR Improves Detection of BRCA1/2 Copy Number Variants in Advanced Prostate Cancer. International Journal of Molecular Sciences, 26(14), 6904. https://doi.org/10.3390/ijms26146904