Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh
Abstract
1. Introduction
2. Results
2.1. Socio-Demographic Characteristics of the COVID-19-Positive Patients
2.2. Identified Variants, Clades and Lineages
2.3. Comparison of the Total Number of Mutations in Four Clades
2.4. Analysis of Nucleotide Substitutions at Variant and Clade Level
2.5. Evaluation of Nucleotide Base Change Pattern in Delta and Omicron Variants
2.6. Analysis of Amino Acid Substitutions at Variant and Clade Level
2.7. Investigation of Deletion Mutations at Variant and Clade Level
2.8. Comparison of Amino Acid Substitutions and Deletions in Proteins
2.9. Preferred Substituted Amino Acids of Substitution Mutations
2.10. Preferred Mutant Amino Acids of Substitution Mutations
2.11. Analysis of Deleted Amino Acids in Delta and Omicron Variants
2.12. Insertion Mutations in Delta and Omicron Variants
2.13. Phylogenetic Analysis of the Whole Genome of SARS-CoV-2 Virus
3. Discussion
4. Materials and Methods
4.1. Study Subjects
4.2. Viral Genomic RNA Extraction, Sequencing, and NGS Data Analysis
4.3. Statistical Analysis and Figure Generation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–23. [Google Scholar]
- Zhang, Y.; Chen, S.; Tian, Y.; Fu, X. Host factors of SARS-CoV-2 in infection, pathogenesis, and long-term effects. Front. Cell Infect Microbiol. 2024, 14, 1407261. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Gates, B. Responding to COVID-19—A once-in-a-century pandemic? N. Engl. J. Med. 2020, 382, 1677–1679. [Google Scholar] [CrossRef]
- WHO. COVID-19 Dashboard. 2025. Available online: https://covid19.who.int (accessed on 10 January 2025).
- Malone, B.; Urakova, N.; Snijder, E.J.; Campbell, E.A. Structures and functions of coronavirus replication–transcription complexes and their relevance for SARS-CoV-2 drug design. Nat. Rev. Mol. Cell Biol. 2022, 23, 21–39. [Google Scholar] [CrossRef]
- Li, A.; Zhang, B.; Zhao, K.; Yin, Z.; Teng, Y.; Zhang, L.; Xu, Z.; Liang, K.; Cheng, X.; Xia, Y. SARS-CoV-2 nsp13 restricts episomal DNA transcription without affecting chromosomal DNA. J. Virol. 2023, 97, e00512-23. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Pan, Z.; Tao, J.; Guo, D. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes 2011, 42, 37–45. [Google Scholar] [CrossRef]
- Yu, S.; Hu, H.; Ai, Q.; Bai, R.; Ma, K.; Zhou, M.; Wang, S. SARS-CoV-2 spike-mediated entry and its regulation by host innate immunity. Viruses 2023, 15, 639. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Samelson, A.J.; Tran, Q.D.; Robinot, R.; Carrau, L.; Rezelj, V.V.; Kain, A.M.; Chen, M.; Ramadoss, G.N.; Guo, X.; Lim, S.A.; et al. BRD2 inhibition blocks SARS-CoV-2 infection by reducing transcription of the host cell receptor ACE2. Nat. Cell Biol. 2022, 24, 24–34. [Google Scholar] [CrossRef]
- Denaro, M.; Ferro, E.; Barrano, G.; Meli, S.; Busacca, M.; Corallo, D.; Capici, A.; Zisa, A.; Cucuzza, L.; Gradante, S.; et al. Monitoring of SARS-CoV-2 Infection in Ragusa Area: Next Generation Sequencing and Serological Analysis. Int. J. Mol. Sci. 2023, 24, 4742. [Google Scholar] [CrossRef]
- Dasa, J.K.; Royb, S. World-wide Sequence Variant and Non-synonymous Amino Acid Substitution Signature in SARS-CoV-2 Structural Proteins. Preprint 2020. [Google Scholar] [CrossRef]
- Zandi, M.; Shafaati, M.; Kalantar-Neyestanaki, D.; Pourghadamyari, H.; Fani, M.; Soltani, S.; Kaleji, H.; Abbasi, S. The role of SARS-CoV-2 accessory proteins in immune evasion. Biomed. Pharmacother. 2022, 156, 113889. [Google Scholar] [CrossRef]
- Klimek, L.; Agache, L.; Cooke, E.; Jutel, M.; Akdis, C.A.; O’Hehir, R. COVID-19 vaccines—The way forward. Allergy 2022, 77, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Kelta Wabalo, E.; Dubiwak, A.D.; Senbetu, M.W.; Gizaw, T.S. Effect of genomic and amino acid sequence mutation on virulence and therapeutic target of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Infect. Drug Resist. 2021, 14, 2187–2192. [Google Scholar] [CrossRef]
- Tan, T.S.; Toyoda, M.; Ode, H.; Barabona, G.; Hamana, H.; Kitamatsu, M.; Kishi, H.; Motozono, C.; Iwatani, Y.; Ueno, T. Dissecting naturally arising amino acid substitutions at position L452 of SARS-CoV-2 spike. J. Virol. 2022, 96, e01162-22. [Google Scholar] [CrossRef]
- Colson, P.; Chaudet, H.; Delerce, J.; Pontarotti, P.; Levasseur, A.; Fantini, J.; Scola, B.L.; Devaux, C.; Raoult, D. Role of SARS-CoV-2 mutations in the evolution of the COVID-19 pandemic. J. Infect. 2024, 88, 106150. [Google Scholar] [CrossRef]
- Hossain, M.; Mannan, R.; Islam, S.; Banu, L.A.; Jamee, A.R.; Hassan, Z.; Elias, S.M.; Das, S.K.; Khan, A.K.A. Unveiling the occurrence of COVID-19 in a diverse Bangladeshi population during the pandemic. Front. Public Health 2024, 12, 1363971. [Google Scholar] [CrossRef]
- Ren, X.; Zhao, J.; Guo, J.; Hao, C.; Zheng, M.; Zhang, R.; Huang, Q.; Yao, X.; Li, R.; Jin, Y. Reinfection in patients with COVID-19: A systematic review. Glob. Health Res. Policy 2022, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Islam, L.N.; Hossain, M.; Zahid, M.S.H. Complement mediated bactericidal activity and humoral immune response in type 2 diabetes mellitus. Int. J. Diabetes Metab. 2006, 14, 92–97. [Google Scholar] [CrossRef]
- Ferdous, K.; Sultana, R.; Hossain, M.; Zahid, M.S.H.; Islam, L.N. Evaluation of the Humoral Immune Response in Pulmonary. Res. J. Immunol. 2008, 1, 36–44. [Google Scholar]
- Tegally, H.; Wilkinson, E.; Martin, D.; Moir, M.; Brito, A.; Giovanetti, M.; Khan, K.; Huber, C.; Bogoch, I.I.; San, J.E.; et al. Global Expansion of SARS-CoV-2 Variants of Concern: Dispersal Patterns and Influence of Air Travel. medRxiv 2022. [Google Scholar] [CrossRef] [PubMed]
- Mercatelli, D.; Giorgi, F.M. Geographic and Genomic Distribution of SARS-CoV-2 Mutations. Front. Microbiol. 2020, 11, 1800. [Google Scholar] [CrossRef]
- Koyama, T.; Platt, D.; Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull. World Health Organ. 2020, 98, 495. [Google Scholar] [CrossRef] [PubMed]
- Covid, C.; Team, R. Sars-CoV-2 b. 1.1. 529 (omicron) variant—United states, December 1–8, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 1731. [Google Scholar]
- Rahimi, A.; Mirzazadeh, A.; Tavakolpour, S. Genetics and genomics of SARS-CoV-2: A review of the literature with the special focus on genetic diversity and SARS-CoV-2 genome detection. Genomics 2021, 113, 1221–1232. [Google Scholar] [CrossRef]
- Broni, E.; Miller, W.A., III. Computational analysis predicts correlations among amino acids in SARS-CoV-2 proteomes. Biomedicines 2023, 11, 512. [Google Scholar] [CrossRef]
- Yonashiro, K.; Shimaya, Y.; Hirata, K. Finding correlated mutations of positions among structural proteins in SARS-CoV-2 amino acid sequences. In Proceedings of the 2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI), Kanazawa, Japan, 2–8 July 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Pandey, R.P.; Kumar, S.; Rao, D.N.; Gupta, D.L. Emerging severe acute respiratory syndrome coronavirus 2 variants and their impact on immune evasion and vaccine-induced immunity. Trans. R. Soc. Trop. Med. Hyg. 2024, 118, 761–772. [Google Scholar] [CrossRef]
- Rogozin, I.B.; Saura, A.; Poliakov, E.; Bykova, A.; Roche-Lima, A.; Pavlov, Y.I.; Yurchenko, V. Properties and Mechanisms of Deletions, Insertions, and Substitutions in the Evolutionary History of SARS-CoV-2. Int. J. Mol. Sci. 2024, 25, 3696. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, J.; Ma, X.; Tan, J.; Chen, L.; Liu, S.; Xin, Y.; Zhuang, L. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed. Pharmacother. 2020, 131, 110678. [Google Scholar] [CrossRef]
- Pennisi, M.; Lanza, G.; Falzone, L.; Fisicaro, F.; Ferri, R.; Bella, R. SARS-CoV-2 and the nervous system: From clinical features to molecular mechanisms. Int. J. Mol. Sci. 2020, 21, 5475. [Google Scholar] [CrossRef]
- Martínez-Mármol, R.; Santini, R.G.; Kaulich, E.; Cho, A.N.; Przybyla, M.; Riyadh, M.A.; Robinson, E.; Chew, K.Y.; Amor, R.; Meunier, F.A.; et al. SARS-CoV-2 infection and viral fusogens cause neuronal and glial fusion that compromises neuronal activity. Sci. Adv. 2023, 9, eadg2248. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhou, Y.; Hua, J.; Zhang, L.; Bian, J.; Liu, B.; Zhao, Z.; Jin, S. The scRNA-seq expression profiling of the receptor ACE2 and the cellular protease TMPRSS2 reveals human organs susceptible to SARS-CoV-2 infection. Int. J. Environ. Res. Public Health 2021, 18, 284. [Google Scholar] [CrossRef] [PubMed]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, Y.; Katano, H.; Nakajima, N.; Sato, Y.; Suzuki, T.; Sekizuka, T.; Kuroda, M.; Izutani, Y.; Morimoto, S.; Maruyama, J.; et al. SARS-CoV-2 is localized in cardiomyocytes: A postmortem biopsy case. Int. J. Infect. Dis. 2021, 111, 43–46. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Gupta, S.; Paramo, M.I.; Hou, Y.; Mao, C.; Luo, Y.; Judd, J.; Wierbowski, S.; Bertolotti, M.; et al. A comprehensive SARS-CoV-2–human protein–protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat. Biotechnol. 2023, 41, 128–139. [Google Scholar] [CrossRef]
- de Bruijn, S.; Hoek, A.J.v.; Mutubuki, E.N.; Knoop, H.; Slootweg, J.; Tulen, A.D.; Franz, E.; van den Wijngaard, C.C.; van der Maaden, T. Lower prevalence of post-COVID-19 condition following Omicron SARS-CoV-2 infection. Heliyon 2024, 10, e28941. [Google Scholar] [CrossRef]
- Mak, J.; Khan, S.; Britton, A.; Rose, S.; Gwynn, L.; Ellingson, K.D.; Meece, J.; Feldstein, L.R.; Tyner, H.; Edwards, L.J.; et al. Association of mRNA COVID-19 vaccination and reductions in Post-COVID Conditions following SARS-CoV-2 infection in a US prospective cohort of essential workers. J. Infect. Dis. 2024, 231, jiae556. [Google Scholar]
- Thi Khanh, H.N.; Cornelissen, L.; Castanares-Zapatero, D.; De Pauw, R.; Cauteren, D.V.; Demarest, S.; Drieskens, S.; Devleesschauwer, B.; De Ridder, K.; Charafeddine, R.; et al. Association between SARS-CoV-2 variants and post COVID-19 condition: Findings from a longitudinal cohort study in the Belgian adult population. BMC Infect. Dis. 2023, 23, 774. [Google Scholar] [CrossRef]
- Kiatratdasakul, S.; Noisumdaeng, P.; Niyomdecha, N. Biological factors associated with long COVID and comparative analysis of SARS-CoV-2 spike protein variants: A retrospective study in Thailand. PeerJ 2024, 12, e17898. [Google Scholar] [CrossRef]
- Sultana, A.; Banu, L.A.; Hossain, M.; Azmin, N.; Nila, N.N.; Sinha, S.K.; Hassan, Z. Evaluation of Genomic Surveillance of SARS-CoV-2 Virus Isolates and Comparison of Mutational Spectrum of Variants in Bangladesh. Viruses 2025, 17, 182. [Google Scholar] [CrossRef]
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A free online platform for data visualization and graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. Jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Golosova, O.; Henderson, R.; Vaskin, Y.; Gabrielian, A.; Grekhov, G.; Nagarajan, V.; Oler, A.J.; Quiñones, M.; Hurt, D.; Fursov, M.; et al. Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. PeerJ 2014, 2, e644. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; Gil, M.; Dufayard, J.F.; Dessimoz, C.; Gascuel, O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 2007, 23, 127–128. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
Socio-Demography and Comorbidity | COVID-19-Positive Patients, n = 96 | |
---|---|---|
n (%) | ||
Gender | Male | 47 (48.96) |
Female | 49 (51.04) | |
Comorbidities | Asthma | 9 (9.38) |
Diabetes Mellitus | 31 (32.29) | |
Hypertension | 25 (26.04) | |
Cardiovascular disease | 3 (3.13) | |
Chronic kidney disease | 9 (9.38) | |
Others | 11 (11.46) | |
No comorbidity | 8 (8.33) | |
Vaccination state | First dose vaccinated | 17 (17.71) |
Second dose vaccinated | 47 (48.96) | |
Third dose vaccinated | 7 (7.29) | |
Non-vaccinated | 25 (26.04) | |
History of long-distance travelling | Yes | 12 (12.50) |
No | 84 (87.50) | |
Family history of COVID-19 Infection | Yes | 31 (32.29) |
No | 29 (30.21) | |
Patient could not confirm | 36 (37.50) | |
Re-infected with SARS-CoV-2 | Yes | 18 (18.75) |
No | 78 (81.25) |
Variant | Number | Percentage (%) | Clade | Number | Percentage (%) |
---|---|---|---|---|---|
Delta | 24 | 25 | 21A | 21 | 21.88 |
21J | 3 | 3.13 | |||
Omicron | 72 | 75 | 20A | 6 | 6.25 |
20B | 66 | 68.75 |
Delta | Omicron | ||||
---|---|---|---|---|---|
Substitution Mutation | Number of Mutation, n (%) | Substitution Mutation | Number of Mutation, n (%) | Substitution Mutation | Number of Mutation, n (%) |
C10029T | 24 (100.00) | C3037T | 72 (100.00) | C24503T | 43 (59.72) |
C27752T | 24 (100.00) | C14408T | 72 (100.00) | A2832G | 40 (55.56) |
T26767C | 24 (100.00) | A18163G | 72 (100.00) | C22686T | 40 (55.56) |
T27638C | 24 (100.00) | C23525T | 72 (100.00) | C22674T | 38 (52.78) |
A23403G | 24 (100.00) | T23599G | 72 (100.00) | T22679C | 38 (52.78) |
G15451A | 24 (100.00) | C23604A | 72 (100.00) | T22882G | 37 (51.39) |
G210T | 24 (100.00) | A24424T | 72 (100.00) | G22813T | 34 (47.22) |
C241T | 24 (100.00) | A23403G | 71 (98.61) | A22688G | 27 (37.50) |
C25469T | 24 (100.00) | C25584T | 71 (98.61) | T670G | 26 (36.11) |
C14408T | 24 (100.00) | G26709A | 71 (98.61) | G22775A | 26 (36.11) |
G28881T | 24 (100.00) | A27259C | 71 (98.61) | A22786C | 26 (36.11) |
G28916T | 24 (100.00) | C26270T | 70 (97.22) | C26060T | 26 (36.11) |
C27874T | 24 (100.00) | C10029T | 69 (95.83) | G4184A | 25 (34.72) |
C16466T | 24 (100.00) | G22578A | 68 (94.44) | C4321T | 25 (34.72) |
C19220T | 24 (100.00) | C23854A | 68 (94.44) | C9534T | 25 (34.72) |
G4181T | 24 (100.00) | T24469A | 68 (94.44) | C9866T | 25 (34.72) |
C6402T | 24 (100.00) | C25000T | 68 (94.44) | C12880T | 25 (34.72) |
A11201G | 24 (100.00) | A28271T | 68 (94.44) | C15714T | 25 (34.72) |
A11332G | 24 (100.00) | C28311T | 68 (94.44) | C17410T | 25 (34.72) |
C8986T | 23 (95.83) | G23948T | 67 (93.06) | C19955T | 25 (34.72) |
C21618G | 23 (95.83) | C26577G | 66 (91.67) | A20055G | 25 (34.72) |
G9053T | 22 (91.67) | G28881A | 66 (91.67) | G21987A | 25 (34.72) |
C23604G | 22 (91.67) | G28882A | 66 (91.67) | C26858T | 25 (34.72) |
C3037T | 22 (91.67) | G28883C | 66 (91.67) | G27382C | 25 (34.72) |
A28461G | 20 (83.33) | C10449A | 65 (90.28) | T27384C | 25 (34.72) |
C14407T | 19 (79.17) | C241T | 63 (87.50) | C2790T | 24 (33.33) |
C28054G | 19 (79.17) | C27807T | 62 (86.11) | C21618T | 24 (33.33) |
G29402T | 19 (79.17) | C21846T | 47 (65.28) | G22898A | 24 (33.33) |
T29014C | 18 (75.00) | G8393A | 46 (63.89) | G23048A | 24 (33.33) |
G19999T | 17 (70.83) | T13195C | 46 (63.89) | A27383T | 24 (33.33) |
T22917G | 16 (66.67) | A23040G | 46 (63.89) | A29510C | 24 (33.33) |
C22995A | 15 (62.50) | T23075C | 46 (63.89) | C9344T | 23 (31.94) |
G22899T | 15 (62.50) | C24130A | 46 (63.89) | A9424G | 23 (31.94) |
C7124T | 15 (62.50) | T5386G | 45 (62.50) | G10447A | 23 (31.94) |
C21846T | 13 (54.17) | A11537G | 45 (62.50) | T22200G | 23 (31.94) |
A23064C | 12 (50.00) | C21762T | 45 (62.50) | C2470T | 21 (29.17) |
G29742T | 12 (50.00) | A23063T | 45 (62.50) | G22599A | 21 (29.17) |
G29688T | 11 (45.83) | C15240T | 44 (61.11) | T16342C | 19 (26.39) |
G24410A | 7 (29.17) | G22992A | 44 (61.11) | A26530G | 18 (25.00) |
A2903G | 6 (25.00) | A23055G | 44 (61.11) | C26522T | 14 (19.44) |
C20148T | 4 (16.67) | C22995A | 43 (59.72) | C10198T | 13 (18.06) |
G23012C | 3 (12.50) | A23013C | 43 (59.72) | T22673C | 10 (13.89) |
C23202A | 43 (59.72) |
Delta | Omicron | ||||
---|---|---|---|---|---|
Nucleotide Base Change | Number | Percentage (%) | Nucleotide Base Change | Number | Percentage (%) |
A > G | 114 | 12.43 | A > G | 424 | 11.17 |
A > C | 14 | 1.53 | A > C | 168 | 4.43 |
A > T | 1 | 0.11 | A > T | 212 | 5.58 |
C > T | 360 | 39.26 | C > T | 1351 | 35.59 |
C > G | 64 | 6.98 | C > G | 70 | 1.84 |
C > A | 19 | 2.07 | C > A | 340 | 8.96 |
G > T | 211 | 23.01 | G > T | 119 | 3.13 |
G > A | 41 | 4.47 | G > A | 545 | 14.36 |
G > C | 6 | 0.65 | G > C | 93 | 2.45 |
T > C | 66 | 7.20 | T > C | 200 | 5.27 |
T > G | 17 | 1.85 | T > G | 204 | 5.37 |
T > A | 4 | 0.44 | T > A | 70 | 1.84 |
Total | 917 | 100.00 | Total | 3796 | 100.00 |
Delta | Omicron | ||||
---|---|---|---|---|---|
Protein | Amino Acid Mutation | Number of Mutation, n (%) | Protein | Amino Acid Mutation | Number of Mutation, n(%) |
ORF1a | A1306S | 24 (100.00) | ORF1a | T3255I | 69 (95.83) |
T3255I | 24 (100.00) | P3395H | 65 (90.28) | ||
T3646A | 24 (100.00) | A2710T | 46 (63.89) | ||
P2046L | 24 (100.00) | S2083I | 46 (63.89) | ||
V2930L | 22 (91.67) | I3758V | 45 (62.50) | ||
P2287S | 15 (62.50) | L3674F | 44 (61.11) | ||
I880V | 6 (25.00) | K856R | 40 (55.56) | ||
H417Y | 2 (8.33) | S135R | 26 (36.11) | ||
I3618V | 2 (8.33) | T3090I | 25 (34.72) | ||
P309L | 2 (8.33) | G1307S | 25 (34.72) | ||
P4220S | 1 (4.17) | L3201F | 25 (34.72) | ||
Q1332H | 1 (4.17) | T842I | 24 (33.33) | ||
Q1784H | 1 (4.17) | L3027F | 23 (31.94) | ||
S1515F | 1 (4.17) | V1887I | 4 (5.56) | ||
S2631F | 1 (4.17) | T1822I | 3 (4.17) | ||
F536V | 1 (4.17) | P2046L | 3 (4.17) | ||
K2497N | 1 (4.17) | T3646A | 2 (2.78) | ||
C270F | 1 (4.17) | H417Y | 1 (1.39) | ||
T2306I | 1 (4.17) | I880V | 1 (1.39) | ||
T746I | 1 (4.17) | L3606F | 1 (1.39) | ||
K3353R | 1 (4.17) | ORF1b | I1566V | 72 (100.00) | |
L3606F | 1 (4.17) | P314L | 72 (100.00) | ||
L628P | 1 (4.17) | R1315C | 25 (34.72) | ||
M3761I | 1 (4.17) | T2163I | 25 (34.72) | ||
P1158L | 1 (4.17) | S959P | 19 (26.39) | ||
P1497L | 1 (4.17) | G1093S | 3 (4.17) | ||
P1977L | 1 (4.17) | G662S | 2 (2.78) | ||
ORF1b | A1918V | 24 (100.00) | A1918V | 2 (2.78) | |
G662S | 24 (100.00) | S | P681H | 72 (100.00) | |
P1000L | 24 (100.00) | Q954H | 72 (100.00) | ||
P314F | 19 (79.17) | H655Y | 72 (100.00) | ||
V2178F | 17 (70.83) | N679K | 72 (100.00) | ||
P314L | 5 (20.83) | G142D | 71 (98.61) | ||
A2131V | 2 (8.33) | D614G | 71 (98.61) | ||
H1087Y | 2 (8.33) | N969K | 68 (94.44) | ||
I2158V | 2 (8.33) | G339D | 68 (94.44) | ||
Q2247H | 1 (4.17) | N764K | 68 (94.44) | ||
Q348H | 1 (4.17) | D796Y | 67 (93.06) | ||
S2379L | 1 (4.17) | T95I | 47 (65.28) | ||
T1555I | 1 (4.17) | Q493R | 46 (63.89) | ||
D131Y | 1 (4.17) | Y505H | 46 (63.89) | ||
G2610S | 1 (4.17) | N856K | 46 (63.89) | ||
T2165M | 1 (4.17) | A67V | 45 (62.50) | ||
V464F | 1 (4.17) | N501Y | 45 (62.50) | ||
M1596I | 1 (4.17) | Q498R | 44 (61.11) | ||
S | D614G | 24 (100.00) | S477N | 44 (61.11) | |
T19R | 23 (95.83) | T478K | 43 (59.72) | ||
P681R | 22 (91.67) | T547K | 43 (59.72) | ||
E156G | 21 (87.5) | E484A | 43 (59.72) | ||
L452R | 16 (66.67) | L981F | 43 (59.72) | ||
G446V | 15 (62.5) | S375F | 40 (55.56) | ||
T478K | 15 (62.5) | S373P | 38 (52.78) | ||
T95I | 13 (54.17) | N440K | 37 (51.39) | ||
N501T | 12 (50) | K417N | 34 (47.22) | ||
D950N | 7 (29.17) | S371F | 28 (38.89) | ||
E484Q | 3 (12.5) | T376A | 27 (37.50) | ||
G142D | 2 (8.33) | D405N | 26 (36.11) | ||
R158G | 2 (8.33) | R408S | 26 (36.11) | ||
A67V | 1 (4.17) | G446S | 24 (33.33) | ||
N969K | 1 (4.17) | G496S | 24 (33.33) | ||
D80H | 1 (4.17) | T19I | 24 (33.33) | ||
S929T | 1 (4.17) | L24S | 24 (33.33) | ||
ORF3a | S26L | 24 (100.00) | V213G | 23 (31.94) | |
V202L | 2 (8.33) | R346K | 21 (29.17) | ||
S74F | 1 (4.17) | N211I | 14 (19.44) | ||
T221K | 1 (4.17) | S371L | 10 (13.89) | ||
Y145H | 1 (4.17) | A701V | 4 (5.56) | ||
G49V | 1 (4.17) | G798D | 4 (5.56) | ||
E | S68Y | 1 (4.17) | V1264L | 3 (4.17) | |
F643L | 3 (4.17) | ||||
G446V | 1 (1.39) | ||||
M | I82T | 24 (100.00) | T19R | 1 (1.39) | |
ORF7a | T120I | 24 (100.00) | L452R | 1 (1.39) | |
V82A | 22 (91.67) | N501T | 1 (1.39) | ||
V82S | 2 (8.33) | E156G | 1 (1.39) | ||
P34L | 1 (4.17) | ORF3a | T223I | 26 (36.11) | |
ORF7b | T40I | 24 (100.00) | D155Y | 3 (4.17) | |
S26L | 1 (1.39) | ||||
E | T9I | 70 (97.22) | |||
ORF8 | S54* | 19 (79.17) | M | A63T | 71 (98.61) |
P38L | 2 (8.33) | Q19E | 66 (91.67) | ||
C83Y | 1 (4.17) | D3G | 18 (25.00) | ||
K68* | 1 (4.17) | I82T | 1 (1.39) | ||
L7* | 1 (4.17) | ORF6 | D61L | 24 (33.33) | |
L98I | 1 (4.17) | ORF7b | T40I | 5 (6.94) | |
ORF9b | T60A | 20 (83.33) | ORF8 | S54* | 3 (4.17) |
G38D | 2 (8.33) | ORF9b | E27V | 68 (94.44) | |
R32L | 1 (4.17) | P10S | 68 (94.44) | ||
N | G215C | 24 (100.00) | N | P13L | 68 (94.44) |
R203M | 24 (100.00) | G204R | 66 (91.67) | ||
M1X | 22 (91.67) | R203K | 66 (91.67) | ||
D63G | 20 (83.33) | S413R | 24 (33.33) | ||
D377Y | 19 (79.17) | M1X | 3 (4.17) | ||
A359S | 1 (4.17) | G215S | 1 (1.39) |
Variant | Clade | Genomic Position: Inserted Sequence | Number | Insertion Length (bp) | Mapped Genomic Region |
---|---|---|---|---|---|
Delta | 21A | 2902:GTGTTGTGGCAG | 1 | 12 | ORF1a (NSP3) |
Omicron | 20B | 22206:GCCAGAAGA | 11 | 9 | S (S1 subunit) |
20A | 75:AAAC | 1 | 4 | 5′-UTR | |
76:AAA | 1 | 3 | 5′-UTR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banu, L.A.; Azmin, N.; Hossain, M.; Nila, N.N.; Sinha, S.K.; Hassan, Z. Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh. Int. J. Mol. Sci. 2025, 26, 6118. https://doi.org/10.3390/ijms26136118
Banu LA, Azmin N, Hossain M, Nila NN, Sinha SK, Hassan Z. Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh. International Journal of Molecular Sciences. 2025; 26(13):6118. https://doi.org/10.3390/ijms26136118
Chicago/Turabian StyleBanu, Laila Anjuman, Nahid Azmin, Mahmud Hossain, Nurun Nahar Nila, Sharadindu Kanti Sinha, and Zahid Hassan. 2025. "Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh" International Journal of Molecular Sciences 26, no. 13: 6118. https://doi.org/10.3390/ijms26136118
APA StyleBanu, L. A., Azmin, N., Hossain, M., Nila, N. N., Sinha, S. K., & Hassan, Z. (2025). Evaluation of the Mutational Preferences Throughout the Whole Genome of the Identified Variants of the SARS-CoV-2 Virus Isolates in Bangladesh. International Journal of Molecular Sciences, 26(13), 6118. https://doi.org/10.3390/ijms26136118