Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology
Abstract
1. Introduction
2. Results
2.1. Classification of PH
2.2. Clinical Presentation of PH
2.3. Diagnostic Assessment for PH
2.4. Pathophysiology
2.5. Management of PH in SCD Patients
- Hypoxia;
- Cardiopulmonary disease including left ventricular failure;
- Thromboembolic disorders;
- Nocturnal hypoxemia;
- Iron overload;
- Chronic liver disease;
- Chronic kidney disease.
2.6. Role of Gene Polymorphisms in Pathogenesis and Prognosis of SCD-Related PH
3. Discussion
4. Conclusions
5. Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gladwin, M.T.; Vichinsky, E. Pulmonary Complications of Sickle Cell Disease. N. Engl. J. Med. 2008, 359, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Gordeuk, V.R.; Castro, O.L.; Machado, R.F. Pathophysiology and treatment of pulmonary hypertension in sickle cell disease. Blood 2016, 127, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Steinberg, M.H.; Gladwin, M.T. Intravascular hemolysis and the pathophysiology of sickle cell disease. J. Clin. Investig. 2017, 127, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Savale, L.; Habibi, A.; Lionnet, F.; Maitre, B.; Cottin, V.; Jais, X.; Chaouat, A.; Artaud-Macari, E.; Canuet, M.; Prevot, G.; et al. Clinical phenotypes and outcomes of precapillary pulmonary hypertension of sickle cell disease. Eur. Respir. J. 2019, 54, 1900585. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.; Brida, M.; Carlsen, J.; Coats, A.J.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2022, 61, 2200879. [Google Scholar] [CrossRef] [PubMed]
- Klings, E.S.; Machado, R.F.; Barst, R.J.; Morris, C.R.; Mubarak, K.K.; Gordeuk, V.R.; Kato, G.J.; Ataga, K.I.; Gibbs, J.S.; Castro, O.; et al. An Official American Thoracic Society Clinical Practice Guideline: Diagnosis, Risk Stratification, and Management of Pulmonary Hypertension of Sickle Cell Disease. Am. J. Respir. Crit. Care Med. 2014, 189, 727–740. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, M.T.; Barst, R.J.; Gibbs, J.S.R.; Hildesheim, M.; Sachdev, V.; Nouraie, M.; Hassell, K.L.; Little, J.A.; Schraufnagel, D.E.; Krishnamurti, L.; et al. Risk Factors for Death in 632 Patients with Sickle Cell Disease in the United States and United Kingdom. PLoS ONE 2014, 9, e99489. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Hildesheim, M.; Mendelsohn, L.; Remaley, A.T.; Kato, G.J.; Gladwin, M.T. NT-pro brain natriuretic peptide levels and the risk of death in the cooperative study of sickle cell disease. Br. J. Haematol. 2011, 154, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Gladwin, M.T.; Sachdev, V.; Jison, M.L.; Shizukuda, Y.; Plehn, J.F.; Minter, K.; Brown, B.; Coles, W.A.; Nichols, J.S.; Ernst, I.; et al. Pulmonary Hypertension as a Risk Factor for Death in Patients with Sickle Cell Disease. N. Engl. J. Med. 2004, 350, 886–895. [Google Scholar] [CrossRef]
- Mehari, A.; Gladwin, M.T.; Tian, X.; Machado, R.F.; Kato, G.J. Mortality in Adults with Sickle Cell Disease and Pulmonary Hypertension. JAMA 2012, 307, 1254–1256. [Google Scholar] [CrossRef]
- Liem, R.I.; Lanzkron, S.; Coates, T.D.; DeCastro, L.; Desai, A.A.; Ataga, K.I.; Cohen, R.T.; Haynes, J.J.; Osunkwo, I.; Lebensburger, J.D.; et al. American Society of Hematology 2019 guidelines for sickle cell disease: Cardiopulmonary and kidney disease. Blood Adv. 2019, 3, 3867–3897. [Google Scholar] [CrossRef] [PubMed]
- Mehari, A.; Alam, S.; Tian, X.; Cuttica, M.J.; Barnett, C.F.; Miles, G.; Xu, D.; Seamon, C.; Adams-Graves, P.; Castro, O.L.; et al. Hemodynamic Predictors of Mortality in Adults with Sickle Cell Disease. Am. J. Respir. Crit. Care Med. 2013, 187, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Mehari, A.; Igbineweka, N.; Allen, D.; Nichols, J.; Thein, S.L.; Weir, N.A. Abnormal Ventilation–Perfusion Scan Is Associated with Pulmonary Hypertension in Sickle Cell Adults. J. Nucl. Med. 2018, 60, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Niss, O.; Fleck, R.; Makue, F.; Alsaied, T.; Desai, P.; Towbin, J.A.; Malik, P.; Taylor, M.D.; Quinn, C.T. Association between diffuse myocardial fibrosis and diastolic dysfunction in sickle cell anemia. Blood 2017, 130, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.-L.; Tian, X.; Alam, S.; Mehari, A.; Leung, S.W.; Seamon, C.; Allen, D.; Minniti, C.P.; Sachdev, V.; Arai, A.E.; et al. Elevated transpulmonary gradient and cardiac magnetic resonance-derived right ventricular remodeling predict poor outcomes in sickle cell disease. Haematologica 2015, 101, e40–e43. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Parent, F.; Bachir, D.; Inamo, J.; Lionnet, F.; Driss, F.; Loko, G.; Habibi, A.; Bennani, S.; Savale, L.; Adnot, S.; et al. A Hemodynamic Study of Pulmonary Hypertension in Sickle Cell Disease. N. Engl. J. Med. 2011, 365, 44–53. [Google Scholar] [CrossRef]
- Machado, R.F.; Anthi, A.; Steinberg, M.H.; Bonds, D.; Sachdev, V.; Kato, G.J.; Taveira-DaSilva, A.M.; Ballas, S.K.; Blackwelder, W.; Xu, X.; et al. N-Terminal Pro-Brain Natriuretic Peptide Levels and Risk of Death in Sickle Cell Disease. JAMA 2006, 296, 310–318. [Google Scholar] [CrossRef]
- Anthi, A.; Machado, R.F.; Jison, M.L.; Taveira-DaSilva, A.M.; Rubin, L.J.; Hunter, L.; Hunter, C.J.; Coles, W.; Nichols, J.; Avila, N.A.; et al. Hemodynamic and Functional Assessment of Patients with Sickle Cell Disease and Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2007, 175, 1272–1279. [Google Scholar] [CrossRef]
- Minniti, C.P.; Sable, C.; Campbell, A.; Rana, S.; Ensing, G.; Dham, N.; Onyekwere, O.; Nouraie, M.; Kato, G.; Gladwin, M.T.; et al. Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease: Association with hemolysis and hemoglobin oxygen desaturation. Haematologica 2009, 94, 340–347. [Google Scholar] [CrossRef]
- Bunn, H.F.; Nathan, D.G.; Dover, G.J.; Hebbel, R.P.; Platt, O.S.; Rosse, W.F.; Ware, R.E. Pulmonary hypertension and nitric oxide depletion in sickle cell disease. Blood 2010, 116, 687–692. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; McGowan, V.; Machado, R.F.; Little, J.A.; Taylor, J.; Morris, C.R.; Nichols, J.S.; Wang, X.; Poljakovic, M.; Morris, S.M.; et al. Lactate dehydrogenase as a biomarker of hemolysis-associated nitric oxide resistance, priapism, leg ulceration, pulmonary hypertension, and death in patients with sickle cell disease. Blood 2006, 107, 2279–2285. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Gladwin, M.T.; Steinberg, M.H. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev. 2007, 21, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, C.C.; Machado, R.F. The different facets of sickle cell disease-related pulmonary hypertension. Curr. Opin. Pulm. Med. 2021, 27, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Liu, Y.; Liu, B. Integrated bioinformatics analysis reveals marker genes and immune infiltration for pulmonary arterial hypertension. Sci. Rep. 2022, 12, 10154. [Google Scholar] [CrossRef] [PubMed]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The Clinical Sequelae of Intravascular Hemolysis and Extracellular Plasma Hemoglobin. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Niss, O.; Quinn, C.T.; Lane, A.; Daily, J.; Khoury, P.R.; Bakeer, N.; Kimball, T.R.; Towbin, J.A.; Malik, P.; Taylor, M.D. Cardiomyopathy with Restrictive Physiology in Sickle Cell Disease. JACC Cardiovasc. Imaging 2016, 9, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Hebbel, R.P. Reconstructing sickle cell disease: A data-based analysis of the “hyperhemolysis paradigm” for pulmonary hypertension from the perspective of evidence-based medicine. Am. J. Hematol. 2011, 86, 123–154. [Google Scholar] [CrossRef]
- Akinsheye, I.; Klings, E.S. Sickle cell anemia and vascular dysfunction: The nitric oxide connection. J. Cell. Physiol. 2010, 224, 620–625. [Google Scholar] [CrossRef]
- Jison, M.L.; Gladwin, M.T. Hemolytic Anemia–associated Pulmonary Hypertension of Sickle Cell Disease and the Nitric Oxide/Arginine Pathway. Am. J. Respir. Crit. Care Med. 2003, 168, 3–4. [Google Scholar] [CrossRef]
- Morris, C.R.; Kato, G.J.; Poljakovic, M.; Wang, X.; Blackwelder, W.C.; Sachdev, V.; Hazen, S.L.; Vichinsky, E.P.; Morris, S.M., Jr.; Gladwin, M.T. Dysregulated Arginine Metabolism, Hemolysis-Associated Pulmonary Hypertension, and Mortality in Sickle Cell Disease. JAMA 2005, 294, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Kato, G.J.; Wang, Z.; Machado, R.F.; Blackwelder, W.C.; Taylor, J.G.; Hazen, S.L. Endogenous nitric oxide synthase inhibitors in sickle cell disease: Abnormal levels and correlations with pulmonary hypertension, desaturation, haemolysis, organ dysfunction and death. Br. J. Haematol. 2009, 145, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Aessopos, A. Pulmonary Hypertension Associated with Hemoglobinopathies. Circulation 2011, 123, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Nasimuzzaman, M.D.; Malik, P. Role of the coagulation system in the pathogenesis of sickle cell disease. Blood Adv. 2019, 3, 3170–3180. [Google Scholar] [CrossRef] [PubMed]
- Shet, A.S.; Lizarralde-Iragorri, M.A.; Naik, R.P. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 2020, 105, 2368–2379. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, M.; Politou, M.; Stavroula, K.; Koutsouri, D.; Tsioutsias, P.; Flevari, P.; Voskaridou, E. Silent Cerebral Ischemia and Thromboembolic Events in Sickle Cell Disease: Analysis of Coagulation Parameters and Thromboelastography. Haematologica 2017, 102, 27100. [Google Scholar]
- Tantawy, A.; El-Sherif, N.; Makkeyah, S.; Eldeen, N.S.; Farghal, N.B.E.-D.; Soliman, N.; Ebeid, F.S.E. Sleep disordered breathing and its relation to stroke and pulmonary hypertension in children with sickle cell disease: A single-center cross-sectional study. Ann. Hematol. 2023, 102, 271–281. [Google Scholar] [CrossRef]
- Sharma, S.; Efird, J.T.; Knupp, C.; Kadali, R.; Liles, D.; Shiue, K.; Boettger, P.; Quan, S.F. Sleep Disorders in Adult Sickle Cell Patients. Sleep Med. 2015, 11, 219–223. [Google Scholar] [CrossRef]
- Mehari, A.; Klings, E.S. Chronic Pulmonary Complications of Sickle Cell Disease. Chest 2016, 149, 1313–1324. [Google Scholar] [CrossRef]
- Turpin, M.; Chantalat-Auger, C.; Parent, F.; Driss, F.; Lionnet, F.; Habibi, A.; Maître, B.; Huertas, A.; Jaïs, X.; Weatherald, J.; et al. Chronic blood exchange transfusions in the management of pre-capillary pulmonary hypertension complicating sickle cell disease. Eur. Respir. J. 2018, 52, 1800272. [Google Scholar] [CrossRef]
- Machado, R.F.; Martyr, S.; Kato, G.; Barst, R.J.; Anthi, A.; Robinson, M.R.; Hunter, L.; Coles, W.; Nichols, J.; Hunter, C.; et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br. J. Haematol. 2005, 130, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Barst, R.J.; Yovetich, N.A.; Hassell, K.L.; Kato, G.J.; Gordeuk, V.R.; Gibbs, J.S.R.; Little, J.A.; Schraufnagel, D.E.; Krishnamurti, L.; et al. Hospitalization for pain in patients with sickle cell disease treated with sildenafil for elevated TRV and low exercise capacity. Blood 2011, 118, 855–864. [Google Scholar] [CrossRef]
- Cramer-Bour, C.; Ruhl, A.P.; Nouraie, S.M.; Emeh, R.O.; Ruopp, N.F.; Thein, S.L.; Weir, N.A.; Klings, E.S. Long Term Tolerability of Sildenafil in Sickle Cell Disease. Retrospective study evaluating the effect of phosphodiesterase 5 inhibitors in patients with SCD-related PH confirmed on RHC. Eur. J. Haematol. 2021, 107, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.A.; Conrey, A.; Lewis, D.; Mehari, A. Riociguat use in sickle cell related chronic thromboembolic pulmonary hypertension: A case series. Pulm. Circ. 2018, 8, 2045894018791802. [Google Scholar] [CrossRef] [PubMed]
- Minniti, C.P.; Machado, R.F.; Coles, W.A.; Sachdev, V.; Gladwin, M.T.; Kato, G.J. Endothelin receptor antagonists for pulmonary hypertension in adult patients with sickle cell disease. Br. J. Haematol. 2009, 147, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Barst, R.J.; Mubarak, K.K.; Machado, R.F.; Ataga, K.I.; Benza, R.L.; Castro, O.; Naeije, R.; Sood, N.; Swerdlow, P.S.; Hildesheim, M.; et al. Exercise capacity and haemodynamics in patients with sickle cell disease with pulmonary hypertension treated with bosentan: Results of the ASSET studies. Br. J. Haematol. 2010, 149, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Castro, O.; Hoque, M.; Brown, B.D. Pulmonary hypertension in sickle cell disease: Cardiac catheterization results and survival. Blood 2003, 101, 1257–1261. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.A.; Saiyed, R.; Alam, S.; Conrey, A.; Desai, H.D.; George, M.P.; Keeley, J.H.; Klings, E.S.; Mehari, A.; Taylor, J.G.; et al. Prostacyclin-analog therapy in sickle cell pulmonary hypertension. Haematologica 2017, 102, e163–e165. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, E.; Cappelli, B.; Bernaudin, F.; Labopin, M.; Volt, F.; Carreras, J.; Simões, B.P.; Ferster, A.; Dupont, S.; de la Fuente, J.; et al. Sickle cell disease: An international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood 2017, 129, 1548–1556. [Google Scholar] [CrossRef]
- Demirci, S.; Uchida, N.; Tisdale, J.F. Gene therapy for sickle cell disease: An update. Cytotherapy 2018, 20, 899–910. [Google Scholar] [CrossRef]
- Ashley-Koch, A.E.; Elliott, L.; Kail, M.E.; De Castro, L.M.; Jonassaint, J.; Jackson, T.L.; Price, J.; Ataga, K.I.; Levesque, M.C.; Weinberg, J.B.; et al. Identification of genetic polymorphisms associated with risk for pulmonary hypertension in sickle cell disease. Blood 2008, 111, 5721–5726. [Google Scholar] [CrossRef] [PubMed]
- Trembath, R.C.; Thomson, J.R.; Machado, R.D.; Morgan, N.V.; Atkinson, C.; Winship, I.; Simonneau, G.; Galie, N.; Loyd, J.E.; Humbert, M.; et al. Clinical and Molecular Genetic Features of Pulmonary Hypertension in Patients with Hereditary Hemorrhagic Telangiectasia. N. Engl. J. Med. 2001, 345, 325–334. [Google Scholar] [CrossRef]
- Roberts, K. BMPR2 mutations in pulmonary arterial hypertension with congenital heart disease. Eur. Respir. J. 2004, 24, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Klings, E.S.; A Dworkis, D.; Sedgewick, A.; Hartley, S.W.; Allison, A.-K.; Telen, M.J.; Kato, G.J.; Gladwin, M.; Sebastiani, P.; Baldwin, C.T.; et al. Genetic Polymorphisms in NEDD4L Are Associated with Pulmonary Hypertension of Sickle Cell Anemia. Blood 2009, 114, 2562. [Google Scholar] [CrossRef]
- Rotin, D.; Prag, G. Physiological Functions of the Ubiquitin Ligases Nedd4-1 and Nedd4-2. Physiology 2024, 39, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Nouraie, M.; Reading, N.S.; Campbell, A.; Minniti, C.; Rana, S.R.; Luchtman-Jones, L.; Sable, C.; Dham, N.; Ensing, G.; Kato, G.J.; et al. Cytochrome b5 Reductase T116S Mutation and Hemolysis in Sickle Cell Disease. Blood 2009, 114, 903. [Google Scholar] [CrossRef]
- Gordeuk, V.R.; Nouraie, M.; Niu, X.; DelBove, J.N.; Prchal, J.T. Cytochrome B5 Reductase T116S Polymorphism Is Associated with Decreased Risk of Severe Anemia Among Zambian Children with Malaria. Blood 2010, 116, 4233. [Google Scholar] [CrossRef]
- Desai, A.A.; Zhou, T.; Ahmad, H.; Zhang, W.; Mu, W.; Trevino, S.; Wade, M.S.; Raghavachari, N.; Kato, G.J.; Peters-Lawrence, M.H.; et al. A Novel Molecular Signature for Elevated Tricuspid Regurgitation Velocity in Sickle Cell Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 359–368. [Google Scholar] [CrossRef]
- Geard, A.; Pule, G.D.; Chelo, D.; Bitoungui, V.J.N.; Wonkam, A. Genetics of Sickle Cell-Associated Cardiovascular Disease: An Expert Review with Lessons Learned in Africa. OMICS A J. Integr. Biol. 2016, 20, 581–592. [Google Scholar] [CrossRef]
- Nogimori, K.; Hori, T.; Kawaguchi, K.; Fukui, T.; Mii, S.; Nakada, H.; Matsumoto, Y.; Yamauchi, Y.; Takahashi, M.; Furukawa, K.; et al. Increased expression levels of ppGalNAc-T13 in lung cancers: Significance in the prognostic diagnosis. Int. J. Oncol. 2016, 50, 746. [Google Scholar] [CrossRef]
- Shozu, K.; Kaneko, S.; Shinkai, N.; Dozen, A.; Kosuge, H.; Nakakido, M.; Machino, H.; Takasawa, K.; Asada, K.; Komatsu, M.; et al. Repression of the PRELP gene is relieved by histone deacetylase inhibitors through acetylation of histone H2B lysine 5 in bladder cancer. Clin. Epigenetics 2022, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, N.; Yerneni, S.S.; Azambuja, J.H.; Gillespie, D.G.; Menshikova, E.V.; Jackson, E.K.; Whiteside, T.L. Tumor-derived exosomes promote angiogenesis via adenosine A2B receptor signaling. Angiogenesis 2020, 23, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Ma, S.-F.; Desai, A.A.; Saraf, S.; Miasniakova, G.; Sergueeva, A.; Ammosova, T.; Xu, M.; Nekhai, S.; et al. Hypoxic Response Contributes to Altered Gene Expression and Precapillary Pulmonary Hypertension in Patients with Sickle Cell Disease. Circulation 2014, 129, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Ellithy, H.N.; Yousri, S.; Shahin, G.H. Relation between glutathione S-transferase genes (GSTM1, GSTT1, and GSTP1) polymorphisms and clinical manifestations of sickle cell disease in Egyptian patients. Hematology 2015, 20, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Yousry, S.M.; Ellithy, H.N.; Shahin, G.H. Endothelial nitric oxide synthase gene polymorphisms and the risk of vasculopathy in sickle cell disease. Hematology 2016, 21, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Maloney, J.P.; Stearman, R.S.; Bull, T.M.; Calabrese, D.W.; Tripp-Addison, M.L.; Wick, M.J.; Broeckel, U.; Robbins, I.M.; Wheeler, L.A.; Cogan, J.D.; et al. Loss-of-function thrombospondin-1 mutations in familial pulmonary hypertension. Am. J. Physiol. Cell. Mol. Physiol. 2012, 302, L541–L554. [Google Scholar] [CrossRef]
- Jacob, S.A.; Novelli, E.M.; Isenberg, J.S.; Garrett, M.E.; Chu, Y.; Soldano, K.; Ataga, K.I.; Telen, M.J.; Ashley-Koch, A.; Gladwin, M.T.; et al. Thrombospondin-1 gene polymorphism is associated with estimated pulmonary artery pressure in patients with sickle cell anemia. Am. J. Hematol. 2016, 92, E31–E34. [Google Scholar] [CrossRef] [PubMed]
- Rogers, N.M.; Yao, M.; Sembrat, J.; George, M.P.; Knupp, H.; Ross, M.; Sharifi-Sanjani, M.; Milosevic, J.; Croix, C.S.; Rajkumar, R.; et al. Cellular, Pharmacological, and Biophysical Evaluation of Explanted Lungs from a Patient with Sickle Cell Disease and Severe Pulmonary Arterial Hypertension. Pulm. Circ. 2013, 3, 936–951. [Google Scholar] [CrossRef] [PubMed]
- Navarro, K.G.; Agyingi, S.E.; Nwabuobi, C.K.; Thomas, B.N. Polymorphism of the endothelin-1 gene (rs5370) is a potential contributor to sickle cell disease pathophysiology. Genes Dis. 2016, 3, 294–298. [Google Scholar] [CrossRef]
- Khorshied, M.M.; Mohamed, N.S.; Hamza, R.S.; Ali, R.M.; El-Ghamrawy, M.K. Protein Z and Endothelin-1 genetic polymorphisms in pediatric Egyptian sickle cell disease patients. J. Clin. Lab. Anal. 2018, 32, e22264. [Google Scholar] [CrossRef]
- Thakur, T.J.; Guindo, A.; Cullifer, L.R.; Li, Y.; Imumorin, I.G.; Diallo, D.A.; Thomas, B.N. Endothelin-1 but not Endothelial Nitric Oxide Synthase Gene Polymorphism is Associated with Sickle Cell Disease in Africa. Gene Regul. Syst. Biol. 2014, 8, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Afifi, R.A.; Sedky, Y.M.; Abd-Elkareem, H.; Botros, S.K.A. IL-Iβ +3954 C/T Polymorphism and Its Clinical Associations in Egyptian Sickle Cell Disease Patients. Int. J. Hematol. Stem Cell Res. 2019, 13, 35–41. [Google Scholar] [CrossRef]
- Vicari, P.; Adegoke, S.A.; Mazzotti, D.R.; Cançado, R.D.; Noguti, M.A.E.; Figueiredo, M.S. Interleukin-1β and interleukin-6 gene polymorphisms are associated with manifestations of sickle cell anemia. Blood Cells Mol. Dis. 2015, 54, 244–249, Erratum in Blood Cells Mol. Dis. 2015, 54, 328. [Google Scholar] [CrossRef] [PubMed]
- Lakkakula, B. Association between MTHFR 677C>T polymorphism and vascular complications in sickle cell disease: A meta-analysis. Transf. Clin. Biol. 2019, 26, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, C.C.; Zhang, X.; Schwantes-An, T.L.; Stearman, R.S.; Hooker, S.; Kittles, R.A.; Aldred, M.A.; Lutz, K.A.; Pauciulo, M.W.; Nichols, W.C.; et al. RASA3 is a candidate gene in sickle cell disease-associated pulmonary hypertension and pulmonary arterial hypertension. Pulm. Circ. 2023, 13, e12227. [Google Scholar] [CrossRef] [PubMed]
- Fertrin, K.Y.; Costa, F.F. Genomic polymorphisms in sickle cell disease: Implications for clinical diversity and treatment. Expert Rev. Hematol. 2010, 3, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H. Genetic Etiologies for Phenotypic Diversity in Sickle Cell Anemia. Sci. World J. 2009, 9, 46–67. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Badesch, D.B.; Ghofrani, H.A.; Gibbs, J.S.R.; Gomberg-Maitland, M.; McLaughlin, V.V.; Preston, I.R.; Souza, R.; Waxman, A.B.; Grünig, E.; et al. Phase 3 Trial of Sotatercept for Treatment of Pulmonary Arterial Hypertension. N. Engl. J. Med. 2023, 388, 1478–1490. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Porter, J.; Origa, R.; Forni, G.L.; Voskaridou, E.; Galactéros, F.; Taher, A.T.; Arlet, J.-B.; Ribeil, J.-A.; Garbowski, M.; et al. Sotatercept, a novel transforming growth factor β ligand trap, improves anemia in β-thalassemia: A phase II, open-label, dose-finding study. Haematologica 2018, 104, 477–484. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kountouris, P.; Stephanou, C.; Archer, N.; Bonifazi, F.; Giannuzzi, V.; Kuo, K.H.M.; Maggio, A.; Makani, J.; Mañú-Pereira, M.d.M.; Michailidou, K.; et al. The International Hemoglobinopathy Research Network (INHERENT): An international initiative to study the role of genetic modifiers in hemoglobinopathies. Am. J. Hematol. 2021, 96, E416–E420. [Google Scholar] [CrossRef]
Group 1—Pulmonary Arterial Hypertension (PAH) |
1.1 Idiopathic: |
1.1.1 Non-responders at vasoreactivity testing |
1.1.2 Acute responders at vasoreactivity testing |
1.2 Heritable |
1.3 Associated with drugs and toxins |
1.4 Associated with: |
1.4.1 Connective tissue disease |
1.4.2 HIV infection |
1.4.3 Portal hypertension |
1.4.4 Congenital heart disease |
1.4.5 Schistosomiasis |
1.5 PAH with features of venous/capillary (PVOD/PCH) involvement |
1.6 Persistent PH of the newborn |
Group 2—PH Associated with Left Heart Disease |
2.1 Heart failure: |
2.1.1 with preserved ejection fraction |
2.1.2 with reduced or mildly reduced ejection fraction |
2.2 Valvular heart disease |
2.3 Congenital/acquired cardiovascular conditions leading to post-capillary PH |
Group 3—PH Associated with Lung Diseases and/or Hypoxia |
3.1 Obstructive lung disease or emphysema |
3.2 Restrictive lung disease |
3.3 Lung disease with mixed restrictive/obstructive pattern |
3.4 Hypoventilation syndromes |
3.5 Hypoxia without lung disease (e.g., high altitude) |
3.6 Developmental lung disorders |
Group 4—PH Associated with Pulmonary Artery Obstructions |
4.1 Chronic thromboembolic PH |
4.2 Other pulmonary artery obstructions |
Group 5—PH with Unclear and/or Multifactorial Mechanisms |
5.1 Hematological disorders |
5.2 Systemic disorders |
5.3 Metabolic disorders |
5.4 Chronic renal failure with or without hemodialysis |
5.5 Pulmonary tumor thrombotic microangiopathy |
5.6 Fibrosing mediastinitis |
Gene Name | SNP/Mutation | Study, Year | Number of Patients | Ancestry | PH-Related Findings |
---|---|---|---|---|---|
ACVRL1 | rs3847859, rs706814 | Ashley-Koch et al., 2008 [51] | 518 | N/A | Associated with the occurrence of PH. |
BMP6 | rs267192 | ||||
ADRB1 | rs1801253, rs7921133 | ||||
TGFBR3 | rs10874940 | ||||
ARG2 | rs12587111, rs1885042 | Nominally associated with PH. | |||
NEDD4L | rs559046, rs1624292 | Klings et al., 2009 [54] | 59 | N/A | Associated with a TRV ≥ 2.5 m/s. |
4 SNPs in intron 1 | 139 | Associated with elevated NT-pro-BNP levels. | |||
CYBR5 | T116S | Nouraie et al., 2009 [56] | 261 | N/A | Heterozygosity and homozygosity for CYBR5 T116S associated with lower TRV. |
GALNT13 | rs799813, rs10497120, rs13407922, rs16833378, rs9808145 | Desai et al., 2012 [58] | 27 | African American | Associated with elevated TRV. |
PRELP | rs2794452 | ||||
ADORA2B | rs7208480 | ||||
MAPK8 | rs10857560 | Zhang et al., 2014 [63] | 61 | African American | Associated with precapillary PH. |
GST | GSTM1, GSTT1, GSTP1 | Ellithy et al., 2015 [64] | 100 | Egyptian | Absence of both GSTM1 and GSTT1 genes significantly associated with development of PH. |
eNOS | eNOS 4a/b, eNOS 786T>C, C-4a | Yousry et al., 2016 [65] | 100 | Egyptian | Wild-type eNOS-4a/4b genotype seemed protective against VOC and PH. Mutant homozygous haplotype (C-4a) associated with the risk of ACS, VOC, and PH. |
TSP1 | rs1478604, rs1478605 | Jacob et al., 2017 [67] | 406 | N/A | Associated with elevated TRV. |
ET-1 | G5665T | Khorshied et al., 2018 [70] | 100 | Egyptian | Pulmonary dysfunction (PH and ACS) more frequent in patients with the polymorphic genotypes. |
IL-1 β | +3954 | Afifi et al., 2019 [72] | 50 | Egyptian | Mutant genotype more prevalent in cases with PH. Mean ESPAP significantly higher among mutant genotypes. |
Vicari et al., 2015 [73] | 107 | Brazilian | |||
MTHFR | 677C>T | Lakkakula et al., 2019 [74] | 614 | N/A | Mutant genotype associated with increased risk of vascular events. |
RASA3 | rs9525228 | Prohaska et al., 2023 [75] | 171 | African American | SNP correlated with PH risk, higher TRV, and pulmonary vascular resistance, and associated with precapillary PH values and decreased survival in a subgroup of patients. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzidavid, S.; Flevari, P.; Tombrou, I.; Anastasiadis, G.; Dimopoulou, M., on behalf of the International Hemoglobinopathy Research Network (INHERENT). Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology. Int. J. Mol. Sci. 2024, 25, 4792. https://doi.org/10.3390/ijms25094792
Chatzidavid S, Flevari P, Tombrou I, Anastasiadis G, Dimopoulou M on behalf of the International Hemoglobinopathy Research Network (INHERENT). Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology. International Journal of Molecular Sciences. 2024; 25(9):4792. https://doi.org/10.3390/ijms25094792
Chicago/Turabian StyleChatzidavid, Sevastianos, Pagona Flevari, Ioanna Tombrou, Georgios Anastasiadis, and Maria Dimopoulou on behalf of the International Hemoglobinopathy Research Network (INHERENT). 2024. "Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology" International Journal of Molecular Sciences 25, no. 9: 4792. https://doi.org/10.3390/ijms25094792
APA StyleChatzidavid, S., Flevari, P., Tombrou, I., Anastasiadis, G., & Dimopoulou, M., on behalf of the International Hemoglobinopathy Research Network (INHERENT). (2024). Pulmonary Hypertension in Sickle Cell Disease: Novel Findings of Gene Polymorphisms Related to Pathophysiology. International Journal of Molecular Sciences, 25(9), 4792. https://doi.org/10.3390/ijms25094792