A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics of Study Population
2.2. Liver Lipid Profile in Patients with NAFLD and Controls
2.3. LC-QTOF-MS Analysis Revealed Alterations in TG Species
2.4. Fatty Acid Profile in Liver Samples
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Chemicals and Materials
4.3. Liver Lipidomics and Fatty Acid Analysis
4.4. Instrumentation for Untargeted Lipidomics and Fatty Acid Analyses
4.5. Identification and Quantification of Lipid Species
4.6. Data Analysis and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-Term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef] [PubMed]
- Chiappini, F.; Coilly, A.; Kadar, H.; Gual, P.; Tran, A.; Desterke, C.; Samuel, D.; Duclos-Vallée, J.-C.; Touboul, D.; Bertrand-Michel, J.; et al. Metabolism Dysregulation Induces a Specific Lipid Signature of Nonalcoholic Steatohepatitis in Patients. Sci. Rep. 2017, 7, 46658. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multisociety Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL). European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO); European Association for the Study of the Liver (EASL) EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and Nonalcoholic Fatty Liver Disease: Biochemical, Metabolic and Clinical Implications. Hepatology 2010, 51, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.C.; Hung, H.-F.; Lu, C.-W.; Chang, H.-H.; Lee, L.-T.; Huang, K.-C. Association of Non-Alcoholic Fatty Liver Disease with Metabolic Syndrome Independently of Central Obesity and Insulin Resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef]
- Sarwar, R.; Pierce, N.; Koppe, S. Obesity and Nonalcoholic Fatty Liver Disease: Current Perspectives. Diabetes Metab. Syndr. Obes. 2018, 11, 533–542. [Google Scholar] [CrossRef]
- Targher, G.; Corey, K.E.; Byrne, C.D.; Roden, M. The Complex Link between NAFLD and Type 2 Diabetes Mellitus—Mechanisms and Treatments. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 599–612. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Mark, H.E.; Anstee, Q.M.; Arab, J.P.; Batterham, R.L.; Castera, L.; Cortez-Pinto, H.; Crespo, J.; Cusi, K.; Dirac, M.A.; et al. Advancing the Global Public Health Agenda for NAFLD: A Consensus Statement. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 60–78. [Google Scholar] [CrossRef]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global Incidence and Prevalence of Nonalcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Wong, G.; Anstee, Q.M.; Henry, L. The Global Burden of Liver Disease. Clin. Gastroenterol. Hepatol. 2023, 21, 1978–1991. [Google Scholar] [CrossRef] [PubMed]
- Peverill, W.; Powell, L.W.; Skoien, R. Evolving Concepts in the Pathogenesis of NASH: Beyond Steatosis and Inflammation. Int. J. Mol. Sci. 2014, 15, 8591–8638. [Google Scholar] [CrossRef] [PubMed]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-Alcoholic Fatty Liver Disease (NAFLD): A Review of Pathophysiology, Clinical Management and Effects of Weight Loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Shankaran, M.; Yoshino, M.; Schweitzer, G.G.; Chondronikola, M.; Beals, J.W.; Okunade, A.L.; Patterson, B.W.; Nyangau, E.; Field, T.; et al. Insulin Resistance Drives Hepatic de Novo Lipogenesis in Nonalcoholic Fatty Liver Disease. J. Clin. Investig. 2020, 130, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Gluchowski, N.L.; Becuwe, M.; Walther, T.C.; Farese, R.V. Lipid Droplets and Liver Disease: From Basic Biology to Clinical Implications. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 343–355. [Google Scholar] [CrossRef]
- Ramanathan, R.; Ali, A.H.; Ibdah, J.A. Mitochondrial Dysfunction Plays Central Role in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 7280. [Google Scholar] [CrossRef]
- Lebeaupin, C.; Vallée, D.; Hazari, Y.; Hetz, C.; Chevet, E.; Bailly-Maitre, B. Endoplasmic Reticulum Stress Signalling and the Pathogenesis of Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2018, 69, 927–947. [Google Scholar] [CrossRef]
- Zhou, L.; Shen, H.; Li, X.; Wang, H. Endoplasmic Reticulum Stress in Innate Immune Cells—A Significant Contribution to Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 951406. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, R.; She, Z.; Cai, J.; Li, H. Role of Oxidative Stress in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Free. Radic. Biol. Med. 2020, 152, 116–141. [Google Scholar] [CrossRef]
- Clare, K.; Dillon, J.F.; Brennan, P.N. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis of MAFLD. J. Clin. Transl. Hepatol. 2022, 10, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Peiseler, M.; Tacke, F. Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers 2021, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- García-Pras, E.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Pérez-del-Pulgar, S. Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers 2021, 14, 48. [Google Scholar] [CrossRef] [PubMed]
- Kartsoli, S.; Kostara, C.E.; Tsimihodimos, V.; Bairaktari, E.T.; Christodoulou, D.K. Lipidomics in Non-Alcoholic Fatty Liver Disease. World J. Hepatol. 2020, 12, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Gastaldelli, A.; Hyötyläinen, T.; Arretxe, E.; Alonso, C.; Gaggini, M.; Brosnan, J.; Anstee, Q.M.; Millet, O.; Ortiz, P.; et al. Metabolomics and Lipidomics in NAFLD: Biomarkers and Non-Invasive Diagnostic Tests. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 835–856. [Google Scholar] [CrossRef] [PubMed]
- Mouskeftara, T.; Deda, O.; Papadopoulos, G.; Chatzigeorgiou, A.; Gika, H. Lipidomic Analysis of Liver and Adipose Tissue in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Mice Model Reveals Alterations in Lipid Metabolism by Weight Loss and Aerobic Exercise. Molecules 2024, 29, 1494. [Google Scholar] [CrossRef]
- Hliwa, A.; Ramos-Molina, B.; Laski, D.; Mika, A.; Sledzinski, T. The Role of Fatty Acids in Non-Alcoholic Fatty Liver Disease Progression: An Update. Int. J. Mol. Sci. 2021, 22, 6900. [Google Scholar] [CrossRef]
- Sun, C.; Guo, Y.; Cong, P.; Tian, Y.; Gao, X. Liver Lipidomics Analysis Revealed the Novel Ameliorative Mechanisms of L-Carnitine on High-Fat Diet-Induced NAFLD Mice. Nutrients 2023, 15, 1359. [Google Scholar] [CrossRef]
- Vvedenskaya, O.; Rose, T.D.; Knittelfelder, O.; Palladini, A.; Wodke, J.A.H.; Schuhmann, K.; Ackerman, J.M.; Wang, Y.; Has, C.; Brosch, M.; et al. Nonalcoholic Fatty Liver Disease Stratification by Liver Lipidomics. J. Lipid. Res. 2021, 62, 100104. [Google Scholar] [CrossRef]
- Simon, J.; Ouro, A.; Ala-Ibanibo, L.; Presa, N.; Delgado, T.C.; Martínez-Chantar, M.L. Sphingolipids in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma: Ceramide Turnover. Int. J. Mol. Sci. 2019, 21, 40. [Google Scholar] [CrossRef]
- Ščupáková, K.; Soons, Z.; Ertaylan, G.; Pierzchalski, K.A.; Eijkel, G.B.; Ellis, S.R.; Greve, J.W.; Driessen, A.; Verheij, J.; De Kok, T.M.; et al. Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity. Anal. Chem. 2018, 90, 5130–5138. [Google Scholar] [CrossRef]
- Seubnooch, P.; Montani, M.; Dufour, J.-F.; Masoodi, M. Spatial Lipidomics Reveals Zone-Specific Hepatic Lipid Alteration and Remodeling in Metabolic Dysfunction-Associated Steatohepatitis. J. Lipid Res. 2024, 65, 100599. [Google Scholar] [CrossRef]
- Kalopitas, G.; Mouskeftara, T.; Liapikos, T.; Arvanitakis, K.; Ioannidis, A.; Malandris, K.; Theocharidou, E.; Chourdakis, M.; Sinakos, E.; Gika, H.; et al. Plasma Lipids Profile in the Prediction of Non-Alcoholic Steatohepatitis in Adults: A Case-Control Study. Int. J. Mol. Sci. 2023, 24, 12717. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of Fatty Acids Stored in Liver and Secreted via Lipoproteins in Patients with Nonalcoholic Fatty Liver Disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Cassader, M.; Paschetta, E.; Gambino, R. Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology 2018, 155, 282–302.e8. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Stewart, A.G.; Woodman, O.L.; Ritchie, R.H.; Qin, C.X. Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments. Front. Pharmacol. 2020, 11, 603926. [Google Scholar] [CrossRef] [PubMed]
- Puri, P.; Baillie, R.A.; Wiest, M.M.; Mirshahi, F.; Choudhury, J.; Cheung, O.; Sargeant, C.; Contos, M.J.; Sanyal, A.J. A Lipidomic Analysis of Nonalcoholic Fatty Liver Disease. Hepatology 2007, 46, 1081–1090. [Google Scholar] [CrossRef]
- Gorden, D.L.; Myers, D.S.; Ivanova, P.T.; Fahy, E.; Maurya, M.R.; Gupta, S.; Min, J.; Spann, N.J.; McDonald, J.G.; Kelly, S.L.; et al. Biomarkers of NAFLD Progression: A Lipidomics Approach to an Epidemic. J. Lipid Res. 2015, 56, 722–736. [Google Scholar] [CrossRef]
- Ooi, G.J.; Meikle, P.J.; Huynh, K.; Earnest, A.; Roberts, S.K.; Kemp, W.; Parker, B.L.; Brown, W.; Burton, P.; Watt, M.J. Hepatic Lipidomic Remodeling in Severe Obesity Manifests with Steatosis and Does Not Evolve with Non-Alcoholic Steatohepatitis. J. Hepatol. 2021, 75, 524–535. [Google Scholar] [CrossRef]
- Goldberg, I.J.; Ginsberg, H.N. Ins and Outs Modulating Hepatic Triglyceride and Development of Nonalcoholic Fatty Liver Disease. Gastroenterology 2006, 130, 1343–1346. [Google Scholar] [CrossRef]
- Mota, M.; Banini, B.A.; Cazanave, S.C.; Sanyal, A.J. Molecular Mechanisms of Lipotoxicity and Glucotoxicity in Nonalcoholic Fatty Liver Disease. Metabolism 2016, 65, 1049–1061. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cao, Y.; Fu, Y.; Guo, G.; Zhang, X. Liver Fatty Acid Composition in Mice with or without Nonalcoholic Fatty Liver Disease. Lipids Health Dis. 2011, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Mizukoshi, E.; Sunagozaka, H.; Arai, K.; Yamashita, T.; Takeshita, Y.; Misu, H.; Takamura, T.; Kitamura, S.; Zen, Y.; et al. Characteristics of Hepatic Fatty Acid Compositions in Patients with Nonalcoholic Steatohepatitis. Liver Int. 2015, 35, 582–590. [Google Scholar] [CrossRef]
- World Medical Association World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [CrossRef]
- Mouskeftara, T.; Goulas, A.; Ioannidou, D.; Ntenti, C.; Agapakis, D.; Assimopoulou, A.; Gika, H. A Study of Blood Fatty Acids Profile in Hyperlipidemic and Normolipidemic Subjects in Association with Common PNPLA3 and ABCB1 Polymorphisms. Metabolites 2021, 11, 90. [Google Scholar] [CrossRef]
- Mouskeftara, T.; Kalopitas, G.; Liapikos, T.; Arvanitakis, K.; Germanidis, G.; Gika, H. Predicting Non-Alcoholic Steatohepatitis: A Lipidomics-Driven Machine Learning Approach. Int. J. Mol. Sci. 2024, 25, 5965. [Google Scholar] [CrossRef]
- Goracci, L.; Tortorella, S.; Tiberi, P.; Pellegrino, R.M.; Di Veroli, A.; Valeri, A.; Cruciani, G. Lipostar, a Comprehensive Platform-Neutral Cheminformatics Tool for Lipidomics. Anal. Chem. 2017, 89, 6257–6264. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Fedorova, M. Evaluation of Lipid Quantification Accuracy Using HILIC and RPLC MS on the Example of NIST® SRM® 1950 Metabolites in Human Plasma. Anal. Bioanal. Chem. 2020, 412, 3573–3584. [Google Scholar] [CrossRef]
- Criscuolo, A.; Nepachalovich, P.; Garcia-Del Rio, D.F.; Lange, M.; Ni, Z.; Baroni, M.; Cruciani, G.; Goracci, L.; Blüher, M.; Fedorova, M. Analytical and Computational Workflow for In-Depth Analysis of Oxidized Complex Lipids in Blood Plasma. Nat. Commun. 2022, 13, 6547. [Google Scholar] [CrossRef]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef]
- Esposito Vinzi, V.; Chin, W.; Henseler, J.; Wang, H.; St, C. (Eds.) Handbook of Partial Least Squares Concepts, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-540-32825-4. [Google Scholar]
Parameters | Total Population | Control (n = 6) | NAFL (n = 5) | NASH (n = 7) | p-Value Control-NAFL | p-Value Control-NASH | p-Value NAFL-NASH |
---|---|---|---|---|---|---|---|
Demographics and clinical characteristics | |||||||
Gender (Male) | 8 (44.4%) | 0 (0%) | 3 (37.5%) | 5 (62.5%) | 0.1380 | 0.0413 | 0.9999 |
Age (years) | 54 ± 10 | 49 ± 10 | 57 ± 8 | 56 ± 11 | 0.7055 | 0.7925 | 0.9999 |
BMI (kg/m2) | 29.3 ± 4.9 | 25.7 ± 5.3 | 28.9 ± 4.4 | 32.2 ± 3.5 | 0.8113 | 0.0657 | 0.6061 |
Diabetes Mellitus | 7 (38.8%) | 1 (14.2%) | 1 (14.2%) | 5 (71.6%) | 0.9999 | 0.2396 | 0.2396 |
Arterial Hypertension | 8 (44.4%) | 1 (12.5%) | 3 (37.5%) | 4 (50.0%) | 0.7192 | 0.7152 | 0.9999 |
Metabolic Syndrome | 9 (50.0%) | 1 (11.1%) | 2 (22.2%) | 6 (66.7%) | 0.9999 | 0.0788 | 0.3178 |
Waist Circumference (cm) | 104 ± 17.6 | 89.2 ± 13.9 | 105 ± 18 | 115 ± 11.9 | 0.3172 | 0.0212 | 0.6604 |
HOMA-IR | 3.50 ± 4.70 | 1.70 ± 1.00 | 1.90 ± 1.30 | 8.80 ± 4.70 | 0.9999 | 0.0134 | 0.0108 |
Biochemical parameters | |||||||
ALT (U/L) | 26.0 ± 45.1 | 26.0 ± 16.8 | 23.0 ± 10.0 | 53.0 ± 58.9 | 0.9999 | 0.1284 | 0.1089 |
AST (U/L) | 28.0 ± 30.5 | 22.0 ± 10.1 | 23.0 ± 4.10 | 46.0 ± 39.1 | 0.9999 | 0.0270 | 0.0146 |
GGT (U/L) | 28.0 ± 185 | 12.0 ± 21.8 | 20.0 ± 5.80 | 79.0 ± 269 | 0.9999 | 0.1187 | 0.2563 |
ALP (U/L) | 78.7 ± 29.8 | 84.4 ± 30.2 | 66.2 ± 22.4 | 83.5 ± 35.2 | 0.6246 | 0.9988 | 0.6071 |
Insulin (μLU/mL) | 16.2 ± 10.3 | 8.80± 5.60 | 8.80 ± 5.80 | 26.7 ± 4.30 | 0.9999 | 0.0001 | 0.0001 |
Platelets (×103) (K/μL) | 224 ± 75.8 | 268 ± 93.3 | 218 ± 72.4 | 197 ± 59.7 | 0.5553 | 0.2664 | 0.8779 |
HbA1c (%) | 5.60 ± 1.70 | 5.40 ± 0.40 | 5.40 ± 0.30 | 6.90 ± 2.30 | 0.9999 | 0.2246 | 0.1109 |
FBG (mg/dL) | 91.0 ± 49.6 | 89.0 ± 15.8 | 83.0 ± 18.5 | 110 ± 69.0 | 0.9999 | 0.6740 | 0.4691 |
Total Cholesterol (mg/dL) | 185 ± 48.9 | 195 ± 34.9 | 155 ± 53.5 | 200 ± 50.5 | 0.5880 | 0.9999 | 0.3742 |
LDL-c (mg/dL) | 103 ± 37.4 | 116 ± 37.4 | 86.6 ± 44.0 | 106 ± 33.5 | 0.6918 | 0.9999 | 0.9999 |
HDL-c (mg/dL) | 51.1 ± 13.9 | 62.2 ± 17.3 | 45.2 ± 11.6 | 47.4 ± 8.8 | 0.1525 | 0.1942 | 0.9999 |
Total Triglycerides (mg/dL) | 124 ± 144 | 86.0 ± 25.6 | 124 ± 30.3 | 213 ± 179 | 0.9999 | 0.0128 | 0.1686 |
Ferritin (ng/mL) | 165 ± 320 | 76.0 ± 20.2 | 171 ± 100 | 218 ± 446 | 0.3986 | 0.0660 | 0.9999 |
Uric Acid (mg/dL) | 5.24 ± 1.5 | 4.10 ± 1.1 | 4.86 ± 0.80 | 6.33 ± 1.40 | 0.9334 | 0.0149 | 0.1370 |
Albumin (gr/dL) | 4.43 ± 0.30 | 4.52 ± 0.20 | 4.44 ± 0.44 | 4.34 ± 0.22 | 0.9019 | 0.5815 | 0.8517 |
Histological characteristics and scores in liver biopsies | |||||||
NAS | 2.0 ± 2.40 | 0 ± 0 | 2.0 ± 0.44 | 5.0 ± 0.75 | 0.3266 | 0.0004 | 0.1131 |
NFS | −1.3 ± 1.9 | −2.1 ± 1.8 | −1.4 ± 1.9 | −0.3 ± 1.4 | 0.5721 | 0.0761 | 0.9797 |
FIB-4 | 1.3 ± 0.7 | 0.9 ± 0.5 | 1.2 ± 0.7 | 2.3 ± 0.6 | 0.619 | 0.0295 | 0.428 |
Steatosis | 1.0 ± 1.0 | 0 ± 0 | 1.0 ± 0 | 2.0 ± 0.5 | 0.3108 | 0.0003 | 0.1047 |
Balloning | 0 ± 0.8 | 0 ± 0 | 0 ± 0 | 1.0 ± 0.5 | 0.9999 | 0.0034 | 0.0034 |
Inflammation | 1 ± 0.8 | 0 ± 0 | 1.0 ± 0.4 | 2.0 ± 0.5 | 0.2459 | 0.0015 | 0.3254 |
Fibrosis | 0 ± 1.4 | 0 ± 0 | 0 ± 0.4 | 2.0 ± 1.6 | 0.9999 | 0.012 | 0.0514 |
Lipids | Lipid Species | Adjusted p* Values | Controls–NASH | NAFL–NASH | |||||
---|---|---|---|---|---|---|---|---|---|
p Value | VIP | Log2FC | p Value | VIP | Log2FC | CV% | |||
TG 42:0 | TG 10:0_16:0_16:0 TG 12:0_14:0_16:0 TG 14:0_14:0_14:0 | 2.50 × 10−2 | 7.10 × 10−3 | 0.8 | 3.17 | 2.10 × 10−2 | 0.9 | 3.55 | 3.79 |
TG 42:1 | TG 10:0_14:0_18:1 TG 10:0_16:0_16:1 TG 12:0_12:0_18:1 TG 12:0_14:0_16:1 TG 12:0_14:1_16:0 TG 14:0_14:0_14:1 TG 8:0_16:0_18:1 | 7.20 × 10−3 | 3.40 × 10−2 | 0.7 | 2.37 | 3.10 × 10−3 | 0.9 | 3.42 | 4.23 |
TG 44:0 | TG 12:0_16:0_16:0 TG 14:0_14:0_16:0 | 5.80 × 10−3 | 3.30 × 10−3 | 1.1 | 3.04 | 4.30 × 10−2 | 1.3 | 3.1 | 3.55 |
TG 44:1 | TG 10:0_16:0_18:1 TG 12:0_14:0_18:1 TG 12:0_16:0_16:1 TG 14:0_14:0_16:1 | 9.50 × 10−3 | 3.30 × 10−3 | 1.4 | 3.21 | 4.30 × 10−2 | 1.6 | 3.62 | 3.07 |
TG 44:2 | TG 10:0_16:0_18:2 TG 10:0_16:1_18:1 TG 12:0_14:0_18:2 TG 12:0_14:1_18:1 TG 12:0_16:0_16:2 TG 12:0_16:1_16:1 TG 14:0_14:1_16:1 TG 14:1_14:1_16:0 TG 8:0_18:1_18:1 | 3.00 × 10−2 | 5.80 × 10−3 | 0.9 | 2.91 | 4.10 × 10−2 | 1.1 | 3.57 | 3.67 |
TG 46:0 | TG 14:0_14:0_18:0 TG 14:0_16:0_16:0 | 3.30 × 10−2 | 3.30 × 10−3 | 1 | 1.96 | 4.30 × 10−2 | 1.2 | 2.03 | 1.68 |
TG 46:1 | TG 12:0_16:0_18:1 TG 14:0_14:0_18:1 TG 14:0_16:0_16:1 | 3.30 × 10−5 | 2.30 × 10−3 | 2.3 | 3.32 | 3.80 × 10−2 | 2.6 | 2.84 | 2.42 |
TG 46:2 | TG 10:0_18:1_18:1 TG 12:0_16:0_18:2 TG 12:0_16:1_18:1 TG 14:0_14:0_18:2 TG 14:0_14:1_18:1 TG 14:0_16:1_16:1 TG 14:1_16:0_16:1 | 7.10 × 10−3 | 2.80 × 10−3 | 1.8 | 3.28 | 3.20 × 10−2 | 2.1 | 3.41 | 3.12 |
TG 46:3 | TG 10:0_18:1_18:2 TG 12:0_16:1_18:2 TG 14:0_14:1_18:2 TG 14:1_14:1_18:1 TG 14:1_16:1_16:1 | 1.40 × 10−2 | 3.40 × 10−3 | 1 | 3.18 | 2.60 × 10−2 | 1.1 | 3.47 | 3.79 |
TG 48:0 | TG 14:0_16:0_18:0 | 2.80 × 10−2 | 2.30 × 10−3 | 1 | 1.86 | 3.80 × 10−2 | 1.2 | 1.69 | 1.77 |
TG 48:1 | TG 14:0_16:0_18:1 TG 14:0_16:1_18:0 TG 15:0_15:0_18:1 TG 15:0_16:1_17:0 TG 16:0_16:0_16:1 | 2.30 × 10−5 | 9.90 × 10−4 | 2.5 | 2.54 | 7.50 × 10−2 | 2.6 | 1.6 | 1.8 |
TG 48:2 | TG 12:0_18:1_18:1 TG 14:0_16:0_18:2 TG 14:0_16:1_18:1 TG 14:1_16:0_18:1 TG 16:0_16:0_16:2 TG 16:0_16:1_16:1 | 7.40 × 10−7 | 1.50 × 10−3 | 2.8 | 2.97 | 5.40 × 10−2 | 3 | 2.1 | 1.15 |
TG 48:3 | TG 12:1_18:1_18:1 TG 14:0_16:1_18:2 TG 14:1_16:0_18:2 TG 14:1_16:1_18:1 TG 16:1_16:1_16:1 | 3.00 × 10−3 | 2.80 × 10−3 | 2.2 | 3.65 | 3.20 × 10−2 | 2.5 | 3.02 | 4.07 |
TG 48:4 | TG 12:0_18:2_18:2 TG 14:1_16:1_18:2 | 9.90 × 10−3 | 5.00 × 10−3 | 1.1 | 3.89 | 1.80 × 10−2 | 1.2 | 3.08 | 3.35 |
TG 49:0 | TG 15:0_16:0_18:0 TG 15:0_17:0_17:0 TG 16:0_16:0_17:0 | 3.50 × 10−2 | 1.90 × 10−3 | 0.7 | 2.17 | 4.50 × 10−2 | 0.8 | 1.97 | 1.88 |
TG 49:1 | TG 14:0_17:0_18:1 TG 15:0_16:0_18:1 TG 15:0_17:0_17:1 TG 16:0_16:0_17:1 | 5.50 × 10−4 | 2.30 × 10−3 | 1.4 | 2.33 | 3.80 × 10−2 | 1.6 | 1.84 | 2.82 |
TG 49:2 | TG 13:0_18:1_18:1 TG 14:0_17:0_18:2 TG 14:0_17:1_18:1 TG 15:0_16:0_18:2 TG 15:0_16:1_18:1 TG 15:0_17:1_17:1 TG 16:1_16:1_17:0 | 2.00 × 10−3 | 2.80 × 10−3 | 1.1 | 1.85 | 3.20 × 10−2 | 1.3 | 1.84 | 3.36 |
TG 49:3 | TG 15:0_16:1_18:2 TG 15:1_16:0_18:2 TG 15:1_16:1_18:1 TG 15:1_17:1_17:1 TG 16:1_16:1_17:1 | 2.30 × 10−2 | 1.60 × 10−2 | 0.6 | 1.82 | 3.70 × 10−2 | 0.8 | 2.26 | 2.1 |
TG 50:0 | TG 16:0_16:0_18:0 | 8.10 × 10−3 | 6.40 × 10−4 | 1.4 | 2.76 | 1.00 × 100 | 1.6 | 1.83 | 1.79 |
TG 50:1 | TG 16:0_16:0_18:1 TG 16:0_16:1_18:0 | 6.50 × 10−5 | 4.10 × 10−4 | 3.3 | 2.29 | 1.40 × 10−1 | 3.4 | 1.37 | 1.11 |
TG 50:2 | TG 14:0_18:0_18:2 TG 14:0_18:1_18:1 TG 16:0_16:0_18:2 TG 16:0_16:1_18:1 TG 16:0_16:2_18:0 TG 16:1_16:1_18:0 | 2.40 × 10−4 | 7.90 × 10−4 | 2.9 | 1.62 | 8.90 × 10−2 | 2.7 | 0.89 | 1.83 |
TG 50:3 | TG 14:0_18:1_18:2 TG 16:0_16:0_18:3 TG 16:0_16:1_18:2 TG 16:0_16:2_18:1 TG 16:1_16:1_18:1 | 3.20 × 10−5 | 1.20 × 10−3 | 3 | 2.55 | 6.40 × 10−2 | 2.9 | 1.34 | 0.72 |
TG 50:4 | TG 14:0_18:2_18:2 TG 14:1_16:1_20:2 TG 14:1_18:1_18:2 TG 16:1_16:1_18:2 | 3.10 × 10−3 | 2.30 × 10−3 | 2.4 | 3.92 | 3.80 × 10−2 | 2.6 | 2.67 | 3.92 |
TG 50:5 | TG 14:0_14:0_22:5 TG 14:0_18:2_18:3 TG 14:1_18:1_18:3 TG 14:1_18:2_18:2 TG 14:2_18:1_18:2 TG 16:0_16:2_18:3 TG 16:1_16:1_18:3 TG 16:1_16:2_18:2 | 8.50 × 10−4 | 3.40 × 10−3 | 1 | 4 | 2.60 × 10−2 | 1.1 | 2.83 | 2.75 |
TG 51:1 | TG 15:0_18:0_18:1 TG 16:0_16:0_19:1 TG 16:0_17:0_18:1 | 3.00 × 10−4 | 9.90 × 10−4 | 1.9 | 3.07 | 7.50 × 10−2 | 2.1 | 2.15 | 3.47 |
TG 51:2 | TG 15:0_18:1_18:1 TG 16:0_17:1_18:1 | 8.80 × 10−6 | 1.20 × 10−3 | 0.9 | 2.28 | 6.40 × 10−2 | 0.9 | 1.3 | 4.61 |
TG 51:3 | TG 16:0_17:1_18:2 TG 16:1_17:0_18:2 TG 16:1_17:1_18:1 TG 17:1_17:1_17:1 | 3.10 × 10−3 | 1.50 × 10−3 | 1.5 | 2.67 | 5.40 × 10−2 | 1.6 | 1.72 | 2.84 |
TG 52:0 | TG 16:0_18:0_18:0 TG 16:0_16:0_20:0 | 1.70 × 10−3 | 2.30 × 10−3 | 1.1 | 2.57 | 3.80 × 10−2 | 1.2 | 2.14 | 3.81 |
TG 52:1 | TG 16:0_18:0_18:1 | 1.80 × 10−4 | 9.90 × 10−4 | 3.8 | 2.97 | 7.50 × 10−2 | 3.9 | 1.56 | 1.53 |
TG 52:2 | TG 16:0_18:0_18:2 TG 16:0_18:1_18:1 TG 16:1_18:0_18:1 | 3.10 × 10−3 | 1.20 × 10−3 | 3.7 | 1.2 | 1.00 × 100 | 3.1 | 0.49 | 1.32 |
TG 52:3 | TG 16:0_16:0_20:3 TG 16:0_18:0_18:3 TG 16:0_18:1_18:2 TG 16:1_18:0_18:2 TG 16:1_18:1_18:1 | 1.80 × 10−2 | 2.10 × 10−3 | 2.9 | 0.97 | 1.50 × 10−1 | 2.4 | 0.4 | 2.5 |
TG 52:4 | TG 16:0_16:1_20:3 TG 16:0_18:1_18:3 TG 16:0_18:2_18:2 TG 16:1_18:1_18:2 | 3.10 × 10−3 | 3.20 × 10−3 | 3.5 | 1.76 | 6.90 × 10−2 | 3.2 | 0.85 | 1.14 |
TG 52:5 | TG 16:0_18:2_18:3 TG 16:1_18:1_18:3 TG 16:1_18:2_18:2 TG 16:2_18:1_18:2 | 1.20 × 10−2 | 2.70 × 10−3 | 2.7 | 3.52 | 5.10 × 10−2 | 2.9 | 2.11 | 3.75 |
TG 53:1 | TG 16:0_17:0_20:1 TG 16:0_18:0_19:1 TG 16:0_18:1_19:0 TG 17:0_17:1_19:0 TG 17:0_18:0_18:1 TG 17:1_18:0_18:0 | 3.00 × 10−2 | 1.20 × 10−3 | 1 | 3.37 | 6.40 × 10−2 | 1.1 | 2.64 | 2.96 |
TG 53:2 | TG 16:0_18:1_19:1 TG 17:0_17:1_19:1 TG 17:0_18:1_18:1 TG 17:1_18:0_18:1 | 1.30 × 10−3 | 9.90 × 10−4 | 1.9 | 2.73 | 7.50 × 10−2 | 1.9 | 1.47 | 3.56 |
TG 53:3 | TG 16:0_18:2_19:1 TG 16:1_18:1_19:1 TG 17:0_18:1_18:2 TG 17:1_18:0_18:2 TG 17:1_18:1_18:1 | 8.30 × 10−3 | 2.60 × 10−3 | 1.5 | 2.28 | 8.10 × 10−2 | 1.4 | 1.08 | 2.74 |
TG 54:1 | TG 16:0_16:0_22:1 TG 16:0_18:0_20:1 TG 18:0_18:0_18:1 | 3.30 × 10−2 | 1.20 × 10−3 | 2.2 | 4.01 | 6.40 × 10−2 | 2.4 | 3.08 | 4.71 |
TG 54:2 | TG 16:0_18:0_20:2 TG 16:0_18:1_20:1 TG 18:0_18:0_18:2 TG 18:0_18:1_18:1 | 1.00 × 10−2 | 2.20 × 10−3 | 3.1 | 2.01 | 9.50 × 10−2 | 2.9 | 0.9 | 1.58 |
Fatty Acids and Fatty Acid Ratios | Adjusted p* Values | Control–NASH | NAFL–NASH | ||
---|---|---|---|---|---|
p Value | Log2FC | p Value | Log2FC | ||
Δ9-Desaturase (FA 16:1/FA 16:0) | 4.84 × 10−3 | 4.79 × 10−3 | 2.59 | 5.01 × 10−2 | 2.23 |
Δ9- Desaturase (FA 18:1/FA 18:0) | 1.37 × 10−2 | 1.78 × 10−3 | 3.28 | 1.03 × 10−1 | 2.17 |
FA 16:0 | 4.92 × 10−2 | 3.29 × 10−2 | 1.88 | 1.44 × 10−2 | 1.79 |
FA 16:1 | 1.52 × 10−2 | 7.64 × 10−3 | 4.49 | 3.40 × 10−2 | 3.95 |
FA 18:3 n6 | 2.90 × 10−2 | 6.06 × 10−3 | 3.18 | 4.14 × 10−2 | 2.54 |
MUFA | 2.91 × 10−2 | 4.79 × 10−3 | 0.27 | 5.00 × 10−2 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouskeftara, T.; Kalopitas, G.; Liapikos, T.; Arvanitakis, K.; Theocharidou, E.; Germanidis, G.; Gika, H. A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study. Int. J. Mol. Sci. 2024, 25, 13067. https://doi.org/10.3390/ijms252313067
Mouskeftara T, Kalopitas G, Liapikos T, Arvanitakis K, Theocharidou E, Germanidis G, Gika H. A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study. International Journal of Molecular Sciences. 2024; 25(23):13067. https://doi.org/10.3390/ijms252313067
Chicago/Turabian StyleMouskeftara, Thomai, Georgios Kalopitas, Theodoros Liapikos, Konstantinos Arvanitakis, Eleni Theocharidou, Georgios Germanidis, and Helen Gika. 2024. "A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study" International Journal of Molecular Sciences 25, no. 23: 13067. https://doi.org/10.3390/ijms252313067
APA StyleMouskeftara, T., Kalopitas, G., Liapikos, T., Arvanitakis, K., Theocharidou, E., Germanidis, G., & Gika, H. (2024). A Comprehensive Analysis of Liver Lipidomics Signature in Adults with Metabolic Dysfunction-Associated Steatohepatitis—A Pilot Study. International Journal of Molecular Sciences, 25(23), 13067. https://doi.org/10.3390/ijms252313067