The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes
Abstract
1. Introduction
2. Case Description
2.1. Materials and Methods
2.2. Results
3. Discussion
3.1. Diabetes Mellitus Associated with GATA6
3.2. Other Components of GATA6 Syndrome
3.3. Future Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greeley, S.A.W.; Polak, M.; Njølstad, P.R.; Barbetti, F.; Williams, R.; Castano, L.; Raile, K.; Chi, D.V.; Habeb, A.; Hattersley, A.T.; et al. ISPAD Clinical Practice Consensus Guidelines 2022: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 1188–1211. [Google Scholar] [CrossRef] [PubMed]
- Colclough, K.; Ellard, S.; Hattersley, A.; Patel, K. Syndromic Monogenic Diabetes Genes Should Be Tested in Patients with a Clinical Suspicion of Maturity-Onset Diabetes of the Young. Diabetes 2022, 71, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Thanabalasingham, G.; Owen, K.R. Diagnosis and management of maturity onset diabetes of the young (MODY). BMJ 2011, 343, d6044. [Google Scholar] [CrossRef] [PubMed]
- Sechko, E.A.; Kuraeva, T.L.; Peterkova, V.A.; Laptev, D.N. Diabetes mellitus associated with type A insulin resistance. Diabetes Mellit. 2023, 26, 284–290. (In Russian) [Google Scholar] [CrossRef]
- Wolcott, C.D.; Rallison, M.L. Infancy-onset diabetes mellitus and multiple epiphyseal dysplasia. J. Pediatr. 1972, 80, 292–297. [Google Scholar] [CrossRef]
- Yue, X.; Luo, Y.; Wang, J.; Huang, D. Monogenic Diabetes with GATA6 Mutations: Characterization of a Novel Family and a Comprehensive Analysis of the GATA6 Clinical and Genetics Traits. Mol. Biotechnol. 2023, 66, 467–474. [Google Scholar] [CrossRef]
- Forsythe, E.; Kenny, J.; Bacchelli, C.; Beales, P.L. Managing Bardet-Biedl Syndrome-Now and in the Future. Front. Pediatr. 2018, 6, 23. [Google Scholar] [CrossRef]
- Gubaeva, D.N.; Laptev, D.N.; Tiulpakov, A.N.; Petrova, L.M. First trimester thyroid function in pregnant women residing in Saint Petersburg (Russia): Reference values and risk of gestational diabetes. Diabetes Mellitus 2018, 21, 42–47. [Google Scholar] [CrossRef]
- Raile, K.; Klopocki, E.; Holder, M.; Wessel, T.; Galler, A.; Deiss, D.; Müller, D.; Riebel, T.; Horn, D.; Maringa, M.; et al. Expanded clinical spectrum in hepatocyte nuclear factor 1b-maturity-onset diabetes of the young. J. Clin. Endocrinol. Metab. 2009, 94, 2658–2664. [Google Scholar] [CrossRef]
- Ganie, M.; Bhat, D. Current developments in Wolfram syndrome. J. Pediatr. Endocrinol. Metab. 2009, 22, 3–10. [Google Scholar] [CrossRef]
- Grishina, D.P.; Zil’berman, L.I.; Zakharova, E.I.; Tsygankova, P.G.; Volkov, I.É.; Kuraeva, T.L. Early lesion in the urinary system of a patient with DIDMOAD syndrome. Probl. Endocrinol. 2013, 59, 18–22. [Google Scholar] [CrossRef]
- Tremblay, M.; Sanchez-Ferras, O.; Bouchard, M. GATA transcription factors in development and disease. Development 2018, 145, dev164384. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Simaite, D.; Kühnen, P.; Heldmann, M.; Spagnoli, F.; Blankenstein, O.; Hübner, N.; Hussain, K.; Raile, K. Two novel GATA6 mutations cause childhood-onset diabetes mellitus, pancreas malformation and congenital heart disease. Horm. Res. Paediatr. 2013, 79, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Aronson, B.E.; Stapleton, K.A.; Krasinski, S.D. Role of GATA factors in development, differentiation, and homeostasis of the small intestinal epithelium. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G474–G490. [Google Scholar] [CrossRef]
- Sanchez Caballero, L.; Gorgogietas, V.; Arroyo, M.N.; Igoillo-Esteve, M. Chapter Three-Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. In International Review of Cell and Molecular Biology; Santin, I., Galluzzi, L., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 359, pp. 139–256. [Google Scholar] [CrossRef]
- Glotov, O.S.; Serebryakova, E.A.; Turkunova, M.E.; Efimova, O.A.; Glotov, A.S.; Barbitoff, Y.A.; Nasykhova, Y.A.; Predeus, A.V.; Polev, D.E.; Fedyakov, M.A.; et al. Whole exome sequencing in Russian children with non type 1 diabetes mellitus reveals a wide spectrum of genetic variants in MODY related and unrelated genes. Mol. Med. Rep. 2019, 20, 4905–4910. [Google Scholar] [CrossRef]
- Allen, H.L.; E Flanagan, S.; Shaw-Smith, C.; De Franco, E.; Akerman, I.; Caswell, R.; Ferrer, J.; Hattersley, A.T.; Ellard, S.; The International Pancreatic Agenesis Consortium. GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat. Genet. 2011, 44, 20–22. [Google Scholar] [CrossRef]
- De Franco, E.; Shaw-Smith, C.; Flanagan, S.E.; Shepherd, M.H.; Hattersley, A.T.; Ellard, S. GATA6 Mutations Cause a Broad Phenotypic Spectrum of Diabetes From Pancreatic Agenesis to Adult-Onset Diabetes Without Exocrine Insufficiency. Diabetes 2013, 62, 993–997. [Google Scholar] [CrossRef]
- De Franco, E.; E Flanagan, S.; AL Houghton, J.; Allen, H.L.; Mackay, D.J.; Temple, I.K.; Ellard, S.; Hattersley, A.T. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study. Lancet 2015, 386, 957–963. [Google Scholar] [CrossRef]
- Naylor, R.N.; Greeley, S.A.W.; I Bell, G.; Philipson, L.H. Genetics and pathophysiology of neonatal diabetes mellitus: Neonatal diabetes mellitus. J. Diabetes Investig. 2011, 2, 158–169. [Google Scholar] [CrossRef]
- Lorberbaum, D.S.; Sarbaugh, D.; Sussel, L. Leveraging the strengths of mice, human stem cells, and organoids to model pancreas development and diabetes. Front. Endocrinol. 2022, 13, 1042611. [Google Scholar] [CrossRef]
- Sharma, A.; Wasson, L.K.; AL Willcox, J.; Morton, S.U.; Gorham, J.M.; DeLaughter, D.M.; Neyazi, M.; Schmid, M.; Agarwal, R.; Jang, M.Y.; et al. GATA6 mutations in hiPSCs inform mechanisms for maldevelopment of the heart, pancreas, and diaphragm. eLife 2020, 9, e53278. [Google Scholar] [CrossRef] [PubMed]
- Decker, K.; Goldman, D.C.; LGrasch, C.; Sussel, L. Gata6 is an important regulator of mouse pancreas development. Dev. Biol. 2006, 298, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tarzami, S.; Burch, J.B.; Evans, T. Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis. Dev. Genet. 1998, 22, 263–277. [Google Scholar] [CrossRef]
- Škorić-Milosavljević, D.; Tjong, F.V.Y.; Barc, J.; Backx, A.P.C.M.; Clur, S.B.; van Spaendonck-Zwarts, K.; Oostra, R.; Lahrouchi, N.; Beekman, L.; Bökenkamp, R.; et al. GATA6 mutations: Characterization of two novel patients and a comprehensive overview of the GATA6 genotypic and phenotypic spectrum. Am. J. Med. Genet. A 2019, 179, 1836–1845. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Lechuga, B.; Saqlain, M.; Ng, N.; Colclough, K.; Woods, C.; Byrne, M. Case report: Adult onset diabetes with partial pancreatic agenesis and congenital heart disease due to a de novo GATA6 mutation. BMC Med. Genet. 2020, 21, 70. [Google Scholar] [CrossRef]
- Yasuhara, J.; Manivannan, S.N.; Majumdar, U.; Gordon, D.M.; Lawrence, P.J.; Aljuhani, M.; Myers, K.; Stiver, C.; Bigelow, A.M.; Galantowicz, M.; et al. Novel pathogenic GATA6 variant associated with congenital heart disease, diabetes mellitus and necrotizing enterocolitis. Pediatr. Res. 2023, 95, 146–155. [Google Scholar] [CrossRef]
- Viger, R.S.; Guittot, S.M.; Anttonen, M.; Wilson, D.B.; Heikinheimo, M. Role of the GATA Family of Transcription Factors in Endocrine Development, Function, and Disease. Mol. Endocrinol. 2008, 22, 781–798. [Google Scholar] [CrossRef]
- Gaisl, O.; Konrad, D.; Joset, P.; Lang-Muritano, M. A novel GATA6 variant in a boy with neonatal diabetes and diaphragmatic hernia: A familial case with a review of the literature. J. Pediatr. Endocrinol. Metab. 2019, 32, 1027–1030. [Google Scholar] [CrossRef]
- Bonnefond, A.; Sand, O.; Guerin, B.; Durand, E.; De Graeve, F.; Huyvaert, M.; Rachdi, L.; Kerr-Conte, J.; Pattou, F.; Vaxillaire, M.; et al. GATA6 inactivating mutations are associated with heart defects and, inconsistently, with pancreatic agenesis and diabetes. Diabetologia 2012, 55, 2845–2847. [Google Scholar] [CrossRef]
- Sanyoura, M.; Jacobsen, L.; Carmody, D.; del Gaudio, D.; Alkorta-Aranburu, G.; Arndt, K.; Hu, Y.Y.; Kobiernicki, F.; Kusmartseva, I.; A Atkinson, M.; et al. Pancreatic Histopathology of Human Monogenic Diabetes Due to Causal Variants in KCNJ11, HNF1A, GATA6, and LMNA. J. Clin. Endocrinol. Metab. 2018, 103, 35–45. [Google Scholar] [CrossRef]
- Ferreira, S.; Devadason, D.; Denvir, L.; Seale, A.; Gupte, G. GATA6 Mutation: A Rare Genetic Cause of Hepatobiliary Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, e134–e135. [Google Scholar] [CrossRef] [PubMed]
- Catli, G.; Abaci, A.; Flanagan, S.; De Franco, E.; Ellard, S.; Hattersley, A.; Guleryuz, H.; Bober, E. A novel GATA6 mutation leading to congenital heart defects and permanent neonatal diabetes: A case report. Diabetes Metab. 2013, 39, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Yau, D.; De Franco, E.; Flanagan, S.E.; Ellard, S.; Blumenkrantz, M.; Mitchell, J.J. Case report: Maternal mosaicism resulting in inheritance of a novel GATA6 mutation causing pancreatic agenesis and neonatal diabetes mellitus. Diagn. Pathol. 2017, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sankararaman, S.; Schindler, T. Exocrine Pancreatic Insufficiency in Children–Challenges in Management. Pediatr. Health Med. Ther. 2023, 14, 361–378. [Google Scholar] [CrossRef]
- Sankararaman, S.; Schindler, T.; Sferra, T.J. Management of Exocrine Pancreatic Insufficiency in Children. Nutr. Clin. Pract. 2019, 34 (Suppl. S1), S27–S42. [Google Scholar] [CrossRef]
- Scheers, I.; Berardis, S. Congenital etiologies of exocrine pancreatic insufficiency. Front. Pediatr. 2022, 10, 909925. [Google Scholar] [CrossRef]
- Hammoud, B.; Greeley, S.A.W. Growth and development in monogenic forms of neonatal diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 65–77. [Google Scholar] [CrossRef]
- Raghuram, N.; Marwaha, A.; Greer, M.-L.C.; Gauda, E.; Chitayat, D. Congenital hypothyroidism, cardiac defects, and pancreatic agenesis in an infant with GATA6 mutation. Am. J. Med. Genet. A 2020, 182, 1496–1499. [Google Scholar] [CrossRef]
- Crawford, S.E.; Qi, C.; Misra, P.; Stellmach, V.; Rao, M.S.; Engel, J.D.; Zhu, Y.; Reddy, J.K. Defects of the heart, eye, and megakaryocytes in peroxisome proliferator activator receptor-binding protein (PBP) null embryos implicate GATA family of transcription factors. J. Biol. Chem. 2002, 277, 3585–3592. [Google Scholar] [CrossRef]
Time, min | 3.5 Years (Duration of the Disease 6 Months) | 8 Years (Duration of the Disease 5.5 Years) | ||
---|---|---|---|---|
Blood Glucose, mmol/L | C-Peptide, ng/mL | Blood Glucose, mmol/L | C-Peptide, ng/mL | |
0 | 4.99 | 0.69 | 5.69 | 0.71 |
30 | - | - | 10.96 | 1.96 |
60 | - | - | 8.7 | 1.97 |
90 | - | - | 6.78 | 1.37 |
120 | 6.34 | 2.32 | 5.81 | 0.931 |
Parameter | 3 years | 8 years | 9 years |
---|---|---|---|
Height, sm | 86.9 | 114 | 120.2 |
SDS height | −1.95 | −1.91 | −1.82 |
Weight, kg | 10.5 | 18 | 20 |
SDS BMI | −1.92 | −1.47 | −1.62 |
Insulin dose, U/kg/day | 0.45–0.6 | 0.9 | 0.9 |
Carbohydrate Metabolism Parameters | |||
HbA1c, % | 5.8 | 5.2 | 5.6 |
fasting blood glucose, mmol/L | 4.99 | 5.69 | 6.64> |
fasting C-peptide, ng/mL (N: 1.1–4.4) | 0.69< | 0.71< | 0.849 |
fasting insulin, µU/mL (N: 2.3–26.4) | 3.39 | 2.2 | 3.36 |
Other Laboratory Parameters | |||
TSH, mIU/L, (N: 0.64–5.76) | 1.61 | 1.75 | 5.165> |
Free thyroxine, pmol/L (N: 11.5–20.4) | 16.24 | 12.64 | 11.5 |
IGF-1, ng/mL (N: 8–290) | 67.93 | 81.47 | 74.3 |
Anti-Tg, IU/mL (N: 0–64) | - | 18,540> | 5634> |
Anti-TPO, IU/mL (N: 0–5.6) | - | 1.78 | 91.46> |
Cortisol, nmol/L (N: 77–630) | - | 453.3 | 508.6 |
Age, Years | Event | Height, cm | SDS Height | Growth Rate, cm/year | SDS Growth Rate | Weight, kg | SDS BMI | Bone Age, Years |
---|---|---|---|---|---|---|---|---|
3.5 | Recurrence of NMD Initiation of insulin therapy | 86.9 | −1.95 | - | - | 10.5 | −1.59 | - |
8.01 | Detection of the variant in gene GATA6 Initiation replacement therapy with pancreatic enzymes | 114.0 | −1.92 | - | - | 18.0 | −1.40 | 6.6 |
9.09 | 120.2 | −1.82 | 5.7 | +0.33 | 20.0 | −1.57 | 7.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sechko, E.A.; Koltakova, M.P.; Khusainova, R.I.; Minniakhmetov, I.R.; Laptev, D.N. The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes. Int. J. Mol. Sci. 2024, 25, 11998. https://doi.org/10.3390/ijms252211998
Sechko EA, Koltakova MP, Khusainova RI, Minniakhmetov IR, Laptev DN. The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes. International Journal of Molecular Sciences. 2024; 25(22):11998. https://doi.org/10.3390/ijms252211998
Chicago/Turabian StyleSechko, Elena A., Maria P. Koltakova, Rita I. Khusainova, Ildar R. Minniakhmetov, and Dmitry N. Laptev. 2024. "The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes" International Journal of Molecular Sciences 25, no. 22: 11998. https://doi.org/10.3390/ijms252211998
APA StyleSechko, E. A., Koltakova, M. P., Khusainova, R. I., Minniakhmetov, I. R., & Laptev, D. N. (2024). The Identification of a Novel Pathogenic Variant in the GATA6 Gene in a Child with Neonatal Diabetes. International Journal of Molecular Sciences, 25(22), 11998. https://doi.org/10.3390/ijms252211998