Cytokines Measured in Nasal Lavage Compared to Induced Sputum in Patients with Mild Cystic Fibrosis
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Different Responses of Inflammatory Markers Depending on Sample Origin
2.3. Correlations within Markers and with Clinical Parameters
3. Discussion
4. Methods
4.1. Patients
4.2. Nasal Lavage Sampling
4.3. Sputum Processing
4.4. Measurement of Inflammatory Markers
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CF | Cystic Fibrosis |
CFTR | CF transmembrane conductance regulator |
NE | Neutrophil elastase |
IL | Interleukin |
TNFα | Tumour necrosis factor α |
Pa | Pseudomonas aeruginosa |
VEGF | Vascular endothelial growth factor |
BAL | Bronchoalveolar lavage |
NL | Nasal lavage |
MBW | Multiple breath washout |
MD-CT | Multi-detector computed tomography |
ppFEV1 | Percent predicted forced expiratory volume in one second |
ppFVC | Percent predicted forced vital capacity |
LCI | Lung clearance index |
DTT | Dithiolthreitol |
Ig | Immunoglobulin |
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Balázs, A.; Mall, M.A. Mucus obstruction and inflammation in early cystic fibrosis lung disease: Emerging role of the IL-1 signaling pathway. Pediatr. Pulmonol. 2019, 54, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, V.D.; Dobosh, B.S.; Gaggar, A.; Tirouvanziam, R.; Margaroli, C. Immunomodulation in Cystic Fibrosis: Why and How? Int. J. Mol. Sci. 2020, 21, 3331. [Google Scholar] [CrossRef] [PubMed]
- Sagel, S.D.; Wagner, B.D.; Anthony, M.M.; Emmett, P.; Zemanick, E.T. Sputum Biomarkers of Inflammation and Lung Function Decline in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2012, 186, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S. Risk Factors for Bronchiectasis in Children with Cystic Fibrosis. N. Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef]
- Horati, H.; Margaroli, C.; Chandler, J.D.; Kilgore, M.B.; Manai, B.; Andrinopoulou, E.-R.; Peng, L.; Guglani, L.; Tiddens, H.A.; Caudri, D.; et al. Key inflammatory markers in bronchoalveolar lavage predict bronchiectasis progression in young children with CF. J. Cyst. Fibros. 2024, 23, 450–456. [Google Scholar] [CrossRef]
- Watt, A.P.; Courtney, J.; Moore, J.; Ennis, M.; Elborn, J.S. Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 2005, 60, 659–664. [Google Scholar] [CrossRef]
- Lepissier, A.; Addy, C.; Hayes, K.; Noel, S.; Bui, S.; Burgel, P.-R.; Dupont, L.; Eickmeier, O.; Fayon, M.; Leal, T.; et al. Inflammation biomarkers in sputum for clinical trials in cystic fibrosis: Current understanding and gaps in knowledge. J. Cyst. Fibros. 2022, 21, 691–706. [Google Scholar] [CrossRef]
- Roesch, E.A.; Nichols, D.P.; Chmiel, J.F. Inflammation in cystic fibrosis: An update. Pediatr. Pulmonol. 2018, 53, S30–S50. [Google Scholar] [CrossRef]
- Sagel, S.D.; Kapsner, R.; Osberg, I.; Sontag, M.K.; Accurso, F.J. Airway Inflammation in Children with Cystic Fibrosis and Healthy Children Assessed by Sputum Induction. Am. J. Respir. Crit. Care Med. 2001, 164, 1425–1431. [Google Scholar] [CrossRef]
- Xiao, W.; Hsu, Y.-P.; Ishizaka, A.; Kirikae, T.; Moss, R.B. Sputum Cathelicidin, Urokinase Plasminogen Activation System Components, and Cytokines Discriminate Cystic Fibrosis, COPD, and Asthma Inflammation. Chest 2005, 128, 2316–2326. [Google Scholar] [CrossRef] [PubMed]
- Zemanick, E.T.; Wagner, B.D.; Robertson, C.E.; Stevens, M.J.; Szefler, S.J.; Accurso, F.J.; Sagel, S.D.; Harris, J.K. Assessment of Airway Microbiota and Inflammation in Cystic Fibrosis Using Multiple Sampling Methods. Ann. Am. Thorac. Soc. 2015, 12, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Hentschel, J.; Markert, U.R.; Keller, P.M.; Pletz, M.W.; Mainz, J.G. Non-invasive assessment of upper and lower airway infection and inflammation in CF patients. Pediatr. Pulmonol. 2014, 49, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, N.; Schilling, T.; Hentschel, J.; Lehmann, T.; von Bismarck, P.; Ankermann, T.; Duckstein, F.; Baier, M.; Zagoya, C.; Mainz, J.G. Divergent dynamics of inflammatory mediators and multiplex PCRs during airway infection in cystic fibrosis patients and healthy controls: Serial upper airway sampling by nasal lavage. Front. Immunol. 2022, 13, 947359. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Wünnemann, F.; Salomon, J.; Boutin, S.; Frey, D.L.; Albrecht, T.; Joachim, C.; Eichinger, M.; Mall, M.A.; Wielpütz, M.O.; et al. Increased Inflammatory Markers Detected in Nasal Lavage Correlate with Paranasal Sinus Abnormalities at MRI in Adolescent Patients with Cystic Fibrosis. Antioxidants 2021, 10, 1412. [Google Scholar] [CrossRef]
- Chung, J.; Boutin, S.; Frey, D.L.; Joachim, C.; Mall, M.A.; Sommerburg, O. Nasal lavage microbiome, but not nasal swab microbiome, correlates with sinonasal inflammation in children with cystic fibrosis. J. Cyst. Fibros. 2024, 23, 226–233. [Google Scholar] [CrossRef]
- Noah, T.L.; Black, H.R.; Cheng, P.-W.; Wood, R.E.; Leigh, M.W. Nasal and Bronchoalveolar Lavage Fluid Cytokines in Early Cystic Fibrosis. J. Infect. Dis. 1997, 175, 638–647. [Google Scholar] [CrossRef]
- Pitrez, P.M.C.; Brennan, S.; Turner, S.; Sly, P.D. Nasal wash as an alternative to bronchoalveolar lavage in detecting early pulmonary inflammation in children with cystic fibrosis. Respirology 2005, 10, 177–182. [Google Scholar] [CrossRef]
- Lee, T.W.; Brownlee, K.G.; Conway, S.P.; Denton, M.; Littlewood, J.M. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J. Cyst. Fibros. 2003, 2, 29–34. [Google Scholar] [CrossRef]
- Hodson, M.; Morris, L.; Batten, J. Serum immunoglobulins and immunoglobulin G subclasses in cystic fibrosis related to the clinical state of the patient. Eur. Respir. J. 1988, 1, 701–705. [Google Scholar] [CrossRef]
- Proesmans, M.; Els, C.; Vermeulen, F.; De Boeck, K. Change in IgG and evolution of lung function in children with cystic fibrosis. J. Cyst. Fibros. 2011, 10, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Sagel, S.D.; Thompson, V.; Chmiel, J.F.; Montgomery, G.S.; Nasr, S.Z.; Perkett, E.; Saavedra, M.T.; Slovis, B.; Anthony, M.M.; Emmett, P.; et al. Effect of Treatment of Cystic Fibrosis Pulmonary Exacerbations on Systemic Inflammation. Ann. Am. Thorac. Soc. 2015, 12, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, I.S.; Bayley, D.L.; Stockley, R.A. Effect of sputum processing with dithiothreitol on the detection of inflammatory mediators in chronic bronchitis and bronchiectasis. Thorax 2002, 57, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, H.J.; Borowitz, D.S.; Christiansen, D.H.; Morris, E.M.; Nash, M.L.; Ramsey, B.W.; Rosenstein, B.J.; Smith, A.L.; Wohl, M.E. Effect of Aerosolized Recombinant Human DNase on Exacerbations of Respiratory Symptoms and on Pulmonary Function in Patients with Cystic Fibrosis. N. Engl. J. Med. 1994, 331, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, M.; Turcios, N.; Aponte, V.; Jenkins, M.; Leitman, B.S.; McCauley, D.I.; Naidich, D.P. Cystic fibrosis: Scoring system with thin-section CT. Radiology 1991, 179, 783–788. [Google Scholar] [CrossRef]
- Fuchs, T.; Zlamy, M.; Zöggeler, T.; Appelt, D.; Niedermayr, K.; Siedl, A.; Gasser, V.; Eder, J.; Ellemunter, H. Detection of cytokines in nasal lavage samples of patients with cystic fibrosis: Comparison of two different cytokine detection assays. BMC Pulm. Med. 2024, 24, 286. [Google Scholar] [CrossRef]
- Eickmeier, O.; Huebner, M.; Herrmann, E.; Zissler, U.; Rosewich, M.; Baer, P.C.; Buhl, R.; Schmitt-Grohé, S.; Zielen, S.; Schubert, R. Sputum biomarker profiles in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) and association between pulmonary function. Cytokine 2010, 50, 152–157. [Google Scholar] [CrossRef]
Variable | Mild | Severe | p |
---|---|---|---|
n | 11 | 18 | |
Sex, n (%) Male Female | 8 (72.7) 3 (27.3) | 4 (22.2) 14 (77.8) | <0.05 |
Age at inclusion, y Median (range) | 17 (10–40) | 25 (7–44) | >0.05 |
Paediatric, n (%) Adult, n (%) | 6 (54.5) 5 (45.5) | 5 (27.8) 13 (72.2) | >0.05 >0.05 |
Clinical parameters CT score, median (range) | 22 (20–24) | 14 (10–19) | <0.001 |
LCI median (range) | 6.5 (5.5–8.0) | 9.7 (5.5–14.4) | <0.001 |
FVC pred, % median (range) | 100.1 (87.6–118.7) | 89.6 (70.3–114.3) | <0.05 |
FEV1 pred, % median (range) | 99.0 (83.6–112.5) | 78.6 (48.6–121.5) | <0.05 |
FEF75 pred, % median (range) | 91.7 (42.1–122) | 35.0 (14.5–220.2) | <0.01 |
Chr. bronchopulmonary colonization, n (%) PSA, n (%) SA, n (%) Stenotrophomonas, n (%) Aspergillus fum., n (%) Burkholderia, n (%) Achromobacter, n (%) | 1 (9) 0 (0) 1 (100) 0 (0) 0 (0) 0 (0) 0 (0) | 17 (94.5) 7 (41.2) 4 (23.4) 2 (11.8) 2 (11.8) 1 (5.9) 1 (5.9) | <0.001 |
Inhaled antibiotics, n (%) | 2 (18.2) | 12 (66.7) | <0.05 |
Medical records PI, n (%) | 9 (81.8) | 17 (94.4) | >0.05 |
CFRD, n (%) | 0 (0) | 2 (11.1) | >0.05 |
CFLD, n (%) | 4 (36.4) | 5 (27.8) | >0.05 |
CFTR genotype dF508 homozygous dF508 heterozygous other | 3 (27.3) 6 (54.5) 2 (18.2) | 8 (44.5) 9 (50.0) 1 (5.5) | |
Modulator therapy, n (%) Kaftrio, n (%) Kalydeco, n (%) Orkambi, n (%) | 3 (27.3) 1 (9) 1 (9) 1 (9) | 12 (66.7) 11 (91.7) 0 (0) 1 (8.3) | <0.05 |
Variable | ppFVC | ppFEV1 | ppFEF25 | LCI | CT total score | CT Bronchiectasis Score |
---|---|---|---|---|---|---|
IgG | - | - | - | - | - | 0.61 * |
IgG1 | - | - | - | - | - | 0.62 * |
IgG3 | −0.62 * | - | - | - | - | - |
SP NE | - | - | - | - | −0.54 * | - |
NL NE | - | - | - | - | 0.54 * | - |
NL IL-1β | −0.67 * | - | - | - | - | - |
NL IL-2 | - | −0.78 * | −0.70 * | - | - | - |
NL IL-6 | - | 0.51 * | 0.72 *** | - | - | - |
NL IL-8 | - | - | 0.53 * | - | −0.54 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuchs, T.; Vasiliadis, A.; Zlamy, M.; Siedl, A.; Niedermayr, K.; Appelt, D.; Gasser, V.; Eder, J.; Ellemunter, H. Cytokines Measured in Nasal Lavage Compared to Induced Sputum in Patients with Mild Cystic Fibrosis. Int. J. Mol. Sci. 2024, 25, 11081. https://doi.org/10.3390/ijms252011081
Fuchs T, Vasiliadis A, Zlamy M, Siedl A, Niedermayr K, Appelt D, Gasser V, Eder J, Ellemunter H. Cytokines Measured in Nasal Lavage Compared to Induced Sputum in Patients with Mild Cystic Fibrosis. International Journal of Molecular Sciences. 2024; 25(20):11081. https://doi.org/10.3390/ijms252011081
Chicago/Turabian StyleFuchs, Teresa, Artemis Vasiliadis, Manuela Zlamy, Anja Siedl, Katharina Niedermayr, Dorothea Appelt, Verena Gasser, Johannes Eder, and Helmut Ellemunter. 2024. "Cytokines Measured in Nasal Lavage Compared to Induced Sputum in Patients with Mild Cystic Fibrosis" International Journal of Molecular Sciences 25, no. 20: 11081. https://doi.org/10.3390/ijms252011081
APA StyleFuchs, T., Vasiliadis, A., Zlamy, M., Siedl, A., Niedermayr, K., Appelt, D., Gasser, V., Eder, J., & Ellemunter, H. (2024). Cytokines Measured in Nasal Lavage Compared to Induced Sputum in Patients with Mild Cystic Fibrosis. International Journal of Molecular Sciences, 25(20), 11081. https://doi.org/10.3390/ijms252011081