Research on the Mechanism of Growth of Codonopsis pilosula (Franch.) Nannf. Root Responding to Phenolic Stress Induced by Benzoic Acid
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analyses of Rhizosphere Soil Extracts of C. pilosula
2.2. Phenotypic Responses of C. pilosula to Different Concentrations of Benzoic Acid
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Experimental Methods
4.2.1. Extraction of Chemosensitive Compounds
4.2.2. Silanization Procedure of Rhizosphere Soil Samples
4.2.3. Gas Chromatography-Mass Spectrometry Profiling of Chemosensory Entities
4.2.4. Evaluation of Growth Metrics
4.2.5. Quantification of Photosynthetic Attributes
4.2.6. Evaluation of Chlorophyll Fluorescence Indices
4.2.7. Evaluation of Antioxidant Enzyme Potencies
4.2.8. Estimation of Malondialdehyde Content
4.2.9. Evaluation of Relative Electrical Conductivity (REC)
4.2.10. Evaluation of Lobetyolin Content in C. pilosula
4.2.11. Evaluation of Polysaccharide Content in C. pilosula
4.2.12. Comprehensive RNA Extraction, Library Establishment, and Transcriptome Sequencing
4.2.13. Data Processing, Transcriptome Assembly and Functional Annotation
4.2.14. Quantitative Real-Time PCR
4.2.15. Data Manipulation and Elaboration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ge, X.; Chen, Y.; Guo, F.; Wang, H.; Jiao, X.; Zhang, B. Study on physiological characteristics and quality evaluation of C. pilosula. Grassl. Turf 2023, 43, 67–74. [Google Scholar] [CrossRef]
- Zhan, M.R.; Li, G.H.; Guo, X.C. Advances in Studies on Chemical Constituents and Pharmacological Activities of C. pilosula. Shandong Chem. Ind. 2021, 50, 79–82+84. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhang, X.B.; Guo, L.P.; Yu, Y. Study on distribution division of C. pilosula Radix. China J. Chin. Mater. Medica. 2017, 42, 4368–4372. [Google Scholar] [CrossRef]
- Huang, X.F. Study on C. pilosula Root Exudates and their Autotoxicity. Master’s Thesis, Peking Union Medical College, Beijing, China, 2009. [Google Scholar] [CrossRef]
- Liu, X.; Tian, F.; Tian, Y.; Wu, Y.; Dong, F.; Xu, J.; Zheng, Y. Isolation and Identification of Potential Allelochemicals from Aerial Parts of Avena fatua L. and Their Allelopathic Effect on Wheat. J. Agric. Food Chem. 2016, 64, 3492–3500. [Google Scholar] [CrossRef]
- Bethke, G.; Unthan, T.; Uhrig, J.F.; Poschl, Y.; Gust, A.A.; Scheel, D.; Lee, J. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc. Natl. Acad. Sci. USA 2009, 106, 8067–8072. [Google Scholar] [CrossRef]
- Zhang, N.P.; Zhang, S.H.; Zhang, W.B.; Li, L.L.; Li, T.L. Effects of Exogenic Benzoic Acid and Cinnamic Acid on the Root Oxidative Damage of Tomato Seedlings. Northwest J. Agric. Sci. 2010, 19, 186–190. [Google Scholar] [CrossRef]
- Cheng, L.; Zhao, Q.; Dong, K.; Yang, Z.; Dong, Y. Physiological mechanism of faba bean Fusarium wilt promoted by benzoic acid and cinnamic acid. J. Plant Prot. 2019, 46, 298–304. [Google Scholar] [CrossRef]
- Chen, L.; Dong, K.; Yang, Z.X.; Dong, Y.; Tang, L.; Zheng, Y. Alleviation mechanism of intercropping with wheat for faba bean autotoxicity under benzoic acid stress. Chin. J. Eco-Agric. 2017, 25, 95–103. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Long, L.; Gao, Y.; Ding, W.L. Morphological Response of Ginseng Root to Benzoic Acid and Differential Genes Expression Analysis. Mod. Chin. Med. 2017, 19, 995–1000. [Google Scholar] [CrossRef]
- Liu, W.; Tang, S.H. Effects of PHBA (p-hydroxybenzoic acid) on Root Physiological Characteristics and Potassium Absorption of Tobacco. Guizhou Agric. Sci. 2017, 45, 35–39. [Google Scholar]
- Li, Q.K.; Liu, P.; Tang, C.H.; Zhao, H.J.; Wang, J.T.; Song, X.Z.; Yang, L.; Wan, S.B. Effects of two phenolic acids on root zone soilnutrients, soil enzyme activities and pod yield of peanut. Chin. J. Appl. Ecol. 2016, 27, 1189–1195. [Google Scholar] [CrossRef]
- Perera-Castro, A.V.; Flexas, J. Desiccation tolerance in bryophytes relates to elasticity but is independent of cell wall thickness and photosynthesis. Physiol. Plant. 2022, 174, e13661. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.H.; Javaid, A. Histopathological changes in root and stem of mungbean exposed to Macrophomina phaseolina and dry biomass of Chenopodium quinoa. Microsc. Res. Tech. 2022, 85, 2596–2606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, Z.; Zhao, Z.; Tian, D.; Ma, X. Impacts of leakage of stored CO2 to growth of Trifolium hybridum L. Trans. Chin. Soc. Agric. Eng. 2015, 31, 197–203. [Google Scholar] [CrossRef]
- Xiao, Y.X. Studies on Atom Transfer Radical Addition of Several Kinds of Small Organic Molecules to. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2020. [Google Scholar] [CrossRef]
- Scott, S.; Cahoon, E.B.; Busta, L. Variation on a theme: The structures and biosynthesis of specialized fatty acid natural products in plants. Plant J. 2022, 111, 954–965. [Google Scholar] [CrossRef]
- Ng, L.-T.; Wu, S.-J. Antiproliferative Activity of Cinnamomum cassia Constituents and Effects of Pifithrin-Alpha on Their Apoptotic Signaling Pathways in Hep G2 Cells. Evid. Based Complement. Altern. Med. 2011, 2011, 492148. [Google Scholar] [CrossRef]
- Aghkand, A.R.; Dilmaghani, K.A.; Ghezelbash, Z.D.; Asgharib, B. Synthesis and Biological Evaluation of Some Novel S-β-D-Glucosides of 4-Amino-5-alkyl-1,2,4-triazole-3-thiones Derivatives. Acta Chim. Slov. 2019, 66, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Ford, G.L.; Fogerty, A.C.; Walker, K.H. Crepenynic acid and muscle breakdown. Prog. Lipid Res. 1986, 25, 263–267. [Google Scholar] [CrossRef]
- Nam, J.-W.; Kappock, T.J. Cloning and transcriptional analysis of Crepis alpina fatty acid desaturases affecting the biosynthesis of crepenynic acid. J. Exp. Bot. 2007, 58, 1421–1432. [Google Scholar] [CrossRef]
- Lou, Y.C.; Huang, F.; Yan, X.F.; Ruan, B.Z.; Yang, H. Induction effect of n-butyl-β-D-fructosidepyranose on apoptosis bel-7402 cells in vitro. Chin. J. Hosp. Pharm. 2009, 29, 1253–1255. [Google Scholar] [CrossRef]
- Han, W.X.; Zhu, H.J. Synthesis and Anti HCV Activity of Natural Analogues of β-D-Glucopyranose Glycosides. Chem. J. Chin. Univ. 2013, 34, 346–353. [Google Scholar] [CrossRef]
- He, Q.; Zhu, E.Y.; Wang, Z.T.; Yu, G.X.; Xu, L.S.; Hu, Z.B. Research on the Chemical Components of Codonopsis pilosula. Chin. Pharm. J. 2006, 41, 10–12. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, J.; Zhang, L.; Niu, T.; Li, M.; Wang, S.; Huang, J. Effect of Different Allelopathic Chemicals on the Growth of Watermelon Seedlings. Genom. Appl. Biol. 2018, 37, 400–407. [Google Scholar] [CrossRef]
- Gao, X.; Xin, D.; Zhao, Y.; Li, J.; Cao, Y.; Zhang, S.; Guo, J. Potential molecular mechanism of photosynthesis regulation by PeMPK7 in poplar under para-hydroxybenzoic acid stress. Ecotoxicol. Environ. Saf. 2024, 276, 116329. [Google Scholar] [CrossRef]
- López-González, D.; Ferradás, Y.; Araniti, F.; Graña, E.; Hermida-Ramón, J.M.; González, M.V.; Teijeira, M.; Rey, M.; Reigosa, M.J.; Sánchez-Moreiras, A.M. Trans-cinnamaldehyde-related overproduction of benzoic acid and oxidative stress on Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1157309. [Google Scholar] [CrossRef]
- Song, J.J.; Rhee, J.G.; Suntharalingam, M.; Walsh, S.A.; Spitz, D.R.; Lee, Y.J. Role of Glutaredoxin in Metabolic Oxidative Stress. J. Biol. Chem. 2002, 277, 46566–46575. [Google Scholar] [CrossRef] [PubMed]
- Xian, D.; Lai, R.; Song, J.; Xiong, X.; Zhong, J. Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxidative Med. Cell. Longev. 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Andi, S.A.; Gholami, M.; Ford, C.M.; Maskani, F. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera. J. Photochem. Photobiol. B Biol. 2019, 199, 111625. [Google Scholar] [CrossRef]
- Teng, Y.; Gao, Y.; Zhang, Y.; Jin, M.; Li, K. Effects of acid stress on the tuber formation characteristics and several sugar metabolism of virus-free test tube potato seedlings. Crop J. 2017, 1, 140–143. [Google Scholar] [CrossRef]
- Liu, J.J. Low temperature synthesis and process optimization of sucralose-6-benzoate. China Food Addit. 2020, 31, 85–88. [Google Scholar] [CrossRef]
- Huang, C.-Z.; Xu, L.; Sun, J.J.; Zhang, Z.-H.; Fu, M.-L.; Teng, H.-Y.; Yi, K.-K. Allelochemical p-hydroxybenzoic acid inhibits root growth via regulating ROS accumulation in cucumber (Cucumis sativus L.). J. Integr. Agric. 2020, 19, 518–527. [Google Scholar] [CrossRef]
- Zhao, D.-F.; Sun, P.-G.; Miao, H.-X.; Liu, Q.; Jia, C.-H.; Wang, J.-Y.; Zhang, J.-B.; Wang, Z.; Liu, J.-H.; Xu, B.-Y.; et al. A- and B-subgenome characterisation of sucrose synthase family proteins and functional identification of MaSUS2.2 reveals its involvement in the starch accumulation in banana fruit. N. Z. J. Crop Hortic. Sci. 2022, 51, 489–508. [Google Scholar] [CrossRef]
- Shiga, T.; Soares, C.A.; Nascimento, J.R.O.; Purgatto, E.; Lajolo, F.M.; Cordenunsi, B.R. Ripening-associated changes in the amounts of starch and non-starch polysaccharides and their contributions to fruit softening in three banana cultivars. J. Sci. Food Agric. 2011, 91, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Majumder, B.; Biswas, A.K. Comparative study on the influence of silicon and selenium to mitigate arsenic induced stress by modulating TCA cycle, GABA, and polyamine synthesis in rice seedlings. Ecotoxicology 2022, 31, 468–489. [Google Scholar] [CrossRef]
- Mekonnen, D.W. GHB degradation via TCA cycle is the major metabolic route in Arabidopsis thaliana. bioRxiv 2022, 32, 647–650. [Google Scholar] [CrossRef]
- Davis, I.; Huo, L.; Liu, F.; Andi, B.; Esaki, S.; Iwaki, H.; Hasegawa, Y.; Orville, A.; Liu, A. Extending the Kynurenine Pathway to an Aldehyde Disarming Enzyme: Mechanistic Study of Bacterial AMSDH and Identification of the Correct Human Enzyme. FASEB J. 2015, 29, 573-3. [Google Scholar] [CrossRef]
- Devenish, S.R.A.; Blunt, J.W.; Gerrard, J.A. NMR studies uncover alternate substrates for dihydrodipicolinate synthase and suggest that dihydrodipicolinate reductase is also a dehydratase. J. Med. Chem. 2010, 53, 4808–4812. [Google Scholar] [CrossRef]
- Poland, A.; Knutson, J.C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Annu. Rev. Pharmacol. Toxicol. 1982, 22, 517–554. [Google Scholar] [CrossRef]
- Jiang, M.Y. Generation of Hydroxyl Radicals and Its Relation to Cellular Oxidative Damage in Hants Subjected to Water Stress. Chin. Bull. Bot. 1999, 3–8. [Google Scholar] [CrossRef]
- Zhao, J.J.; Zhan, W.L.; Zhou, N. Research progress on the metabolisms of reactive oxygen species and methylglyoxal in plants under abioticstresses. J. South. Agric. 2022, 53, 2099–2113. [Google Scholar] [CrossRef]
- Clarkson, D.T.; Carvajal, M.; Henzler, T.; Waterhouse, R.N.; Smyth, A.J.; Cooke, D.T.; Steudle, E. Root hydraulic conductance: Diurnal aquaporin expression and the effectsof nutrient stress. J. Exp. Bot. 2000, 51, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Forde, B.G. An Arabidopsis MADS Box Gene That Controls Nutrient-Induced Changes in Root Architecture. Science 1998, 279, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.-S. Compound Synthesis or Growth and Development of Roots/Stomata Regulate Plant Drought Tolerance or Water Use Efficiency/Water Uptake Efficiency. J. Agric. Food Chem. 2018, 66, 3595–3604. [Google Scholar] [CrossRef]
- Ding, G.C.; Lin, S.Z.; Wang, A.P.; Cao, G.Q.; Zheng, Y.P. Effects of salicylic acid on antioxidant enzymes in Cunningghamia lanceolata (Lamb.) HooK seedlings under nutrition stress. Chin. J. Eco-Agric. 2008, 16, 363–366. [Google Scholar] [CrossRef]
- Ma, B.B. Effect of Atrazine on the Typical Physiological Characteristics of Resistant Plant: Pennisetum americanum L. (cv. K. schum). Master’s Thesis, Northeast Agricultural University, Harbin, China, 2016. [Google Scholar] [CrossRef]
- Erinle, K.O. Atrazine Induced Physiological Effects on Pennisetum Seedlings and Ameliorative Effects of Exogenously Applied Ca2+. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2016. [Google Scholar] [CrossRef]
- Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J. Am. Chem. Soc. 2017, 139, 12736–12744. [Google Scholar] [CrossRef]
- Li, K.; Feng, J.; Kuang, Y.; Song, W.; Zhang, M.; Ji, S.; Qiao, X.; Ye, M. Enzymatic Synthesis of Bufadienolide O-Glycosides as Potent Antitumor Agents Using a Microbial Glycosyltransferase. Adv. Synth. Catal. 2017, 359, 3765–3772. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Wang, M.; Liu, Y.; Meng, X.; Zhang, T.; Qi, Y.; Zhang, B.; Liu, H.; Sun, X.; et al. Exploring on the bioactive markers of Codonopsis Radixby correlation analysis between chemical constituents and pharmacological effects. J. Ethnopharmacol. 2019, 236, 31–41. [Google Scholar] [CrossRef]
- Wang, M.C.; Wu, Y.F.; Yu, W.Y.; Yu, B.; Ying, H.Z. Polyacetylenes from Codonopsis lanceolata root induced apoptosis of human lung adenocarcinoma cells and improved lung dysbiosis. BioMed Res. Int. 2022, 2022, 7713355. [Google Scholar] [CrossRef]
- Schäfer, W.E.; Rohwer, J.M.; Botha, F.C. A kinetic study of sugarcane sucrose synthase. Eur. J. Biochem. 2004, 271, 3971–3977. [Google Scholar] [CrossRef]
- Sheu, K.F.; Frey, P.A. UDP-glucose pyrophosphorylase. Stereochemical course of the reaction of glucose 1-phosphate with uridine-5′[1-thiotriphosphate]. J Biol Chem. 1987, 253, 3378–3380. [Google Scholar] [CrossRef] [PubMed]
- Wildberger, P.; Pfeiffer, M.; Brecker, L.; Rechberger, G.N.; Birner-Gruenberger, R.; Nidetzky, B. Phosphoryl transfer from α-d-glucose 1-phosphate catalyzed by Escherichia coli sugar-phosphate phosphatases of two protein superfamily types. Appl. Environ. Microbiol. 2015, 81, 1559–1572. [Google Scholar] [CrossRef] [PubMed]
- Malaisse, W.J.; Verbruggen, I.; Biesemans, M.; Willem, R. Delayed interconversion of D-glucose anomers in D2O. Int. J. Mol. Med. 2004, 13, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Liao, X. The Study on Expression, Purification and Characterization of Pyruvate Decarboxylase from Escherichia coli and Sedoheptulose-1,7-bisphosphatase from Rice. Doctoral Thesis, Central China Normal University, Wuhan, China, 2024. [Google Scholar]
- Cronan, J.E. The chain-flipping mechanism of ACP (acyl carrier protein)-dependent enzymes appears universal. Biochem. J. 2014, 460, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, J.; Goldschmidt, E.E.; Stumpf, P. Fat metabolism in higher plants. Properties of the palmityl acyl carrier protein: Stearyl acyl carrier protein elongation system in maturing safflower seed extracts. Arch. Biochem. Biophys. 1974, 163, 769–776. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Chirmade, T.; Hanana, M.; Khamassi, K.; Ercisli, S.; Choudhary, R.; Kadoo, N.; Karunakaran, R. Comparative Analysis and Structural Modeling of Elaeis oleifera FAD2, a Fatty Acid Desaturase Involved in Unsaturated Fatty Acid Composition of American Oil Palm. Biology 2022, 11, 529. [Google Scholar] [CrossRef]
- Reed, D.W.; Polichuk, D.R.; Buist, P.H.; Ambrose, S.J.; Sasata, R.J.; Savile, C.K.; Ross, A.R.S.; Covello, P.S. Mechanistic study of an improbable reaction: Alkene dehydrogenation by the Δ12 acetylenase of Crepis alpina. J. Am. Chem. Soc. 2003, 125, 10635–10640. [Google Scholar] [CrossRef]
- Zhang, M.; Yi, Y.; Gao, B.; Su, H.; Bao, Y.; Shi, X.; Wang, H.; Li, F.; Ye, M.; Qiao, X. Functional Characterization and Protein Engineering of a Triterpene 3-/6-/2′-O-Glycosyltransferase Reveal a Conserved Residue Critical for the Regiospecificity. Angew. Chem. Int. Ed. 2021, 61, e202113587. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Z.; Zhang, J.; Chen, K.; Zhang, M.; Wang, Z.; Wang, B.; Ye, M.; Qiao, X. Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from C. pilosula membranaceus. Nat. Commun. 2023, 14, 5969. [Google Scholar] [CrossRef]
- Ma, L.-J.; Liu, X.; Guo, L.; Luo, Y.; Zhang, B.; Cui, X.; Yang, K.; Cai, J.; Liu, F.; Ma, N.; et al. Discovery of plant chemical defence mediated by a two-component system involving β-glucosidase in Panax species. Nat. Commun. 2024, 15, 602. [Google Scholar] [CrossRef]
- Rahimi, S.; Kim, J.; Mijakovic, I.; Jung, K.-H.; Choi, G.; Kim, S.-C.; Kim, Y.-J. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. Biotechnol. Adv. 2019, 37, 107394. [Google Scholar] [CrossRef]
- Wang, P.; Wei, Y.; Fan, Y.; Liu, Q.; Wei, W.; Yang, C.; Zhang, L.; Zhao, G.; Yue, J.; Yan, X.; et al. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metab. Eng. 2015, 29, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xu, C.; Liu, M.; Zeng, F.; Yao, W.; Deng, Y.; Xu, T.; Sun, S.; Sun, D.; Mo, J.; et al. Synthesis ofbranched arabinogalactans up to a 140-mer from Panax noto C. pilosula and theiranti-pancreatic-cancer activity. Nat. Synth. 2023, 3. [Google Scholar] [CrossRef]
- Ji, J.; Feng, Q.; Sun, H.; Zhang, X.; Li, X.; Li, J.; Gao, J. Response of bioactive metabolite and biosynthesisrelated genes to methyl jasmonate elicitation in C. pilosula. Molecules 2019, 24, 533. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-C.; Tsai, T.-H.; Kuo, C.-L. Chemical constituents comparison of Codonopsis tangshen, C. pilosula var. modesta and C. pilosula. Nat. Prod. Res. 2013, 27, 1812–1815. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-I.; McCarty, R.M.; Liu, H.-W. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars. Chem. Soc. Rev. 2013, 42, 4377–4407. [Google Scholar] [CrossRef]
- Arshad, M.N.; Naegele, J.R. Correction notice: Measurements of proline and malondialdehyde contentsand antioxidant enzyme activities in leaves of drought stressed cotton. Bio-protocol 2023, 5, e4752. [Google Scholar] [CrossRef]
- Chen, A.K.; Han, R.H.; Li, D.Y.; Ling, L.; Luo, H.; Tang, S. Comparative study on methods for measuring relative conductivity of plant leaves. J. Guangdong Univ. Educ. Titue 2010, 30, 88–91. [Google Scholar] [CrossRef]
- Zhang, L. Optimization of the content determination method of C. pilosula acetylide in C. pilosula by HPLC combined with BBD response surface methodology. China Food Addit. 2021, 32, 107–114. [Google Scholar] [CrossRef]
- Lu, Y.X.; Wang, C.M.; Zhang, Y.P.; Jiang, D.H.; Jiang, X.Q.; Han, Z.Y. Determination of Acetylene Glycosides, Total Polysaccharides, and Total Flavonoids in Codonopsis pilosula at Different Harvesting Periods and Determination of the Optimal Harvesting Period for Codonopsis pilosula. Phys. Test. Chem. Anal. Part B Chem. Anal. 2022, 58, 133–139. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full length transcriptome assembly from RNA Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. Available online: http://tour.biocloud.net/article/v1/into/articleDetail/21572440 (accessed on 15 July 2024). [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2015, 44, D457–D462. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Ma, L.; Zhang, C.; Yan, H.; Bao, J.; Gong, M.S.; Wang, W.H.; Li, S.; Ma, S.Y.; Chen, B.H. Grapevine (Vitis vinifera) re-sponses to salt stress and alkali stress: Transcriptional and metabolic profiling. BMC Plant Biol. 2022, 22, 528. [Google Scholar] [CrossRef]
- Die, J.V.; Román, B.; Nadal, S.; González-Verdejo, C.I. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 2010, 232, 145–153. [Google Scholar] [CrossRef]
Chemical Name | Molecular Formula | Molecular Mass |
---|---|---|
Octamethylcyclotrisiloxane | C8H24O2Si3 | 236.53 |
Hexamethyldisiloxane | C6H18OSi2 | 162.37 |
Trifluoroacetamide | C2H2F3NO | 133.04 |
Diethylamine | C4H11N | 73.137 |
Ethylamine | C2H7N | 45.084 |
N,N-Diethyl(trimethylsilyl)carb amate | C8H19NO2Si | 189.022 |
Glycine, N-(trimethylsilyl)-, trimethylsilyl ester | C8H21NO2Si2 | 219.063 |
Ethylene glycol | (CH2OH)2 | 62.068 |
Acetamide | C2H5NO | 59.067 |
Crotonic acid | C4H6O2 | 86.089 |
Octyl caprylate | C16H32O2 | 256.424 |
Tris(trimethylsilyl) phosphate | C9H27O4PSi3 | 314.5 |
Benzoic acid | C7H6O2 | 122.1214 |
3-Chloro-1,2-propanediol | C3H7ClO2 | 110.539 |
Ferulic acid | C10H10O4 | 194.184 |
2,6-Di-tert-butylphenol | C14H22O | 206.33 |
Acetamide | C2H5NO | 59.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Ma, L.; Xu, L.; Wei, R.; Chen, G.; Dang, J.; Chen, Z.; Ma, S.; Li, S. Research on the Mechanism of Growth of Codonopsis pilosula (Franch.) Nannf. Root Responding to Phenolic Stress Induced by Benzoic Acid. Int. J. Mol. Sci. 2024, 25, 11007. https://doi.org/10.3390/ijms252011007
Ma Y, Ma L, Xu L, Wei R, Chen G, Dang J, Chen Z, Ma S, Li S. Research on the Mechanism of Growth of Codonopsis pilosula (Franch.) Nannf. Root Responding to Phenolic Stress Induced by Benzoic Acid. International Journal of Molecular Sciences. 2024; 25(20):11007. https://doi.org/10.3390/ijms252011007
Chicago/Turabian StyleMa, Yantong, Lei Ma, Ling Xu, Ruonan Wei, Guiping Chen, Junhong Dang, Zhen Chen, Shaoying Ma, and Sheng Li. 2024. "Research on the Mechanism of Growth of Codonopsis pilosula (Franch.) Nannf. Root Responding to Phenolic Stress Induced by Benzoic Acid" International Journal of Molecular Sciences 25, no. 20: 11007. https://doi.org/10.3390/ijms252011007
APA StyleMa, Y., Ma, L., Xu, L., Wei, R., Chen, G., Dang, J., Chen, Z., Ma, S., & Li, S. (2024). Research on the Mechanism of Growth of Codonopsis pilosula (Franch.) Nannf. Root Responding to Phenolic Stress Induced by Benzoic Acid. International Journal of Molecular Sciences, 25(20), 11007. https://doi.org/10.3390/ijms252011007