Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barón, M.; Flexas, J.; Delucia, E.H. Photosynthetic Responses to Biotic Stress. In Terrestrial Photosynthesis in a Changing Environment a Molecular, Physiological and Ecological Approach; Cambridge University Press: Cambridge, UK, 2011; pp. 331–350. ISBN 978-0-521-89941-3. [Google Scholar]
- González-Fernández, R.; Prats, E.; Jorrín-Novo, J.V. Proteomics of Plant Pathogenic Fungi. J. Biomed. Biotechnol. 2010, 2010, 932527. [Google Scholar] [CrossRef] [PubMed]
- Knogge, W. Fungal Infection of Plants. Plant Cell 1996, 8, 1711–1722. [Google Scholar] [CrossRef] [PubMed]
- Saddique, M.; Kamran, M.; Shahbaz, M. Chapter 4—Differential Responses of Plants to Biotic Stress and the Role of Metabolites. In Plant Metabolites and Regulation under Environmental Stress; Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P., Alyemeni, M.N., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 69–87. ISBN 978-0-12-812689-9. [Google Scholar]
- Garrett, K.A.; Bebber, D.P.; Etherton, B.A.; Gold, K.M.; Sulá, A.I.P.; Selvaraj, M.G. Climate Change Effects on Pathogen Emergence: Artificial Intelligence to Translate Big Data for Mitigation. Annu. Rev. Phytopathol. 2022, 60, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Grulke, N.E. The Nexus of Host and Pathogen Phenology: Understanding the Disease Triangle with Climate Change. New Phytol. 2011, 189, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; Pertot, I. Climate Change Impacts on Plant Pathogens and Plant Diseases. J. Crop Improv. 2014, 28, 99–139. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, R619–R634. [Google Scholar] [CrossRef] [PubMed]
- Boddy, L. Chapter 8—Pathogens of Autotrophs. In The Fungi, 3rd ed.; Watkinson, S.C., Boddy, L., Money, N.P., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 245–292. ISBN 978-0-12-382034-1. [Google Scholar]
- Menardo, F.; Praz, C.R.; Wicker, T.; Keller, B. Rapid Turnover of Effectors in Grass Powdery Mildew (Blumeria graminis). BMC Evol. Biol. 2017, 17, 223. [Google Scholar] [CrossRef]
- Aime, M.C.; Bell, C.D.; Wilson, A.W. Deconstructing the Evolutionary Complexity between Rust Fungi (Pucciniales) and Their Plant Hosts. Stud. Mycol. 2018, 89, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Aime, M.C.; McTaggart, A.R. A Higher-Rank Classification for Rust Fungi, with Notes on Genera. Fungal Syst. Evol. 2021, 7, 21–47. [Google Scholar] [CrossRef] [PubMed]
- Moscou, M.J.; van Esse, H.P. The Quest for Durable Resistance. Science 2017, 358, 1541–1542. [Google Scholar] [CrossRef] [PubMed]
- Aqueveque, P.; Céspedes, C.L.; Becerra, J.; Aranda, M.; Sterner, O. Antifungal Activities of Secondary Metabolites Isolated from Liquid Fermentations of Stereum Hirsutum (Sh134-11) against Botrytis Cinerea (Grey Mould Agent). Food Chem. Toxicol. 2017, 109, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.-W.; Huang, L.; Pu, H.; Ma, J. Introducing Reticular Chemistry into Agrochemistry. Chem. Soc. Rev. 2021, 50, 1070–1110. [Google Scholar] [CrossRef] [PubMed]
- Zajac, A.; Kukawka, R.; Pawlowska-Zygarowicz, A.; Stolarska, O.; Smiglak, M. Ionic Liquids as Bioactive Chemical Tools for Use in Agriculture and the Preservation of Agricultural Products. Green Chem. 2018, 20, 4764–4789. [Google Scholar] [CrossRef]
- Szosland-Faltyn, A.; Krolasik, J.; Bartodziejska, B. Przeciwdrobnoustrojowa aktywność roślinnych substancji bioaktywnych wobec bakterii z rodzaju Campylobacter spp. Postępy Nauki Technol. Przem. Rolno-Spoż. 2016, 3, 77–85. [Google Scholar]
- Al-Mulla, A. A Review: Biological Importance of Heterocyclic Compounds. Pharma Chem. 2017, 9, 141–147. [Google Scholar]
- Yadav, S.; Singh, S.; Gupta, C. A Concise Overview on Heterocyclic Compounds Exhibiting Pesticidal Activities. Int. J. Adv. Res. 2021, 9, 989–1004. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Tang, Z.; Ma, C.; Jiao, Y. Synthesis and Fungicidal Activity of Novel 6H-Benzimidazo[1,2-c][1,3]Benzoxazin-6-Ones. Chem. Heterocycl. Compd. 2021, 57, 581–587. [Google Scholar] [CrossRef]
- Kalinina, T.A.; Balandina, V.I.; Obydennov, K.L.; Slepukhin, P.A.; Fan, Z.; Bakulev, V.A.; Glukhareva, T.V. Synthesis, Fungicidal Activity and Plant Protective Properties of 1,2,3-Thiadiazole and Isothiazole-Based N-Acyl-N-Arylalaninates. Molecules 2023, 28, 419. [Google Scholar] [CrossRef] [PubMed]
- Legocki, J.; Matysiak, J.; Niewiadomy, A.; Kostecka, M. Synthesis and Fungistatic Activity of New Groups of 2,4-Dihydroxythiobenzoyl Derivatives against Phytopathogenic Fungi. J. Agric. Food Chem. 2003, 51, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Niewiadomy, A.; Matysiak, J.; Macik-Niewiadomy, G. In Vitro Evaluation of 2,4-Dihydroxythiobenzanilides against Various Moulds. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2001, 13, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Krajewska-Kułak, E.; Karczewski, J.; Niewiadomy, A. N-Heterocyclic Derivatives of 2,4-Dihydroxybenzcarbothioamide as Antimycotic Agents. J. Agric. Food Chem. 2001, 49, 5251–5257. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. Progress of Modern Agricultural Chemistry and Future Prospects. Pest Manag. Sci. 2016, 72, 433–455. [Google Scholar] [CrossRef] [PubMed]
- Poole, N.F.; Arnaudin, M.E. The Role of Fungicides for Effective Disease Management in Cereal Crops. Can. J. Plant Pathol. 2014, 36, 1–11. [Google Scholar] [CrossRef]
- The European Parliament; The Council of the European Union. European Parliament Directive 2009/128/EC of the European Parliament and the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Off. J. Eur. Union 2009, 309, 71–86. [Google Scholar]
- Mundt, C.C.; Cowger, C.; Garrett, K.A. Relevance of Integrated Disease Management to Resistance Durability. Euphytica 2002, 124, 245–252. [Google Scholar] [CrossRef]
- Baker, R.H.A.; Sansford, C.E.; Jarvis, C.H.; Cannon, R.J.C.; MacLeod, A.; Walters, K.F.A. The Role of Climatic Mapping in Predicting the Potential Geographical Distribution of Non-Indigenous Pests under Current and Future Climates. Agric. Ecosyst. Environ. 2000, 82, 57–71. [Google Scholar] [CrossRef]
- McDonald, B.A.; Linde, C. Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annu. Rev. Phytopathol. 2002, 40, 349–379. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Cao, X.; Xu, X.; Jiang, Y.; Luo, Y.; Ma, Z.; Fan, J.; Zhou, Y. Effects of Climate Change on Epidemics of Powdery Mildew in Winter Wheat in China. Plant Dis. 2017, 101, 1753–1760. [Google Scholar] [CrossRef] [PubMed]
- Brent, K.J.; Hollomon, D.W. Fungicide Resistance: The Assessment of Risk; Global Crop Protection Federation: Brussels, Belgium, 1998; Volume 2. [Google Scholar]
- Grimmer, M.K.; van den Bosch, F.; Powers, S.J.; Paveley, N.D. Fungicide Resistance Risk Assessment Based on Traits Associated with the Rate of Pathogen Evolution. Pest Manag. Sci. 2015, 71, 207–215. [Google Scholar] [CrossRef]
- Dhillon, N.K.; Gosal, S.S.; Kang, M.S. Improving Crop Productivity under Changing Environment. In Improving Crop Productivity in Sustainable Agriculture; Tuteja, N., Gill, S.S., Tuteja, R., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 23–48. ISBN 978-3-527-33242-7. [Google Scholar]
- Lamberth, C. Heterocyclic Chemistry in Crop Protection. Pest Manag. Sci. 2013, 69, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013, 341, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of Heterocyclic Chemistry: A Review. Int. J. Pharm. Sci. Res. 2012, 3, 2947. [Google Scholar]
- Meanwell, N.A.; Lolli, M.L. Applications of Heterocycles in the Design of Drugs and Agricultural Products; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- El-Baky, N.A.; Amara, A.A.A.F. Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review. J. Fungi 2021, 7, 900. [Google Scholar] [CrossRef]
- Niewiadomy, A.; Matysiak, J. Fungicidal Evaluation of Substituted 4-(1,3,4-Thiadiazol-2-Yl) Benzene-1,3-Diols. Pestycydy 2010, 1–4, 5–14. [Google Scholar]
- El-Azab, A.S.; Al-Omar, M.A.; Abdel-Aziz, A.A.-M.; Abdel-Aziz, N.I.; el-Sayed, M.A.-A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, Synthesis and Biological Evaluation of Novel Quinazoline Derivatives as Potential Antitumor Agents: Molecular Docking Study. Eur. J. Med. Chem. 2010, 45, 4188–4198. [Google Scholar] [CrossRef] [PubMed]
- Nagrale, S.; Pondkule, A.; Babar, V. Recent Advances in the Biological Activity of Quinazoline. Int. J. Pharm. Chem. Anal. 2023, 9, 169–173. [Google Scholar] [CrossRef]
- Serya, R.A.T.; Abbas, A.H.; Ismail, N.S.M.; Esmat, A.; Abou El Ella, D.A. Design, Synthesis and Biological Evaluation of Novel Quinazoline-Based Anti-Inflammatory Agents Acting as PDE4B Inhibitors. Chem. Pharm. Bull. 2015, 63, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Thota, S. Pyridazin-3(2H)-Ones: The Versatile Pharmacophore of Medicinal Significance. Med. Chem. Res. 2013, 22, 2539–2552. [Google Scholar] [CrossRef]
- Loksha, Y.M.; Abd-Alhaseeb, M.M. Synthesis and Biological Screening of Some Novel 6-Substituted 2-Alkylpyridazin-3(2H)-Ones as Anti-Inflammatory and Analgesic Agents. Arch. Pharm. 2020, 353, 1900295. [Google Scholar] [CrossRef]
- Andreeva, O.V.; Garifullin, B.F.; Sharipova, R.R.; Strobykina, I.Y.; Sapunova, A.S.; Voloshina, A.D.; Belenok, M.G.; Dobrynin, A.B.; Khabibulina, L.R.; Kataev, V.E. Glycosides and Glycoconjugates of the Diterpenoid Isosteviol with a 1,2,3-Triazolyl Moiety: Synthesis and Cytotoxicity Evaluation. J. Nat. Prod. 2020, 83, 2367–2380. [Google Scholar] [CrossRef] [PubMed]
- Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-Triazole Ring as a Bioisostere in Medicinal Chemistry. Drug Discov. Today 2017, 22, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.; Salarinejad, S.; Toolabi, M.; Firoozpour, L.; Esmaeil Sadat Ebrahimi, S.; Safari, F.; Madani-Qamsari, F.; Mojtabavi, S.; Faramarzi, M.A.; Karima, S.; et al. Synthesis, in-Vitro Evaluation, Molecular Docking, and Kinetic Studies of Pyridazine-Triazole Hybrid System as Novel α-Glucosidase Inhibitors. Bioorganic Chem. 2021, 109, 104670. [Google Scholar] [CrossRef] [PubMed]
- Los, R.; Wesołowska-Trojanowska, M.; Malm, A.; Karpińska, M.M.; Matysiak, J.; Niewiadomy, A.; Głaszcz, U. A New Approach to the Synthesis of 2-Aryl-Substituted Benzimidazoles, Quinazolines, and Other Related Compounds and Their Antibacterial Activity. Heteroat. Chem. 2012, 23, 265–275. [Google Scholar] [CrossRef]
- Matysiak, J.; Juszczak, M.; Karpińska, M.M.; Langner, E.; Walczak, K.; Lemieszek, M.; Skrzypek, A.; Rzeski, W.; Niewiadomy, A. Synthesis, Characterization, and Pharmacological Evaluation of Novel Azolo- and Azinothiazinones Containing 2,4-Dihydroxyphenyl Substituent as Anticancer Agents. Monatshefte Chem. 2015, 146, 1315–1327. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Juszczak, M.; Karpińska, M.M.; Langner, E.; Walczak, K.; Lemieszek, M.K.; Skrzypek, A.; Niewiadomy, A.; Rzeski, W. Synthesis of 2-(2,4-Dihydroxyphenyl)Thieno-1,3-Thiazin-4-Ones, Their Lipophilicity and Anticancer Activity in Vitro. Mol. Divers. 2015, 19, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Matysiak, J.; Los, R.; Malm, A.; Karpińska, M.M.; Głaszcz, U.; Rajtar, B.; Polz-Dacewicz, M.; Trojanowska-Wesołowska, M.; Niewiadomy, A. Synthesis and Antibacterial Activity of Novel Fused 1,3-Thiazoles and 1,3-Thiazines Incorporating a 2,4-Dihydroxyphenyl Residue. Arch. Pharm. 2012, 345, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Skrzypek, A.; Matysiak, J.; Karpińska, M.; Czarnecka, K.; Kręcisz, P.; Stary, D.; Kukułowicz, J.; Paw, B.; Bajda, M.; Szymański, P.; et al. Biological Evaluation and Molecular Docking of Novel 1,3,4-Thiadiazole-Resorcinol Conjugates as Multifunctional Cholinesterases Inhibitors. Bioorganic Chem. 2021, 107, 104617. [Google Scholar] [CrossRef]
- Hsam, S.L.K.; Peters, N.; Paderina, E.V.; Felsenstein, F.; Oppitz, K.; Zeller, F.J. Genetic Studies of Powdery Mildew Resistance in Common Oat (Avena sativa L.) I. Cultivars and Breeding Lines Grown in Western Europe and North America. Euphytica 1997, 96, 421–427. [Google Scholar] [CrossRef]
- Mains, E.B. Inheritance of Resistance to Powdery Mildew, Erysiphe Graminis Tritici, in Wheat. Phytopathology 1934, 24, 1257–1261. [Google Scholar]
- Chen, L.; Zhao, B.; Fan, Z.; Hu, M.; Li, Q.; Hu, W.; Li, J.; Zhang, J. Discovery of Novel Isothiazole, 1,2,3-Thiadiazole, and Thiazole-Based Cinnamamides as Fungicidal Candidates. J. Agric. Food Chem. 2019, 67, 12357–12365. [Google Scholar] [CrossRef]
Compound Groups | Compound | Fungal Pathogens | |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blumeria graminis f.sp. avenae, | Blumeria graminis f.sp. tritici | B. graminis f. sp. triticale | Puccinia coronata f.sp. avenae | Puccinia recondita f.sp. tritici. | Puccinia hordei | ||||||||||||||||||||||||||||||||
Compound Concentration μg/mL | |||||||||||||||||||||||||||||||||||||
10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | 10 | 9 | 8 | 7 | 6 | 5 | ||
Control | DMSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1,3,4-thiadiazole derivatives | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 |
2 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
4 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
5 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
6 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
7 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
8 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
9 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
11 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | |
1,3-tiazole fused derivatives | 12 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
13 | 100 | 80 | 50 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
14 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
1,2,4-triazole fused derivatives | 16 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
18 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
19 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 90 | 80 | 50 | 50 | 0 | 100 | 100 | 100 | 100 | 80 | 80 | 100 | 100 | 100 | 90 | 80 | 80 | 100 | 90 | 80 | 70 | 50 | 50 | |
20 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 90 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | |
Benzothiazine derivatives | 21 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 50 | 0 | 0 | 0 | 0 | 80 | 50 | 0 | 0 | 0 | 0 | 100 | 80 | 50 | 0 | 0 | 0 |
22 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 90 | 80 | 0 | 0 | 0 | 0 | |
23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Benzothiadiazine derivatives | 24 | 0 | 0 | 0 | 0 | 0 | 0 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
25 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
27 | 100 | 90 | 80 | 50 | 50 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 100 | 90 | 90 | 80 | 0 | 100 | 100 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
Quinazoline derivatives | 28 | 100 | 90 | 80 | 80 | 50 | 50 | 100 | 90 | 90 | 80 | 50 | 50 | 100 | 90 | 80 | 80 | 50 | 50 | 100 | 100 | 100 | 90 | 90 | 90 | 100 | 100 | 100 | 90 | 90 | 80 | 100 | 90 | 80 | 70 | 50 | 50 |
29 | 100 | 100 | 80 | 80 | 50 | 50 | 100 | 80 | 80 | 80 | 50 | 50 | 100 | 80 | 80 | 50 | 50 | 50 | 100 | 100 | 100 | 90 | 90 | 90 | 100 | 100 | 100 | 90 | 90 | 80 | 100 | 80 | 70 | 50 | 50 | 50 | |
30 | 80 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
32 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | |
33 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 90 | 0 | 0 | 0 | 0 | 0 | 100 | 80 | 80 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 | 100 | 80 | 0 | 0 | 0 | 0 |
Cereal | Pathogen | Disease |
---|---|---|
Oat | Blumeria graminis (DC.) Speer f.sp. avenae Marchal | Powdery mildew |
Puccinia coronata Corda f.sp. avenae | Crown rust | |
Wheat | Blumeria graminis (DC.) Speer f.sp. tritici Marchal | Powdery mildew |
Puccinia recondita Rob. ex Desm f.sp. tritici (Eriks.) | Brown rust | |
Barley | Puccinia hordei Otth. | Leaf rust |
Triticale | B. graminis (DC.) Speerf. sp. triticale | Powdery mildew |
Degree of Infection | Description of the Degree | Effectiveness of Disease Control in % |
---|---|---|
0 | No symptoms | 100% |
1 | Limited development of the pathogen in small, singular colonies | 90% |
2 | Mycelium visible with a small quantity of spores—less than 20% of the leaf surface | 80% |
3 | Extensive mycelium occupying 20–50% of the leaf surface | 50% |
4 | Abundant mycelium occupying more than 50% of the leaf surface | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rząd, K.; Nucia, A.; Grzelak, W.; Matysiak, J.; Kowalczyk, K.; Okoń, S.; Matwijczuk, A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. Int. J. Mol. Sci. 2024, 25, 8262. https://doi.org/10.3390/ijms25158262
Rząd K, Nucia A, Grzelak W, Matysiak J, Kowalczyk K, Okoń S, Matwijczuk A. Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. International Journal of Molecular Sciences. 2024; 25(15):8262. https://doi.org/10.3390/ijms25158262
Chicago/Turabian StyleRząd, Klaudia, Aleksandra Nucia, Weronika Grzelak, Joanna Matysiak, Krzysztof Kowalczyk, Sylwia Okoń, and Arkadiusz Matwijczuk. 2024. "Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases" International Journal of Molecular Sciences 25, no. 15: 8262. https://doi.org/10.3390/ijms25158262
APA StyleRząd, K., Nucia, A., Grzelak, W., Matysiak, J., Kowalczyk, K., Okoń, S., & Matwijczuk, A. (2024). Investigation of 2,4-Dihydroxylaryl-Substituted Heterocycles as Inhibitors of the Growth and Development of Biotrophic Fungal Pathogens Associated with the Most Common Cereal Diseases. International Journal of Molecular Sciences, 25(15), 8262. https://doi.org/10.3390/ijms25158262