Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment
Abstract
1. Introduction
2. Case Description
2.1. Diagnostic Timeline
2.2. Biochemical and Genetic Analyses
3. Treatment and Course of Symptoms
4. Materials and Methods
4.1. Clinical Analysis
4.2. Self-Evaluation Assessment of Symptoms
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harrison, J.E.; Weber, S.; Jakob, R.; Chute, C.G. ICD-11: An international classification of diseases for the twenty-first century. BMC Med. Inform. Decis. Mak. 2021, 21 (Suppl. S6), 206. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; van De Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International consensus criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Sapra, A.; Bhandari, P. Chronic fatigue syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557676/ (accessed on 25 November 2023).
- Abdulla, J.; Torpy, B.D.J. Chronic fatigue syndrome. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: Dartmouth, MA, USA, 2000. [Google Scholar]
- de Vega, W.C.; Herrera, S.; Vernon, S.D.; McGowan, P.O. Epigenetic modifications and glucocorticoid sensitivity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). BMC Med. Genom. 2017, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Allen, C.D. Use of Low-Dose Beta-Blockers to Treat Symptoms of Chronic Fatigue Syndrome. Master’s Thesis, The University of Utah, Salt Lake City, UT, USA, 2014. [Google Scholar]
- Montoya, J.G.; Holmes, T.H.; Anderson, J.N.; Maecker, H.T.; Rosenberg-Hasson, Y.; Valencia, I.J.; Chu, L.; Younger, J.W.; Tato, C.M.; Davis, M.M. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc. Natl. Acad. Sci. USA 2017, 114, E7150–E7158. [Google Scholar] [CrossRef]
- Brenu, E.W.; Hardcastle, S.L.; Atkinson, G.M.; van Driel, M.L.; Kreijkamp-Kaspers, S.; Ashton, K.J.; Staines, D.R.; Marshall-Gradisnik, S.M. Natural killer cells in patients with severe chronic fatigue syndrome. Autoimmun. Highlights 2013, 4, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Janal, M.N.; Ciccone, D.S.; Natelson, B.H. Sub-typing CFS patients on the basis of ‘minor’ symptoms. Biol. Psychol. 2006, 73, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Gimeno Pi, I.; Guitard Sein-Echaluce, M.L.; Rosselló Aubach, L.; Torres Puig-Gros, J.; Fernández Solà, J. Stressful events in the onset of chronic fatigue syndrome. Rev. Española De Salud Pública 2016, 90, e1–e7. [Google Scholar] [PubMed]
- Borsini, A.; Hepgul, N.; Mondelli, V.; Chalder, T.; Pariante, C.M. Childhood stressors in the development of fatigue syndromes: A review of the past 20 years of research. Psychol. Med. 2014, 44, 1809–1823. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.L.; Lattie, E.G.; Milrad, S.F.; Czaja, S.; Fletcher, M.A.; Klimas, N.; Perdomo, D.; Antoni, M.H. Telephone-administered versus live group cognitive behavioral stress management for adults with CFS. J. Psychosom. Res. 2017, 93, 41–47. [Google Scholar] [CrossRef]
- Hall, D.L.; Lattie, E.G.; Antoni, M.H.; Fletcher, M.A.; Czaja, S.; Perdomo, D.; Klimas, N.G. Stress management skills, cortisol awakening response, and post-exertional malaise in chronic fatigue syndrome. Psychoneuroendocrinology 2014, 49, 26–31. [Google Scholar] [CrossRef]
- Powell, D.J.; Liossi, C.; Moss-Morris, R.; Schlotz, W. Unstimulated cortisol secretory activity in everyday life and its relationship with fatigue and chronic fatigue syndrome: A systematic review and subset meta-analysis. Psychoneuroendocrinology 2013, 38, 2405–2422. [Google Scholar] [CrossRef] [PubMed]
- Rajeevan, M.S.; Smith, A.K.; Dimulescu, I.; Unger, E.R.; Vernon, S.D.; Heim, C.; Reeves, W.C. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome. Genes Brain Behav. 2007, 6, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Wyller, V.B.; Eriksen, H.R.; Malterud, K. Can sustained arousal explain the chronic fatigue syndrome? Behav. Brain Funct. 2009, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Mar, P.L.; Raj, S.R. Postural orthostatic tachycardia syndrome: Mechanisms and new therapies. Annu. Rev. Med. 2020, 71, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Clinician Coalition ME/CFS Treatment Recommendations US ME/CFS Version 1. Bateman Horne Center, 2021. Available online: https://batemanhornecenter.org/wp-content/uploads/filebase/Treatment-Recs-MECFS-Clinician-Coalition-V1-Feb.-2021.pdf (accessed on 27 November 2023).
- Sommerfeldt, L.; Portilla, H.; Jacobsen, L.; Gjerstad, J.; Wyller, V.B. Polymorphisms of adrenergic cardiovascular control genes are associated with adolescent chronic fatigue syndrome. Acta Paediatr. 2011, 100, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.T.; Kossowsky, J.; Oberlander, T.F.; Kaptchuk, T.J.; Saul, J.P.; Wyller, V.B.; Fagermoen, E.; Sulheim, D.; Gjerstad, J.; Winger, A.; et al. Genetic variation in catechol-O-methyltransferase modifies effects of clonidine treatment in chronic fatigue syndrome. Pharmacogenomics J. 2016, 16, 454–460. [Google Scholar] [CrossRef]
- Polli, A.; Hendrix, J.; Ickmans, K.; Bakusic, J.; Ghosh, M.; Monteyne, D.; Velkeniers, B.; Bekaert, B.; Nijs, J.; Godderis, L. Genetic and epigenetic regulation of catechol-O-methyltransferase in relation to inflammation in chronic fatigue syndrome and fibromyalgia. J. Transl. Med. 2022, 20, 487. [Google Scholar] [CrossRef]
- Riley, D.S.; Barber, M.S.; Kienle, G.S.; Aronson, J.K.; von Schoen-Angerer, T.; Tugwell, P.; Kiene, H.; Helfand, M.; Altman, D.G.; Sox, H.; et al. CARE guidelines for case reports: Explanation and elaboration document. J. Clin. Epidemiol. 2017, 89, 218–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, S.Y.; Wang, D.; Wu, M.Z.; He, J.K.; Zhang, J.L.; Zhao, B.; Hou, L.W.; Wang, J.Y.; Wang, L.; et al. Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci. Bull. 2021, 37, 853–862. [Google Scholar] [CrossRef]
- Jiménez, K.M.; Pereira-Morales, A.J.; Forero, D.A. MTHFR gene methylation is associated with perceived stress in healthy young adults. Psychiatr. Genet. 2018, 28, 41–46. [Google Scholar] [CrossRef]
- Wang, T.; Yin, J.; Miller, A.H.; Xiao, C. A systematic review of the association between fatigue and genetic polymorphisms. Brain Behav. Immun. 2017, 62, 230–244. [Google Scholar] [CrossRef] [PubMed]
- Prichard, B.N.; Owens, C.W.; Graham, B.R. Pharmacology and clinical use of moxonidine, a new centrally acting sympatholytic antihypertensive agent. J. Hum. Hypertens. 1997, 11 (Suppl. S1), S29–S45. [Google Scholar] [PubMed]
- Boot, E.; Booij, J.; Hasler, G.; Zinkstok, J.R.; de Haan, L.; Linszen, D.H.; van Amelsvoort, T.A. AMPT-induced monoamine depletion in humans: Evaluation of two alternative [123I]IBZM SPECT procedures. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Servera, C.; Cañes, L.; Alonso, J.; Puertas, L.; Taurón, M.; Rodríguez, C.; Martínez-González, J. Nuclear receptor NOR-1 (Neuron-derived Orphan Receptor-1) in pathological vascular remodelling and vascular remodelling. Clínica E Investig. En Arterioscler. 2022, 34, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Graf, W.D.; Unis, A.S.; Yates, C.M.; Sulzbacher, S.; Dinulos, M.B.; Jack, R.M.; Dugaw, K.A.; Paddock, M.N.; Parson, W.W. Catecholamines in patients with 22q11.2 deletion syndrome and the low-activity COMT polymorphism. Neurology 2001, 57, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Longhurst, J.G.; Carpenter, L.L.; Epperson, C.; Price, L.H.; McDougle, C.J. Effects of catecholamine depletion with AMPT (alpha-methyl-para-tyrosine) in obsessive-compulsive disorder. Biol. Psychiatry 1999, 46, 573–576. [Google Scholar] [CrossRef]
- Voruganti, L.; Slomka, P.; Zabel, P.; Costa, G.; So, A.; Mattar, A.; Awad, A.G. Subjective effects of AMPT-induced dopamine depletion in schizophrenia: Correlation between dysphoric responses and striatal D(2) binding ratios on SPECT imaging. Neuropsychopharmacology 2001, 25, 642–650. [Google Scholar] [CrossRef] [PubMed]
- da Silva Alves, F.; Bakker, G.; Schmitz, N.; Abeling, N.; Hasler, G.; van der Meer, J.; Nederveen, A.; de Haan, L.; Linszen, D.; van Amelsvoort, T. Dopaminergic modulation of the reward system in schizophrenia: A placebo-controlled dopamine depletion fMRI study. Eur. Neuropsychopharmacol. 2013, 23, 1577–1586. [Google Scholar] [CrossRef]
- Miller, H.L.; Delgado, P.L.; Salomon, R.M.; Heninger, G.R.; Charney, D.S. Effects of alpha-methyl-para-tyrosine (AMPT) in drug-free depressed patients. Neuropsychopharmacology 1996, 14, 151–157. [Google Scholar] [CrossRef]
Biochemical Target | Normal Range | Unit | Level | Value | Date of Measurement |
---|---|---|---|---|---|
5-HIAA (5-hydroxyindoleacetic acid) | <2.40 | mg/g | High | 3.05 * | November 2021 |
Adrenaline | <20 | μg | Normal | 11 | August 2012 |
Normal | 3.5 | July 2022 | |||
Normal | 10.22 | March 2023 | |||
B1 adrenergic receptor autoantibody | <15 | U/mL | High | 17.9 * | July 2021 |
B2 adrenergic receptor autoantibody | <8 | U/mL | High | 13.5 * | July 2021 |
Dopamine (plasma) | <85 | ng/L | Normal | 81 | March 2023 |
GABA urine/creatinine | 3–13.6 | μmol/g | High | 15.4 * | July 2022 |
Glutamate urine/creatinine | 8–25 | μmol/gCrea | High | 42.4 * | July 2022 |
M3-muscarinic autoantibodies AChR | <6 | U/mL | High | 8.4 * | July 2021 |
Metanephrine | <350 | μg | Normal | 78 | August 2012 |
High | 427 * | March 2023 | |||
Noradrenaline | <90 | μg | Normal | 77 | August 2012 |
Normal | 19.5 | July 2022 | |||
Noradrenaline | 70–750 (lying) | ng/L | Normal | 167 | March 2023 |
Noradrenaline | 200–1700 (standing) | ng/L | Normal | 518 | March 2023 |
Noradrenaline urine/creatinine | 32–58 | μg/gCrea | High | 64.9 * | July 2022 |
Noradrenaline/adrenaline | 3–6 | quotient | Normal | 5.6 | July 2022 |
Normetanephrine | <600 | μg | Normal | 270 | August 2012 |
Quinolinic acid | <5.50 | mg/g | High | 6.11 * | November 2021 |
Serotonin | 50–20 | μg/L | Normal | 39.7 | July 2022 |
Serotonin urine/creatinine | 148–230 | μg/gCrea | Low | 131.9 * | July 2022 |
Taurine | 5.4–31.3 | mg/L | Low | 4.8 * | July 2022 |
Tryptophan | 7.30–12.50 | mg/g | Normal | 9.86 | November 2021 |
Normal | 10.5 | July 2022 | |||
Tyrosine | 38.5–84.3 | μmol/L | Low | 35.18 * | November 2021 |
Low | 36.43 * | July 2022 | |||
VMA (vanillyl mandelic acid) | <3 | mg/g | High | 3.14 * | November 2021 |
Gene Target | Locus (GRCh38) | rs ID | Genotype | Gene Region |
---|---|---|---|---|
COMT | 22q11.21 | rs4680 | A/A homozygote | coding |
MAOA | Xp11.3 | VNTR30bp | High copy number | promoter |
MAOB | Xp11.3 | rs1799836 | T/T homozygote | intron |
FKBP5 | 6p21.31 | rs1360780 | C/T heterozygote | intron |
FKBP5 | 6p21.31 | rs9470080 | C/T heterozygote | intron |
FKBP5 | 6p21.31 | rs4713916 | G/A heterozygote | intron |
FKBP5 | 6p21.31 | rs9296158 | G/A heterozygote | intron |
NR3C1 | 5q31.3 | rs6198 | G/A heterozygote | 3´UTR |
MTHFR | 1p36.22 | rs1801133 | C/T heterozygote | coding |
SOD2 | 6q25.3 | rs4880 | C/T heterozygote | coding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ljungström, M.; Oltra, E.; Pardo, M. Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment. Int. J. Mol. Sci. 2024, 25, 7778. https://doi.org/10.3390/ijms25147778
Ljungström M, Oltra E, Pardo M. Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment. International Journal of Molecular Sciences. 2024; 25(14):7778. https://doi.org/10.3390/ijms25147778
Chicago/Turabian StyleLjungström, Maria, Elisa Oltra, and Marta Pardo. 2024. "Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment" International Journal of Molecular Sciences 25, no. 14: 7778. https://doi.org/10.3390/ijms25147778
APA StyleLjungström, M., Oltra, E., & Pardo, M. (2024). Stress-Related Chronic Fatigue Syndrome: A Case Report with a Positive Response to Alpha-Methyl-P-Tyrosine (AMPT) Treatment. International Journal of Molecular Sciences, 25(14), 7778. https://doi.org/10.3390/ijms25147778