Anticoagulant Properties of Coated Fe-Pd Ferromagnetic Shape Memory Ribbons
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nespoli, A.; Besseghini, S.; Pittaccio, S.; Villa, E.; Viscuso, S. The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators. Sens. Actuators A Phys. 2010, 158, 149–160. [Google Scholar] [CrossRef]
- Ozbulut, O.E.; Hurlebaus, S.; Desroches, R. Seismic Response Control Using Shape Memory Alloys: A Review. J. Intell. Mater. Syst. Struct. 2011, 22, 1531–1549. [Google Scholar] [CrossRef]
- Kumar, P.K.; Lagoudas, D.C. Introduction to Shape Memory Alloys. In Shape Memory Alloys: Modeling and Engineering Applications; Lagoudas, D.C., Ed.; Springer: Boston, MA, USA, 2008; pp. 1–51. [Google Scholar]
- Kiefer, B.; Lagoudas, D.C. Modeling of Magnetic SMAs. In Shape Memory Alloys: Modeling and Engineering Applications; Lagoudas, D.C., Ed.; Springer: Boston, MA, USA, 2008; pp. 325–393. [Google Scholar]
- Barker, S.; Rhoads, E.; Lindquist, P.; Vreugdenhil, M.; Mullner, P. Magnetic Shape Memory Micropump for Submicroliter Intracranial Drug Delivery in Rats. J. Med. Device 2016, 10, 041009. [Google Scholar] [CrossRef]
- Samira Orouji, O.; Zahra, G.; Leila Momeni, K.; Ali, M.; Fateme, B. Self-expanding stents based on shape memory alloys and shape memory polymers. J. Compos. Compd. 2020, 2, 92–98. [Google Scholar] [CrossRef]
- Francis, A.; Yang, Y.; Virtanen, S.; Boccaccini, A.R. Iron and iron-based alloys for temporary cardiovascular applications. J. Mater. Sci. Mater. Med. 2015, 26, 138. [Google Scholar] [CrossRef] [PubMed]
- Moravej, M.; Mantovani, D. Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci. 2011, 12, 4250–4270. [Google Scholar] [CrossRef] [Green Version]
- Stepan, L.L.; Levi, D.S.; Gans, E.; Mohanchandra, K.P.; Ujihara, M.; Carman, G.P. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi. J. Biomed. Mater. Res. A 2007, 82A, 768–776. [Google Scholar] [CrossRef]
- Huang, T.; Cheng, J.; Zheng, Y.F. In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering. Mater. Sci. Eng. C 2014, 35, 43–53. [Google Scholar] [CrossRef]
- Zink, M.; Mayr, S.G. Ferromagnetic shape memory alloys: Synthesis, characterisation and biocompatibility of Fe-Pd for mechanical coupling to cells. Mater. Sci. Technol. 2014, 30, 1579–1589. [Google Scholar] [CrossRef]
- Sofronie, M.; Tolea, F.; Crisan, A.D.; Popescu, B.; Valeanu, M. Magnetoelastic properties in polycrystalline ferromagnetic shape memory Heusler alloys. Procedia Struct. Integr. 2016, 2, 1530–1537. [Google Scholar] [CrossRef]
- Mehrabi, K.; Bruncko, M.; Kneissl, A.C.; Colic, M.; Stamenkovic, D.; Fercec, J.; Anzel, I.; Rudolf, R. Characterisation of melt spun Ni-Ti shape memory Ribbons’ microstructure. Met. Mater. Int. 2012, 18, 413–417. [Google Scholar] [CrossRef]
- Prida, V.M.; Vega, V.; Franco, V.; Llamazares, J.L.S.; Perez, M.J.; Santos, J.D.; Escoda, L.; Sunol, J.J.; Hernando, B. FePd melt-spun ribbons and nanowires: Fabrication and magneto-structural properties. J. Magn. Magn. Mater. 2009, 321, 790–792. [Google Scholar] [CrossRef]
- Sofronie, M.I.; Tolea, F.; Kuncser, V.; Valeanu, M.C.; Filoti, G. Magneto-Structural Properties and Magnetic Behavior of Fe-Pd Ribbons. IEEE Trans. Magn. 2015, 51, 2500404. [Google Scholar] [CrossRef]
- Jaganathan, S.K.; Supriyanto, E.; Murugesan, S.; Balaji, A.; Asokan, M.K. Biomaterials in Cardiovascular Research: Applications and Clinical Implications. BioMed Res. Int. 2014, 2014, 459465. [Google Scholar] [CrossRef] [Green Version]
- Al Nahain, A.; Ignjatovic, V.; Monagle, P.; Tsanaktsidis, J.; Ferro, V. Heparin mimetics with anticoagulant activity. Med. Res. Rev. 2018, 38, 1582–1613. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.Q.; Ye, X.Q.; Yin, X.Z.; Chen, S.G. Sulfation of citrus pectin by pyridine-sulfurtrioxide complex and its anticoagulant activity. LWT 2015, 60, 1162–1167. [Google Scholar] [CrossRef]
- Maas, N.C.; Gracher, A.H.P.; Sassaki, G.L.; Gorin, P.A.J.; Iacomini, M.; Cipriani, T.R. Sulfation pattern of citrus pectin and its carboxy-reduced derivatives: Influence on anticoagulant and antithrombotic effects. Carbohydr. Polym. 2012, 89, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Roman, Y.; Barddal, H.P.D.; Iacomini, M.; Sassaki, G.L.; Cipriani, T.R. Anticoagulant and antithrombotic effects of chemically sulfated fucogalactan and citrus pectin. Carbohydr. Polym. 2017, 174, 731–739. [Google Scholar] [CrossRef]
- Vityazev, F.V.; Golovchenko, V.V.; Patova, O.A.; Drozd, N.N.; Makarov, V.A.; Shashkov, A.S.; Ovodov, Y.S. Synthesis of sulfated pectins and their anticoagulant activity. Biochem. Mosc. 2010, 75, 759–768. [Google Scholar] [CrossRef]
- Thalla, P.K.; Contreras-Garcia, A.; Fadlallah, H.; Barrette, J.; De Crescenzo, G.; Merhi, Y.; Lerouge, S. A Versatile Star PEG Grafting Method for the Generation of Nonfouling and Nonthrombogenic Surfaces. BioMed. Res. Int. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Allenstein, U.; Szillat, F.; Weidt, A.; Zink, M.; Mayr, S.G. Interfacing hard and living matter: Plasma-assembled proteins on inorganic functional materials for enhanced coupling to cells and tissue. J. Mater. Chem. B 2014, 2, 7739–7746. [Google Scholar] [CrossRef] [PubMed]
- Nan, A.; Turcu, R.; Tudoran, C.; Sofronie, M.; Chiriac, A. Analysis of Functionalized Ferromagnetic Memory Alloys from the Perspective of Developing a Medical Vascular Implant. Polymers 2022, 14, 1397. [Google Scholar] [CrossRef]
- Sanchez-Alarcos, V.; Recarte, V.; Perez-Landazabal, J.I.; Gomez-Polo, C.; Chernenko, V.A.; Gonzalez, M.A. Reversible and irreversible martensitic transformations in Fe-Pd and Fe-Pd-Co alloys. Eur. Phys. J. Spec. Top. 2008, 158, 107–112. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lee, H.T. Grain size refinement and magnetostriction of ferromagnetic shape memory Fe-Pd-Rh alloys. J. Magn. Magn. Mater. 2010, 322, 197–207. [Google Scholar] [CrossRef]
- Vokoun, D.; Wang, Y.W.; Goryczka, T.; Hu, C.T. Magnetostrictive and shape memory properties of Fe-Pd alloys with Co and Pt additions. Smart Mater. Struct. 2005, 14, S261–S265. [Google Scholar] [CrossRef]
- Vokoun, D.; Hu, C.T.; Lo, Y.H.; Lancok, A.; Heczko, O. Transformation properties of Fe-70-Pd30-XInX shape memory melt-spun ribbons. Mater. Today Proc. 2015, 2, 845–848. [Google Scholar] [CrossRef]
- Hamann, S.; Gruner, M.E.; Irsen, S.; Buschbeck, J.; Bechtold, C.; Kock, I.; Mayr, S.G.; Savan, A.; Thienhaus, S.; Quandt, E.; et al. The ferromagnetic shape memory system Fe-Pd-Cu. Acta Mater. 2010, 58, 5949–5961. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Nojiri, T.; Ohtsuka, H.; Umemoto, M. Effect of Co and Ni on martensitic transformation and magnetic properties in Fe-Pd ferromagnetic shape memory alloys. Mater. Trans. 2003, 44, 2499–2502. [Google Scholar] [CrossRef] [Green Version]
- Sofronie, M.; Enculescu, M.; Crisan, A.D.; Tolea, F. Effect of Mn substitution on the structural, magnetic and magnetostrictive properties of Fe-Pd ferromagnetic shape memory alloy prepared as ribbons. Rom. Rep. Phys. 2020, 72, 502. [Google Scholar]
- Sofronie, M.; Tolea, F.; Tolea, M.; Popescu, B.; Valeanu, M. Magnetic and magnetostrictive properties of the ternary Fe67.5Pd30.5Ga2 ferromagnetic shape memory ribbons. J. Phys. Chem. Solids 2020, 142, 109446. [Google Scholar] [CrossRef]
- Tolea, F.; Sofronie, M. Martensitic transformation and related properties of Fe69.4Pd30.6 ferromagnetic shape memory ribbons. J. Optoelectron. Adv. Mater. 2018, 20, 701–706. [Google Scholar]
- Sofronie, M.; Popescu, B.; Crisan, A.D.; Lupu, A.R.; Tolea, F.; Valeanu, M. Magnetoelastic properties in polycrystalline Fe-Pd based ferromagnetic shape memory alloys. IOP Conf. Ser. Mater. Sci. Eng. 2019, 485, 012026. [Google Scholar] [CrossRef]
- Sirvio, J.A.; Ukkola, J.; Liimatainen, H. Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose 2019, 26, 2303–2316. [Google Scholar] [CrossRef] [Green Version]
- Levdansky, V.; Kondracenko, A.S.; Levdansky, A.; Kuznetsov, B.; Djakovitch, L.; Pinel, C. Sulfation of Microcrystalline Cellulose with Sulfamic Acid in N,N-Dimethylformamide and Diglyme. J. Sib. Fed. Univ. Chem. 2014, 7, 162–169. [Google Scholar]
- Kuznetsov, B.; Levdansky, V.; Kuznetsova, S.; Garyntseva, N.; Sudakova, I.; Levdansky, A. Integration of peroxide delignification and sulfamic acid sulfation methods for obtaining cellulose sulfates from aspen wood. Eur. J. Wood Wood Prod. 2018, 76, 999–1007. [Google Scholar] [CrossRef] [Green Version]
- Gorbet, M.B.; Sefton, M.V. Biomaterial-associated thrombosis: Roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 2004, 25, 5681–5703. [Google Scholar] [CrossRef]
- Silvestri, L.J.; Hurst, R.E.; Simpson, L.; Settine, J.M. Analysis of Sulfate in Complex Carbohydrates. Anal. Biochem. 1982, 123, 303–309. [Google Scholar] [CrossRef]
- Preisler, P.W.; Berger, L. Preparation of Tetrahydroxyquinone and Rhodizonic Acid Salts from the Product of the Oxidation of Inositol with Nitric Acid. J. Am. Chem. Soc. 1942, 64, 67–69. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunge, A.; Chiriac, A.; Sofronie, M.; Crăciunescu, I.; Porav, A.S.; Turcu, R. Anticoagulant Properties of Coated Fe-Pd Ferromagnetic Shape Memory Ribbons. Int. J. Mol. Sci. 2023, 24, 2452. https://doi.org/10.3390/ijms24032452
Bunge A, Chiriac A, Sofronie M, Crăciunescu I, Porav AS, Turcu R. Anticoagulant Properties of Coated Fe-Pd Ferromagnetic Shape Memory Ribbons. International Journal of Molecular Sciences. 2023; 24(3):2452. https://doi.org/10.3390/ijms24032452
Chicago/Turabian StyleBunge, Alexander, Alexandru Chiriac, Mihaela Sofronie, Izabell Crăciunescu, Alin Sebastian Porav, and Rodica Turcu. 2023. "Anticoagulant Properties of Coated Fe-Pd Ferromagnetic Shape Memory Ribbons" International Journal of Molecular Sciences 24, no. 3: 2452. https://doi.org/10.3390/ijms24032452