Electrophoretically Co-Deposited Collagen–Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration
Abstract
:1. Introduction
2. Results
2.1. Structural and Physicochemical Properties
2.2. In Vitro Testing of Membrane Biocompatibility
2.3. Animal Experiments
2.3.1. Postoperative Evaluation
2.3.2. Histological Analysis (Hard Palate)
Collagen Group
Collagen–Lactoferrin Group
Mucograft® Group
Control Group
2.3.3. Histological Analysis (Vestibule)
Collagen Group
Collagen–lactoferrin Group
Mucograft® Group
Control Group
2.3.4. Morphometric Analysis
3. Discussion
Limitations
4. Materials and Methods
4.1. Collagen–Lactoferrin Membrane SBA-EPD
4.2. Physicochemical Membrane Characterization
4.3. Biocompatibility Tests In Vitro
4.4. Animal Experiments In Vivo
4.5. Histologic and Morphometric Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Score | Signs |
---|---|
0 | No oedema or hyperemia |
1 | Mild oedema/ hyperemia of the oral mucosa |
2 | Moderate oedema/ hyperemia of the oral mucosa |
3 | Prominent oedema/ hyperemia of the oral mucosa |
Score | Signs |
---|---|
0 | No oedema |
1 | Mild signs of oedema, small amount of fluid in the intercellular space |
2 | Moderate signs of tissue oedema, average amount of fluid in the intercellular space |
3 | Prominent tissue oedema, significant amount of fluid in the intercellular space |
Score | Signs |
---|---|
0 | No inflammation |
1 | Presence of single inflammatory cells in the infiltrate (less than 10 cells in 1 field of view at ×400 magnification) |
2 | Moderate number of inflammatory cells in the infiltrate (from 11 to 29 cells in 1 field of view at ×400 magnification) |
3 | Large number of inflammatory cells in the infiltrate (more than 30 cells in 1 field of view at ×400 magnification) |
Score | Signs |
---|---|
0 | No signs of microcirculation disorders |
1 | Marginal standing (wall-to-wall) of erythrocytes in the vascular lumen |
2 | Initial manifestations of erythrocyte aggregation and agglutination in the vascular lumen |
3 | Stasis and sluggishness of erythrocytes in the vascular lumen |
Score | Signs |
---|---|
0 | No signs of fibroblast proliferation |
1 | Mild signs of hypertrophy and hyperplasia of fibroblasts, increase in their volume by less than 10% |
2 | Moderate signs of hypertrophy and hyperplasia of fibroblasts, increase in their volume by 20–30% |
3 | Prominent signs of hypertrophy and hyperplasia of fibroblasts, increase in their volume by more than 30% |
Score | Signs |
---|---|
0 | No granulation tissue |
1 | There is young granulation tissue with abundant signs of vascularization |
2 | There are thin bundles of connective tissue fibers and small numbers of vessels in the granulation tissue |
3 | Granulation tissue is practically absent, but there is a mature connective tissue formed |
Score | Signs |
---|---|
0 | No expression |
1 | Individual positively stained cells |
2 | Small number of positively stained cells (less than 19 per 1 field of view at a magnification of 400) |
3 | Significant number of positively stained cells (more than 20 per 1 field of view at a magnification of 400) |
References
- Duskova, M.; Leamerova, E.; Sosna, B.; Gojis, O. Guided Tissue Regeneration, Barrier Membranes and Reconstruction of the Cleft Maxillary Alveolus. J. Craniofac. Surg. 2006, 17, 1153–1160. [Google Scholar] [CrossRef]
- Schmitt, C.M.; Moest, T.; Lutz, R.; Wehrhan, F.; Neukam, F.W.; Schlegel, K.A. Long-Term Outcomes after Vestibuloplasty with a Porcine Collagen Matrix (Mucograft®) versus the Free Gingival Graft: A Comparative Prospective Clinical Trial. Clin. Oral Implant. Res. 2016, 27, e125–e133. [Google Scholar] [CrossRef]
- Preidl, R.H.M.; Reichert, S.; Coronel, T.V.; Kesting, M.; Wehrhan, F.; Schmitt, C.M. Free Gingival Graft and Collagen Matrix Revascularization in an Enoral Open Wound Situation. J. Oral Maxillofac. Surg. 2021, 79, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Kalakonda, B.; Farista, S.; Koppolu, P.; Baroud, K.; Uppada, U.; Mishra, A.; Savarimath, A.; Lingam, A.S. Evaluation of Patient Perceptions after Vestibuloplasty Procedure: A Comparison of Diode Laser and Scalpel Techniques. J. Clin. Diagn. Res. 2016, 10, ZC96–ZC100. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.M.; Tudor, C.; Kiener, K.; Wehrhan, F.; Schmitt, J.; Eitner, S.; Agaimy, A.; Schlegel, K.A. Vestibuloplasty: Porcine Collagen Matrix Versus Free Gingival Graft: A Clinical and Histologic Study. J. Periodontol. 2013, 84, 914–923. [Google Scholar] [CrossRef]
- Adams, D.R.; Petukhova, Y.; Halpern, L.R. The Versatile “Lip Switch” or Transitional Flap Vestibuloplasty Combined with Alveoloplasty and Implant Placement to Treat Atrophic Mandibles with Inadequate Vestibules and Attached Tissue: A Case Series and Review of the Literature. Spec. Care Dent. 2021, 41, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Wyrebek, B.; Gorska, R.; Gawron, K.; Gora, M.N.; Gorski, B.; Plakwicz, P. Periodontal Condition of Mandibular Incisors Treated with Modified Kazanjian Vestibuloplasty Compared to Untreated Sites: A Prospective Study. Adv. Clin. Exp. Med. 2021, 30, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Bherwani, C.; Kulloli, A.; Kathariya, R.; Shetty, S.; Agrawal, P.; Gujar, D.; Desai, A. Zucchelli’s Technique or Tunnel Technique with Subepithelial Connective Tissue Graft for Treatment of Multiple Gingival Recessions. J. Int. Acad. Periodontol. 2014, 16, 34–42. [Google Scholar]
- Tarasenko, S.V.; Zagorsky, S.V.; D’yachkova, E.Y. Application of Connective Tissue Grafts for Augmentation Gums. Ross. Stomatol. 2019, 12, 42–46. [Google Scholar] [CrossRef]
- Fayzullin, A.L.; Shekhter, A.B.; Istranov, L.P.; Istranova, E.V.; Rudenko, T.G.; Guller, A.E.; Aboyants, R.K.; Timashev, P.S.; Butnaru, D.V. Bioresorbable Collagen Materials in Surgery: 50 Years of Success. Sechenov Med. J. 2020, 11, 59–70. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Chen, B.; Tian, J.; Lin, Y.; Zhang, Y. Patient-Reported Outcome Measures and Clinical Outcomes Following Peri-Implant Vestibuloplasty with a Free Gingival Graft versus Xenogeneic Collagen Matrix: A Comparative Prospective Clinical Study. Int. J. Implant. Dent. 2021, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fazekas, R.; Molnár, B.; Kőhidai, L.; Láng, O.; Molnár, E.; Gánti, B.; Michailovits, G.; Windisch, P.; Vág, J. Blood Flow Kinetics of a Xenogeneic Collagen Matrix Following a Vestibuloplasty Procedure in the Human Gingiva—An Explorative Study. Oral Dis. 2019, 25, 1780–1788. [Google Scholar] [CrossRef] [PubMed]
- Kulakov, A.; Kogan, E.; Brailovskaya, T.; Vedyaeva, A.; Zharkov, N.; Krasilnikova, O.; Krasheninnikov, M.; Baranovskii, D.; Rasulov, T.; Klabukov, I. Mesenchymal Stromal Cells Enhance Vascularization and Epithelialization within 7 Days after Gingival Augmentation with Collagen Matrices in Rabbits. Dent. J. 2021, 9, 101. [Google Scholar] [CrossRef]
- Aprile, P.; Letourneur, D.; Simon-Yarza, T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv. Healthc. Mater. 2020, 9, 2000707. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, P.; Kaczyńska, K.; Kleczkowska, P.; Bukowska-ośko, I.; Kramkowski, K.; Sulejczak, D. The Lactoferrin Phenomenon—A Miracle Molecule. Molecules 2022, 27, 2941. [Google Scholar] [CrossRef] [PubMed]
- Antoshin, A.A.; Shpichka, A.I.; Huang, G.; Chen, K.; Lu, P.; Svistunov, A.A.; Lychagin, A.V.; Lipina, M.M.; Sinelnikov, M.Y.; Reshetov, I.V.; et al. Lactoferrin as a Regenerative Agent: The Old-New Panacea? Pharmacol. Res. 2021, 167, 105564. [Google Scholar] [CrossRef] [PubMed]
- Antoshin, A.; Dubinin, O.; Miao, L.; Istranova, E.; Bikmulina, P.; Fayzullin, A.; Magdanov, A.; Kravchik, M.; Kosheleva, N.; Solovieva, A.; et al. Semipermeable Barrier-Assisted Electrophoretic Deposition of Robust Collagen Membranes. J. Mater. Sci. 2023, 58, 9675–9697. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Kim, E.; Yan, K.; Liu, H.; Liu, C.; Dong, H.; Qu, X.; Shi, X.; Shen, J.; et al. Electrobiofabrication: Electrically Based Fabrication with Biologically Derived Materials. Biofabrication 2019, 11, 032002. [Google Scholar] [CrossRef]
- Vandrovcova, M.; Douglas, T.E.L.; Heinemann, S.; Scharnweber, D.; Dubruel, P.; Bacakova, L. Collagen–lactoferrin Fibrillar Coatings Enhance Osteoblast Proliferation and Differentiation. J. Biomed. Mater. Res. Part A 2015, 103, 525–533. [Google Scholar] [CrossRef]
- Takayama, Y.; Mizumachi, K. Effect of Lactoferrin-Embedded Collagen Membrane on Osteogenic Differentiation of Human Osteoblast-like Cells. J. Biosci. Bioeng. 2009, 107, 191–195. [Google Scholar] [CrossRef]
- Yuan, H.; Chen, L.; Hong, F.F. Homogeneous and Efficient Production of a Bacterial Nanocellulose-Lactoferrin-Collagen Composite under an Electric Field as a Matrix to Promote Wound Healing. Biomater. Sci. 2021, 9, 930–941. [Google Scholar] [CrossRef]
- Vallecillo, C.; Toledano-Osorio, M.; Vallecillo-Rivas, M.; Toledano, M.; Osorio, R. In Vitro Biodegradation Pattern of Collagen Matrices for Soft Tissue Augmentation. Polymers 2021, 13, 2633. [Google Scholar] [CrossRef] [PubMed]
- Blatt, S.; Burkhardt, V.; Kämmerer, P.W.; Pabst, A.M.; Sagheb, K.; Heller, M.; Al-Nawas, B.; Schiegnitz, E. Biofunctionalization of Porcine-Derived Collagen Matrices with Platelet Rich Fibrin: Influence on Angiogenesis In Vitro and In Vivo. Clin. Oral Investig. 2020, 24, 3425–3436. [Google Scholar] [CrossRef] [PubMed]
- Cicciù, M.; Herford, A.S.; Maria, V.; Bramanti, E. Platelet-Derived Growth Factor Type BB and Collagen Matrix for Soft Tissue Reconstruction after Muco-Epidermoid Carcinoma Removal: A Possible Therapeutic Option. J. Cancer Res. Ther. 2015, 11, 234. [Google Scholar] [CrossRef] [PubMed]
- Henschler, R.; Gabriel, C.; Schallmoser, K.; Burnouf, T.; Koh, M.B.C. Human Platelet Lysate Current Standards and Future Developments. Transfusion 2019, 59, 1407–1413. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.E.; Miller, M.S.; Serena, T.; Sheehan, P.; Lavery, L.; Kirsner, R.S.; Armstrong, D.G.; Reese, A.; Yankee, E.W.; Veves, A. Talactoferrin Alfa, a Recombinant Human Lactoferrin Promotes Healing of Diabetic Neuropathic Ulcers: A Phase 1/2 Clinical Study. Am. J. Surg. 2007, 193, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in Sodium Hyaluronate for Improvement of Hand Recovery after Flexor Tendon Repair Surgery: Randomized Controlled Trial. PLoS ONE 2014, 9, e110735. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Yamauchi, K.; Abe, F. Quality Control of Commercial Bovine Lactoferrin. BioMetals 2018, 31, 313–319. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.; Yu, T.; Ding, F.; Li, L.; Wang, X.; Fu, M.; Wang, H.; Huang, J.; Li, N.; et al. Large-Scale Production of Recombinant Human Lactoferrin from High-Expression, Marker-Free Transgenic Cloned Cows. Sci. Rep. 2017, 7, 10733. [Google Scholar] [CrossRef]
- Enax, J.; Amaechi, B.T.; Schulze zur Wiesche, E.; Meyer, F. Overview on Adjunct Ingredients Used in Hydroxyapatite-Based Oral Care Products. Biomimetics 2022, 7, 250. [Google Scholar] [CrossRef]
- Duarte, L.G.R.; Alencar, W.M.P.; Iacuzio, R.; Silva, N.C.C.; Picone, C.S.F. Synthesis, Characterization and Application of Antibacterial Lactoferrin Nanoparticles. Curr. Res. Food Sci. 2022, 5, 642–652. [Google Scholar] [CrossRef]
- Ali, A.M.M.; Benjakul, S.; Prodpran, T.; Kishimura, H. Extraction and Characterisation of Collagen from the Skin of Golden Carp (Probarbus jullieni), a Processing By-Product. Waste Biomass Valoriz. 2018, 9, 783–791. [Google Scholar] [CrossRef]
- Sikkema, R.; Baker, K.; Zhitomirsky, I. Electrophoretic Deposition of Polymers and Proteins for Biomedical Applications. Adv. Colloid Interface Sci. 2020, 284, 102272. [Google Scholar] [CrossRef]
- Lei, M.; Qu, X.; Liu, H.; Liu, Y.; Wang, S.; Wu, S.; Bentley, W.E.; Payne, G.F.; Liu, C. Programmable Electrofabrication of Porous Janus Films with Tunable Janus Balance for Anisotropic Cell Guidance and Tissue Regeneration. Adv. Funct. Mater. 2019, 29, 1900065. [Google Scholar] [CrossRef]
- Cunnane, E.M.; Davis, N.F.; Cunnane, C.V.; Lorentz, K.L.; Ryan, A.J.; Hess, J.; Weinbaum, J.S.; Walsh, M.T.; O’Brien, F.J.; Vorp, D.A. Mechanical, Compositional and Morphological Characterisation of the Human Male Urethra for the Development of a Biomimetic Tissue Engineered Urethral Scaffold. Biomaterials 2021, 269, 120651. [Google Scholar] [CrossRef] [PubMed]
- Parry, D.A.D. The Molecular Fibrillar Structure of Collagen and Its Relationship to the Mechanical Properties of Connective Tissue. Biophys. Chem. 1988, 29, 195–209. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, F.; Asahina, I.; Moriyama, T.; Ishii, M.; Omura, K. Cultured Mucosal Cell Sheet with a Double Layer of Keratinocytes and Fibroblasts on a Collagen Membrane. Tissue Eng. 2004, 10, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Freedman, L.P.; Gibson, M.C.; Ethier, S.P.; Soule, H.R.; Neve, R.M.; Reid, Y.A. Reproducibility: Changing the Policies and Culture of Cell Line Authentication. Nat. Methods 2015, 12, 493–497. [Google Scholar] [CrossRef]
- Tang, L.; Wu, J.J.; Ma, Q.; Cui, T.; Andreopoulos, F.M.; Gil, J.; Valdes, J.; Davis, S.C.; Li, J. Human Lactoferrin Stimulates Skin Keratinocyte Function and Wound Re-Epithelialization. Br. J. Dermatol. 2010, 163, 38–47. [Google Scholar] [CrossRef]
- McKeown, S.T.W.; Lundy, F.T.; Nelson, J.; Lockhart, D.; Irwin, C.R.; Cowan, C.G.; Marley, J.J. The Cytotoxic Effects of Human Neutrophil Peptide-1 (HNP1) and Lactoferrin on Oral Squamous Cell Carcinoma (OSCC) In Vitro. Oral Oncol. 2006, 42, 685–690. [Google Scholar] [CrossRef]
- Tang, L.; Cui, T.; Wu, J.J.; Liu-Mares, W.; Huang, N.; Li, J. A Rice-Derived Recombinant Human Lactoferrin Stimulates Fibroblast Proliferation, Migration, and Sustains Cell Survival. Wound Repair Regen. 2010, 18, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nadolska, B.; Fra̧czek, M.; Krȩcicki, T.; Kociȩba, M.; Zimecki, M. Lactoferrin Inhibits the Growth of Nasal Polyp Fibroblasts. Pharmacol. Rep. 2010, 62, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Martz, E.; Steinberg, M.S. The Role of Cell-cell Contact in “Contact” Inhibition of Cell Division: A Review and New Evidence. J. Cell. Physiol. 1972, 79, 189–210. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, E.A.; Comstock, S.S.; Yi, C.; Contractor, N.; Donovan, S.M. Dietary Bovine Lactoferrin Increases Intestinal Cell Proliferation in Neonatal Piglets. J. Nutr. 2014, 144, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Lönnerdal, B. Transcriptomic Profiling of Intestinal Epithelial Cells in Response to Human, Bovine and Commercial Bovine Lactoferrins. BioMetals 2014, 27, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.N.; Li, Y.; Sangild, P.T.; Bering, S.B.; Chatterton, D.E.W. Effects of Bovine Lactoferrin on the Immature Porcine Intestine. Br. J. Nutr. 2014, 111, 321–331. [Google Scholar] [CrossRef]
- Nguyen, D.N.; Jiang, P.; Stensballe, A.; Bendixen, E.; Sangild, P.T.; Chatterton, D.E.W. Bovine Lactoferrin Regulates Cell Survival, Apoptosis and Inflammation in Intestinal Epithelial Cells and Preterm Pig Intestine. J. Proteom. 2016, 139, 95–102. [Google Scholar] [CrossRef]
- Jain, R.; Kim, R.; Waldvogel-Thurlow, S.; Hwang, P.; Cornish, J.; Douglas, R. The Effects of Topical Agents on Paranasal Sinus Mucosa Healing: A Rabbit Study. Int. Forum Allergy Rhinol. 2015, 5, 310–317. [Google Scholar] [CrossRef]
- Li, P.; Guo, X. A Review: Therapeutic Potential of Adipose-Derived Stem Cells in Cutaneous Wound Healing and Regeneration. Stem Cell Res. Ther. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Toledano, M.; Toledano-Osorio, M.; Carrasco-Carmona, Á.; Vallecillo, C.; Lynch, C.D.; Osorio, M.T.; Osorio, R. State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part I: Natural Polymers-Based Biomaterials. Polymers 2020, 12, 1850. [Google Scholar] [CrossRef]
- Goldman, I.L.; Georgieva, S.G.; Gurskiy, Y.G.; Krasnov, A.N.; Deykin, A.V.; Popov, A.N.; Ermolkevich, T.G.; Budzevich, A.I.; Chernousov, A.D.; Sadchikova, E.R. Production of Human Lactoferrin in Animal Milk. Biochem. Cell Biol. 2012, 90, 513–519. [Google Scholar] [CrossRef]
- Yegorov, Y.E.; Vishnyakova, K.S.; Pan, X.; Egorov, A.E.; Popov, K.V.; Tevonyan, L.L.; Chashchina, G.V.; Kaluzhny, D.N. Mechanisms of Phototoxic Effects of Cationic Porphyrins on Human Cells In Vitro. Molecules 2023, 28, 1090. [Google Scholar] [CrossRef] [PubMed]
- Samandari, M.H.; Yaghmaei, M.; Ejlali, M.; Moshref, M.; Saffar, A.S. Use of Amnion as a Graft Material in Vestibuloplasty: A Preliminary Report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 97, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Meza-Mauricio, J.; Furquim, C.P.; Geldres, A.; Mendoza-Azpur, G.; Retamal-Valdes, B.; Moraschini, V.; Faveri, M. Is the Use of Platelet-Rich Fibrin Effective in the Healing, Control of Pain, and Postoperative Bleeding in the Palatal Area after Free Gingival Graft Harvesting? A Systematic Review of Randomized Clinical Studies. Clin. Oral Investig. 2021, 25, 4239–4249. [Google Scholar] [CrossRef]
- Arifin, W.N.; Zahiruddin, W.M. Sample Size Calculation in Animal Studies Using Resource Equation Approach. Malays. J. Med. Sci. 2017, 24, 101–105. [Google Scholar] [CrossRef]
Membrane | Dry Thickness, µm | Swelling, % | Shrinkage Temperature, °C | Young’s Modulus, MPa | Strain at Fracture, % |
---|---|---|---|---|---|
Col | 280 ± 23 * | 545 ± 44 | 55 ± 0.5 | 3.2 ± 0.6 | 61 ± 6 |
Col-LF | 320 ± 15 | 572 ± 53 | 54.5 ± 0.8 | 3 ± 0.7 | 59 ± 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antoshin, A.; Gostev, M.; Khristidis, Y.; Giliazova, A.; Voloshin, S.; Blagushina, N.; Smirnova, O.; Diachkova, E.; Istranova, E.; Usanova, A.; et al. Electrophoretically Co-Deposited Collagen–Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. Int. J. Mol. Sci. 2023, 24, 17330. https://doi.org/10.3390/ijms242417330
Antoshin A, Gostev M, Khristidis Y, Giliazova A, Voloshin S, Blagushina N, Smirnova O, Diachkova E, Istranova E, Usanova A, et al. Electrophoretically Co-Deposited Collagen–Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. International Journal of Molecular Sciences. 2023; 24(24):17330. https://doi.org/10.3390/ijms242417330
Chicago/Turabian StyleAntoshin, Artem, Mikhail Gostev, Yana Khristidis, Aliia Giliazova, Sergei Voloshin, Nataliia Blagushina, Olga Smirnova, Ekaterina Diachkova, Elena Istranova, Anna Usanova, and et al. 2023. "Electrophoretically Co-Deposited Collagen–Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration" International Journal of Molecular Sciences 24, no. 24: 17330. https://doi.org/10.3390/ijms242417330
APA StyleAntoshin, A., Gostev, M., Khristidis, Y., Giliazova, A., Voloshin, S., Blagushina, N., Smirnova, O., Diachkova, E., Istranova, E., Usanova, A., Solodov, N., Fayzullin, A., Ivanova, E., Sadchikova, E., Vergara Bashkatova, M. N., Drakina, O., Tarasenko, S., & Timashev, P. (2023). Electrophoretically Co-Deposited Collagen–Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. International Journal of Molecular Sciences, 24(24), 17330. https://doi.org/10.3390/ijms242417330