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Abstract: The quality of soft tissue defect regeneration after dental surgeries largely determines their
final success. Collagen membranes have been proposed for the healing of such defects, but in some
cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this
purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic
activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted elec-
trophoretic deposition (SBA-EPD) method for the production of collagen–lactoferrin membranes. The
membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin
release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the
collagen–lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT)
and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty
and free gingival graft harvesting models, we showed that collagen–lactoferrin membranes decreased
the wound inflammation and increased the healing rates and regeneration quality. In some parame-
ters, collagen–lactoferrin membranes outperformed not only blank collagen membranes, but also the
commercial membrane Mucograft®. Thus, we proved that collagen–lactoferrin membranes produced
by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft
tissue regeneration in the oral cavity.

Keywords: collagen; lactoferrin; electrophoretic deposition; SBA-EPD; vestibuloplasty; free gingival
graft harvesting; membrane

1. Introduction

The quality of the oral tissue regeneration after dental surgeries, for a number of them,
plays a crucial role affecting their final success. Regarding oral tissue regeneration, guided
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bone regeneration is the most commonly mentioned in the literature [1], but another
important aspect is the regeneration of soft tissue, particularly the mucosa. Mucosal
regeneration, for example, may be required for surgeries such as vestibuloplasty and free
gingival graft (FGG) harvesting in the hard palate region [2,3]. Vestibuloplasty is a surgical
procedure that aims to increase the depth of or reshape the space between the mucosa of
the inner surface of the cheek or lip and the alveolar bone. A free gingival graft is usually
harvested from the hard palate in order to increase the volume of gingival tissue in another
(deficient) area of the mouth.

Particularly, FGG from the hard palate may be harvested for the purpose of vestibulo-
plasty (Clark’s modification) to cover an exposed alveolar periosteum [4]. However, for
covering large defects, the area of the FGG available for harvesting may be insufficient [5,6].
In this case, if the periosteum heals naturally, the process will be long and painful for the
patient; it may also be accompanied by infectious complications, scarring, and deformation
of the newly formed mucosa [7]. Similarly, when FGG is harvested, the connective tissue
layer covering the hard palate periosteum is exposed, and in the case of natural healing, it
is extremely painful for the patient in the postoperative period and can be associated with
infectious complications [8,9].

Both of these cases require the use of auxiliary methods to regenerate the deficient
mucosal cover. One of the possible approaches is the use of membranes (also called
matrices, scaffolds). For this purpose, the membranes of a biological (allogenic or more
often xenogenic) nature and based on collagen (Col) are the most favored. To date, a large
number of collagen-containing membranes are available on the market. The increased
interest in collagen membranes is due to their properties: biocompatibility, biodegradation,
strength, elasticity, and pro-regenerative properties [10–12].

In particular, the collagen-based membrane Mucograft® has been widely used as
a “gold standard” for enlarging the area of the attached gingiva. However, according to the
data of recent studies, its use in extensive defects of the oral mucosa does not always lead
to the necessary soft tissue volume regeneration, while histological analysis has shown
insufficient vascularization of the newly formed tissues [13].

One of the possible solutions to improve the healing properties of collagen membranes
may be the addition of biologically active substances (BAS) into their structure [14]. Among
such BAS, a promising candidate for the needs of dentistry is lactoferrin (LF), a natural
protein with powerful antimicrobial, pro-regenerative, and angiogenic activities [15]. In-
deed, a number of preclinical and clinical trials have proved that LF may be valuable for
epithelial barrier and connective tissue regeneration [16], which is especially relevant for
oral soft tissue regeneration.

We have previously demonstrated the potential of semipermeable barrier-assisted
electrophoretic deposition (SBA-EPD) for the preparation of collagen membranes for dental
applications [17]. SBA-EPD allows for producing collagen membranes with controlled
and reproducible mechanical and biodegradation properties that can be varied in a wide
range. In addition, the EPD principle allows for the simultaneous incorporation of other
substances into a formed collagen membrane (including BASs) [18].

Therefore, in this work, we applied the collagen–lactoferrin electrophoretic co-deposition
principle for the production of membranes for oral soft tissue regeneration. The beneficial
effects of LF incorporation into collagen membranes have been shown in vitro on two cell
types (keratinocytes and fibroblasts) and in vivo in animal experiments (vestibuloplasty
and free gingival graft harvesting models). According to our knowledge and literature
analysis, this is the first work to apply the EPD principle for the production (co-deposition)
of collagen–lactoferrin membranes. Furthermore, collagen has already been combined with
lactoferrin to make membranes for guided bone regeneration [19,20] (in vitro studies) or
skin healing [21] (in vitro and in vivo studies). However, a collagen–lactoferrin (Col-LF)
composition has not yet been tested for the regeneration of soft tissues in the oral cavity.
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2. Results
2.1. Structural and Physicochemical Properties

The structure of the Col-LF membranes had an interface design (Figure 1a). Scanning
electron microscopy (SEM) photographs show that their top side was solid and unperfo-
rated, while the bottom side was perforated; the central part of the membranes (section)
was layered and porous. The pores of the central part were not open: they were located
between the deposited collagen layers and had no exit to the surface, except for the layers
located close to the bottom side of the membrane; in this case, the “openness” of the pores
was provided by artificially created mechanical perforations.
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Figure 1. Structural and chemical properties of Col-LF membranes. (a) Top (T), bottom (B), and cross
(C) structure of membranes investigated by SEM; (b) kinetics of LF release from Col-LF membranes
over time, as a percentage of total LF content in the membrane.

The kinetics of LF release from the membranes (Figure 1b) were relatively stable over
the 3 days: it was shown that about 40% of the LF is released in the first 10 h after membrane
placement in the liquid medium and, thereafter, this rate slowed down but remained stable,
and the LF was released almost completely (98 ± 2%) by the 75th hour of the observation.

When analyzing and comparing the physical properties of the Col and Col-LF mem-
branes, a statistically significant difference was found only in their thickness, while no
significant differences were found in the swelling, shrinkage temperature, or mechanical
properties (Young’s modulus and strain at fracture) (Table 1).
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Table 1. Physical characteristics of collagen and collagen–lactoferrin membranes.

Membrane Dry Thickness,
µm

Swelling,
%

Shrinkage Temperature,
◦C

Young’s Modulus,
MPa

Strain at Fracture,
%

Col 280 ± 23 * 545 ± 44 55 ± 0.5 3.2 ± 0.6 61 ± 6

Col-LF 320 ± 15 572 ± 53 54.5 ± 0.8 3 ± 0.7 59 ± 8

Abbreviations: Col—collagen membrane; Col-LF—collagen and lactoferrin membrane. Data are presented as
mean ± SD. * p < 0.05.

2.2. In Vitro Testing of Membrane Biocompatibility

The contact (direct) effect of the produced Col-LF membranes in comparison to the Col
membranes was shown on the HaCaT (keratinocytes) and 977hTERT (fibroblasts) cell types
(Figure 2). It was shown that the HaCaT cell line had a statistically higher amount of DNA
on membranes with lactoferrin relative to blank collagen membranes by 24 h of culturing
(Figure 2a) [1184 ± 274 ng vs. 320 ± 72 ng], which was simultaneously associated with a
decrease in normalized metabolic activity (Figure 2b) [(1.2 ± 0.3) × 106 vs. (3.5 ± 0.6) × 106].
At 72 h, the amount of DNA for the Col-LF group decreased and equaled the Col group,
while, by 120 h, it increased slightly for both groups. The normalized metabolic activity for
the Col-LF group gradually increased, and by 120 h it was statistically significantly higher
than that for the Col group.
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Figure 2. Contact biocompatibility of collagen and collagen–lactoferrin membranes. (a) Prolifera-
tive activity of HaCaTs; (b) normalized metabolic activity of HaCaTs; (c) proliferative activity of
977hTERTs; (d) normalized metabolic activity of 977hTERTs. Results are presented as mean ± SD.
* p < 0.05.

The proliferative pattern was different in the 977hTERT cell line relative to the HaCaT
cell line (Figure 2c). The proliferative activity growth rate was slower in the two groups,
but by 120 h, the difference in the amount of DNA was quite large between the Col-LF
and Col membranes (3948 ± 772 ng vs. 656 ± 150 ng, respectively). The change in the
normalized metabolic activity was inversely proportional to the rate of cell growth in the
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groups (Figure 2d), and for the LF-Col group, starting from 72 h, it was the lesser the greater
the rate of cell proliferation was.

2.3. Animal Experiments
2.3.1. Postoperative Evaluation

The results of the oral soft tissue assessment of the operated-on animals in different
groups are shown in Figure 3.
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The level of hyperemia on day 3 on the hard palate (Figure 3a) was statistically
significantly less in the Col-LF membrane group compared to the control group, while on



Int. J. Mol. Sci. 2023, 24, 17330 6 of 21

the following days this score equalized for all other groups and gradually decreased. In
the vestibuloplasty area (Figure 3b), the hyperemia was statistically significantly less on
day 5 in the Col-LF group compared to the Mucograft® group, but by day 7, the statistically
significant difference between the groups disappeared. Nevertheless, the Col-LF group
tended to have less hyperemia overall compared to the others.

The most pronounced oedema in the area of the hard palate was observed in the
control group on all days, where healing occurred naturally (Figure 3c). Interestingly,
on days 3 and 5, only the Col-LF group had significantly less oedema than the control
group. A similar trend in the reduction in oedema for the Col-LF group was noted in
vestibuloplasty (Figure 3d), and oedema was significantly lower in the Col-LF group
compared to the Mucograft® application group on both days 3 and 7.

The tissue regeneration of the defect area on the hard palate and in the vestibulum was
assessed by measuring the area of newly formed tissue at 7 and 14 days postoperatively
as the severity of oedema and hyperemia progressively decreased. In the FGG hard
palate harvesting group at day 7 (Figure 3e), better regeneration was noted in the Col-
LF membrane group (84 ± 2%) compared to the Col and control groups (60 ± 10% and
57 ± 20%, respectively), while the Mucograft® membrane (74 ± 7%) was only more effective
than the control group. By day 14, the statistically significant differences between all groups
disappeared.

In contrast, in the vestibuloplasty group (Figure 3f), a statistically significant difference
between the groups appeared only by day 14 postoperatively, and the highest degree of
regeneration was again shown for the Col-LF group (95 ± 3%), which was statistically
significantly greater than that seen in the Col and Mucograft® groups (81 ± 11% and
80 ± 7%).

2.3.2. Histological Analysis (Hard Palate)
Collagen Group

The regenerated defect was lined with stratified squamous non-keratinized epithelium
that, in some zones, was necrotic. Signs of exudation and microcirculatory disorders were
determined near the necrosis zones (Figure 4a). In the submucosa and the underlying
tissues, the granulation tissue, in large quantities, as well as newly formed connective tissue
built of multidirectional bundles of thin collagen fibers were determined. Between the colla-
gen fibers, there were fibroblasts and immune cells (segmented neutrophils, macrophages,
plasmocytes). Also, in this area, there was a moderate number of newly formed vessels with
thin, not fully formed walls and a lining of thinned endothelium. In some places, the ves-
sels were surrounded by moderately pronounced infiltration represented by lymphocytes,
macrophages, and single eosinophils.

At Mallory staining of the submucosa (Figure 4b), multidirectional bundles of thin
collagen fibers stained in light blue color were determined; the nuclei of fibroblasts were
reddish in color. The immunohistochemical reaction to α-smooth muscle actin (α-SMA)
with antibodies detected moderate expression in fibroblasts (++) as well as in the muscularis
vasculature (++) (Figure 4c). Myofibroblasts formed a thick layer of α-SMA-positive cells
under the epithelium at the implantation site.

Collagen–Lactoferrin Group

The regenerated defect was lined with stratified squamous non-keratinized epithe-
lium without signs of dystrophy. Necrotic changes in the epithelium were not detected
(Figure 4d). In the submucosa and underlying tissues, there was a small amount of granu-
lation tissue, and newly formed connective tissue was determined. Also, in this area, there
were fibroblasts with elongated ovoid basophilic nuclei, as well as immune cells in small
numbers. It is worth noting the abundant vascularization in the implantation area: a large
number of newly formed vessels with a multilayer-formed thick wall and endothelium
lining of the usual structure were determined. In some places, vessels were surrounded by
a weak infiltration of lymphocytes, macrophages, and single eosinophils.
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At Mallory staining of the submucosa (Figure 4e), unidirectional bundles of collagen
fibers of a dark blue color were determined; the fibroblast nuclei were reddish in color, and
the bundles of muscle fibers were stained yellowish. The immunohistochemical reaction to
α-SMA with antibodies detected weak expression in fibroblasts (+) and moderate expression
in vascular muscle (++) (Figure 4f).
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Figure 4. Morphological analysis of hard palate regeneration sites after free gingival graft harvesting.
Groups: Col (a–c), Col-LF (d–f), Mucograft (g–i), control (j–l). Magnification ×100. H&E, Mallory,
α-SMA staining. Remaining fragments of the membrane (white arrow), thick collagen fibers of
mature granulation tissue (green arrows), blood vessel loops (*) indicating neoangiogenesis.

Mucograft® Group

The regenerated defect was lined with significantly thickened stratified squamous
non-keratinized epithelium. No areas of epithelium necrosis were found (Figure 4g). In the
middle part of the defect, there was a collagen matrix consisting of unidirectional fibers that
were significantly thickened due to hyalinosis. Between the fibers, there were thin layers of
granulation tissue, immune cells (segmented neutrophils, macrophages, plasmocytes), and
a small number of fibroblasts. More granulation tissue was present at the periphery of the
implant, with newly formed vessels with thin walls and lined with formed endotheliocytes.
The signs of exudation and microcirculatory disorders were weak.
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At Mallory staining of the implantation area (Figure 4h), there were elements of colla-
gen material consisting of unidirectional collagen fibers that were significantly thickened
and stained bright blue; the fibroblast nuclei were reddish in color, and the immune cell
nuclei were reddish-purple in color. The immunohistochemical reaction to α-SMA with
antibodies revealed moderate expression in myofibroblasts as well as in myocytes of the
vascular wall (++) (Figure 4i).

Control Group

The regenerated defect was lined with significantly thickened or thinned stratified
squamous non-keratinized epithelium (Figure 4j). In the submucosa, collagen fibers were
practically unidirectional, and a small number of fibroblasts and thin-walled vessels were
detected. As well, areas of necrosis were detected that were densely infiltrated and sur-
rounded by a wall of immune cells (predominantly segmented neutrophils with a small
number of macrophages and plasmocytes). There were also signs of exudation and micro-
circulatory disorders near the necrosis zones.

Mallory staining revealed unidirectional parallel bundles of collagen fibers stained
blue, while the fibroblast nuclei were reddish in color and immune cell nuclei were reddish-
purple in color (Figure 4k). The immunohistochemical reaction to α-SMA with antibodies
showed weak expression in myocytes of the vessel walls (+) (Figure 4l).

2.3.3. Histological Analysis (Vestibule)
Collagen Group

The regenerated defect was lined with stratified squamous non-keratinized epithelium
that, in some areas, was necrotic. Signs of exudation and microcirculatory disorders
were detected near the necrosis zones (Figure 5a). In the submucosa and the underlying
tissues, granulation tissue was determined in large quantities, as well as newly formed
connective tissue built of thin collagen fibers. Between collagen fibers, there were fibroblasts
and immune cells in large numbers (segmented neutrophils, macrophages, plasmocytes).
Newly formed vessels with thin, not fully formed walls and thinning endothelium lining
were also detected in this area. In some places, the vessels were surrounded by moderately
expressed infiltration represented by lymphocytes, macrophages, and single eosinophils.

At Mallory staining, the multidirectional bundles of thin collagen fibers were stained
in a light blue color, and the nuclei of fibroblasts were reddish in color (Figure 5b). The
immunohistochemical reaction to α-SMA with antibodies detected moderate expression in
fibroblasts (++) as well as in the muscularis vasculature (++) (Figure 5c). Myofibroblasts
formed a thick layer of α-SMA-positive cells under the epithelium at the implantation site.

Collagen–lactoferrin Group

The regenerated defect was lined with stratified squamous non-keratinized epithelium
and no necrotic changes were detected (Figure 5d). In the submucosa, there were fibroblasts
with elongated ovoid basophilic nuclei, a small number of immune cells, and granulation
tissue. A large number of newly formed vessels with a fully formed thick wall of several
layers and endothelial lining of the usual structure were revealed.

At Mallory staining (Figure 5e), unidirectional bundles of collagen fibers of a dark
blue color were determined; the fibroblast nuclei were reddish in color, and the muscle
fiber bundles were yellowish in color. The immunohistochemical reaction to α-SMA with
antibodies detected weak expression in fibroblasts (+) and moderate expression in vascular
muscularis (++) (Figure 5f).
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Figure 5. Morphological analysis of the regeneration sites after vestibuloplasty. Groups: Col (a–c),
Col-LF (d–f), Mucograft (g–i), control (j–l). Magnification ×100. H&E, Mallory, α-SMA staining.
Remaining fragments of the membrane (white arrow), thick collagen fibers of mature granulation
tissue (green arrows), blood vessel loops (*) indicating neoangiogenesis.

Mucograft® Group

The regenerated defect was lined with stratified squamous non-keratinized epithelium
and no necrotic changes were detected (Figure 5g). The middle part of the implantation area
contained collagen matrix consisting of unidirectional collagen fibers that were significantly
thickened due to hyalinosis. Between the fibers, there were thin layers of granulation
tissue, immune cells (segmented neutrophils, macrophages, plasmocytes), and fibroblasts
in a small amount. More granulation tissue was present at the periphery of the implant
with newly formed vessels with thin walls and lined with formed endotheliocytes. The
signs of exudation and microcirculatory disorders were weak.

At Mallory staining (Figure 5h), the collagen material elements consisting of unidirec-
tional collagen fibers were stained bright blue. In some areas, the forming thin collagen
fibers had a light blue coloration, the fibroblast nuclei were reddish in color, and the nu-
clei of immune cells were reddish-purple in color. The immunohistochemical reaction to
α-SMA with antibodies showed moderate expression in myo- and fibroblasts, as well as in
myocytes of the vascular wall (++) (Figure 5i).
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Control Group

The regenerated defect was lined with stratified squamous non-keratinized epithelium
that in some areas was thin or thickened compared to normal epithelium and formed
outgrowths penetrating the submucosa (Figure 5j). In some areas, the epithelium was
necrotized. In the submucosa, there were also foci of necrosis infiltrated with neutrophils
and surrounded by shafts of segmented neutrophils, lymphocytes, and plasmocytes. Signs
of exudation and microcirculatory disorders were determined near the necrosis zones.
There were also zones of granulation tissue growth, and in some areas, connective tissue
was formed. Collagen fibers in most areas had the same direction, and a small number of
fibroblasts was determined. Thin-walled vessels were present, and a moderate infiltration
of neutrophils and lymphocytes was determined around them.

Mallory staining revealed unidirectional, parallel bundles of bluish-colored collagen
fibers in the submucosa (Figure 5k). The nuclei of fibroblasts as well as inflammatory cells
were dark red in color, and the muscle fibers were yellowish in color. The immunohisto-
chemical reaction to α-SMA with antibodies revealed weak expression in the muscular wall
of vasculature (+) (Figure 5l).

2.3.4. Morphometric Analysis

After conducting semiquantitative and quantitative analyses of morphologic changes
in defects of vestibuloplasty and FGG harvesting models, the following differences were
found (Figure 6). After vestibuloplasty, there was a statistically significant difference between
the Col-LF group and the control group in terms of inflammatory reactions (Figure 6a–c):
exudation (median 0.5 [0; 1] vs. 2 [1; 3]), immune cell infiltration (median 1 [0; 1] vs. 3 [1; 3]),
and microcirculatory changes (median 1 [0; 1] vs. 2 [2; 2]). No other group except Col-LF
could decrease the inflammation in comparison to control.
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Regarding regeneration (Figure 6d–f), there was the opposite tendency. After both
types of operation (vestibuloplasty and FGG harvesting), the fibroblast proliferation was
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statistically significantly higher in the Col-LF group than in the control group (median 3
[2; 3] vs. 1 [1; 1], respectively). No other group except Col-LF could increase the fibroblast
proliferation in comparison to the control group. The more pronounced differences of the
Col-LF group from the others were in regards to neovascularization.

In the case of hard palate FGG harvesting, the density of the vessels in the Col-LF
group (median 550 [400; 1100] vessels/mm2) was statistically significantly different from
that of the control group (median value 400 [300; 400] vessels/mm2) and of the Col group
(median value 400 [200; 600] vessels/mm2). In vestibuloplasty surgery, the Col-LF group
(median 700 [500; 900] vessels/mm2) differed not only from the Col group (median 400
[100; 600] vessels/mm2) and the control group (median 400 [400; 500] vessels/mm2), but
also from the Mucograft® group (median 400 [100; 700] vessels/mm2).

3. Discussion

Various BASs are added to collagen membranes to improve their functional properties
in dental surgery. For guided bone regeneration, bone morphogenetic protein-2, fibroblast
growth factor-2, platelet-derived growth factor, and others [14] have been introduced into
collagen membranes. For oral soft tissue regeneration [22], platelet-rich fibrin [23] and
platelet-derived growth factor [24] have been proposed as additives to collagen membranes.
However, most of these studies are preclinical, since the introduction of recombinant
growth factors or BASs isolated from blood can be associated with significant regulatory
constraints, biosafety wariness, expensiveness, or limitations in the scalability of their
commercial production [14,25].

Lactoferrin may be a very valuable alternative BAS to be introduced in collagen mem-
branes for oral soft tissue regeneration. LF is a safe therapeutic agent that has already
proved its effectiveness in clinical trials for wound regeneration in patients with skin
and ligament injuries [26,27], is available for commercial production in large scales while
keeping the final price inexpensive [28,29], and is already used in dentistry as an active
ingredient for mouthwashes [30]. In our study, the incorporation of LF into the structure of
collagen membranes by SBA-EPD was possible, since collagen and lactoferrin behave simi-
larly in an electric field when dissolved in an acidic medium. Indeed, LF and collagen zeta
potentials are both positive in acidic medium [31,32]; therefore, these proteins, together, can
co-deposit into a single structure by being attracted to the negatively charged cathode [33].

The LF presence in the membrane after co-deposition was proved by ELISA analysis
with specific antibodies. The release kinetics of LF were observed within 75 h: about 40%
was released during the first 10 h but, thereafter, the release of the remaining 60% was more
stable. This was probably due to a dense packing of collagen membranes [17] together
with LF that was evenly distributed over their volume. Indeed, such LF release kinetics
from the Col-LF co-deposited membranes formed by the developed SBA-EPD principle
differed from methods where collagen membranes were impregnated with LF simply by
immersion: LF, which was adsorbed only on the membrane surface, was released within
the first 5 h [21].

We chose an interface membrane design [34], where the properties of its top and bottom
sides differed from each other: one side was solid and the other side was mechanically
perforated. We chose this design based on experience from the development of scaffolds
for urethroplasty [35], since the conditions of scaffold functioning are relatively similar.
The top (solid) side of the membrane was faced toward the oral lumen with liquid medium
(saliva) providing a barrier function and preventing the penetration of food particles and
microorganisms into the membrane body. The bottom (perforated) side of the membranes
was faced toward the connective tissue in the wound defect: the perforations allowed for
the faster penetration of connective tissue and vessels into the membrane body thickness.

Expectedly, the addition of LF to collagen membranes slightly increased their thick-
ness. However, at the level of other physical properties (shrinkage temperature, swelling,
and mechanical parameters), the contribution of LF was statistically insignificant. This is
so because fibrillar collagen predominantly determines the physical properties of mem-
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branes [36], while the contribution of LF in the molecular form at such a ratio with collagen
(10:1 for Col and LF by dry mass, respectively) is negligible.

In our in vitro experiments, we used two cell types, keratinocytes and fibroblasts,
that are the main components of the oral mucosa [37]. Of note, we used established cell
lines (HaCaTs and 977hTERT) in order to minimize the variability in the results (which
is typical for primary cultures) and to make our tests maximally standardizable and
reproducible [38]. The need for such result reproducibility is due to the fact that LF was
reported to influence keratinocytes and fibroblasts ambiguously in the literature: in several
studies, LF significantly stimulated the proliferative activity of keratinocytes [39], while in
other studies (on healthy cells and a cancer cell line), it could inhibit their growth [40]; in
some studies, LF increased fibroblast proliferation [41], while in others, LF inhibited this
activity [42]. In our study, LF significantly increased the proliferative activity of both cell
types, while the observed decrease in their metabolic activity at high proliferation rates was
attributed to contact inhibition due to the restricted area for subsequent cell growth [43].

The anti-inflammatory effects of LF are well known [16], which we also proved by
macroscopic postoperative evaluation as well as histologic analysis of the oral mucosa in
animals with applied Col-LF membranes compared to other groups. Similar to in vitro
tests, there is no consensus in the literature on the effect of LF on the proliferative activity of
mucosal cells in vivo. For example, lactoferrin has demonstrated the ability to both increase
the proliferative activity of mucosal cells [44,45] and inhibit it [46,47], depending on the
dosage; alternatively, when applied to the injured sinus mucosa, it had no pro-regenerative
effect on the wound [48].

In our in vivo study, it was shown that LF contained in the membranes increased
not only the proliferative activity of fibroblasts in both animal models, but also the vascu-
larization of regenerated tissues compared to the other groups (having the highest value
of vessels/mm2). Due to better neoangiogenesis, the epithelium necrotic processes were
avoided in the Col-LF group compared to the control and Col groups: in them, we assume,
the rate of neoangiogenesis was insufficient to meet the need of the growing epithelium [49].
For Mucograft®, the neovascularization was sufficient, and no epithelial necrosis was ob-
served, but its level was still lower than in the Col-LF group (vestibuloplasty), which may
influence the quality of mucosa regeneration in longer timeframes [50].

Limitations

Despite the observed good regeneration of soft tissues of the oral cavity when using
Col-LF membranes, the issue of evaluating the quality of regeneration in the distant
postoperative period (5 or more years) is still disputable. In this period, the “volume loss”
syndrome of regenerated soft tissues may be observed [2]. Such a long-term experimental
design is difficult to realize on a preclinical model, but this fact should be taken into account
when planning further clinical trials of this membrane. Other limitations of our study were
the small number of animals per group, as well as the relatively non-critical size of the
mucosal defect, which could heal naturally.

4. Materials and Methods
4.1. Collagen–Lactoferrin Membrane SBA-EPD

The schemes of collagen extraction and membrane production were similar to that
described in [17]. Briefly, collagen was extracted from frozen bovine Achilles tendons.
The tendons were cut into 1 cm-thick pieces, treated with 0.5 M NaCl, homogenized in
0.5 M acetic acid, and supplemented with 0.1% pepsin (Sigma Aldrich, St. Louis, MO,
USA) for overnight partial hydrolysis. Then, pepsin was pH-inactivated, and collagen was
precipitated with a 12% NaCl solution. The precipitate was redissolved in 0.5 M acetic
acid and dialyzed against 0.5 M acetic acid for 3 days. The final collagen concentration in
the suspension was determined by gravimetric analysis. After determination of collagen
concentration, it was diluted to the required concentration by 0.5 M acetic acid solution.
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The LF solution (provided by the Institute of Gene Biology, Russian Academy of
Sciences, Moscow, Russia [51]) was prepared in 0.2 M acetic acid and added to the obtained
collagen suspension so that the final concentration of collagen was 5 mg/mL and that of
LF was 0.5 mg/mL. For the preparation of control (blank, lactoferrin-free) membranes,
a collagen solution with a concentration of 5 mg/mL was prepared.

Subsequently, Col or Col-LF membranes were prepared by SBA-EPD (Figure 7a). For
this purpose, previously obtained suspensions (collagen–lactoferrin or pure collagen) were
used. SBA-EPD was carried out in an electrochemical cell separated by a semipermeable
barrier made of regenerated cellulose (Sigma-Aldrich, St. Louis, MO, USA). Col-LF or Col
suspension was poured into the anode part of the cell, and distilled water was poured into
the cathode part of the cell. The cathode and anode were plate electrodes to which the DC
source of 60 V was connected, and the electrodeposition process was carried out. The pro-
duced membranes were carefully separated from the surface of the semipermeable barrier
and treated for 20 min with isopropyl alcohol and then dried in a laminar flow cabinet.
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The post-treatment of collagen and collagen-LF membranes included their chemical
cross-linking using 0.03% glutaraldehyde solution for 10 min, mechanical perforation on one
side using a cosmetic mesoroller, and lyophilization for 48 h at −40 ◦C (Figure 7b). The post-
treatment resulted in a porous (in the inner volume, cross-section) interface-type membrane
with one side perforated (bottom) and the other side solid and non-perforated (top).

4.2. Physicochemical Membrane Characterization

Visualization of the membrane microstructure was carried out by Hitachi TM4000
scanning electron microscope (SEM) (Hitachi, Düsseldorf, Germany) at 10 kV using a back-
scattered (reflected) electron (BSE) detector. To prepare the samples, they were washed
with physiological saline and distilled water, cut across with a microtome blade, dried in
air, and placed in the SEM chamber.

For LF release kinetics determination from collagen–lactoferrin membranes, the ELISA
kit (Cloud-Clone Corp., Houston, TX, USA) was applied. For this purpose, membranes
were cut into samples of equal weight. The obtained pieces were placed in PBS solution
on a rotary shaker (ELMI, Riga, Latvia) at 3 RPM. The experiment was performed for 75 h,
with timepoints of 2,4, 8, 20, 32, 48, 60, and 75 h (n = 5 samples per point).
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For measuring the swelling ratio, dried samples of produced membranes (n = 5 for
each group) were first weighed, and then placed in PBS at 4 ◦C for 8 h. Next, the excessive
moisture from the samples was removed by filter paper, and the samples were weighed
again. The swelling ratio was calculated as a change (in%) in the mass of the membrane
samples according to the formula:

S =
mw − md

md
× 100%

where S is the swelling ratio, mw is the mass of the wet sample, and md is the mass of the
dry sample.

The shrinkage temperature measurements were performed by the hydrothermal
method with a lab-made device. For this, 20 mm × 3 mm membrane fragments (n = 5 for
each group) were placed in a glass tube that was subsequently immersed in a water bath
with distilled water. The bath temperature increased by about 5 ◦C/min. The temperature
at which shrinkage of the membrane fragment was visually observed was determined by
the thermometer.

The mechanical properties of membranes were tested in a wet environment us-
ing a Mach-1 v500csst micromechanical testing system (Biomomentum Inc., Laval, QC,
Canada). The testing was performed after specimen overnight incubation with PBS at 4 ◦C.
The modulus of elasticity (Young’s modulus, calculated in the linear region of a stress–strain
curve) and strain at failure were measured in the uniaxial tension mode for at least five
30 mm × 5 mm rectangular specimens in each group (n = 5). Uniaxial tension was per-
formed at a rate of 0.1 mm/s until the failure was achieved. The parameters were calculated
from the deformation curves according to the manufacturer’s protocol. For measuring the
dry and wet thickness of the collagen membranes, a digital caliper was applied (Mitutoyo,
Tokyo, Japan).

4.3. Biocompatibility Tests In Vitro

To evaluate the biocompatibility of Col and Col-LF membranes in vitro, they were
tested with two cell lines: keratinocytes (HaCaT line) and fibroblasts (977hTERT embryonic
fibroblasts [52]). Cells were cultured using growth medium of the following composition:
DMEM/F12 (1:1, BioloT, Saint Petersburg, Russia), gentamicin (50 µg/mL, PanEco, Moscow,
Russia), and fetal calf serum FBS (10%, ThermoFisher, Waltham, MA, USA). Cells were
seeded on membranes at a concentration of approximately 2 × 104/matrix.

Cells on membranes (n = 5 for each group) were cultured in growth medium for 5 days.
The cell metabolic activity was measured by the AlamarBlue (resazurin) assay (Invitrogen,
Waltham, MA, USA) according to the manufacturer’s instructions, using a Victor Nivo
spectrofluorometer (PerkinElmer, Waltham, MA, USA) at an excitation wavelength of
530 nm and emission wavelength of 590 nm. The DNA was quantified using the Quant-iT
PicoGreen kit (Invitrogen, Waltham, MA, USA) according to the manufacturer’s instructions
and by using a Victor Nivo spectrofluorometer at an excitation wavelength of 480 nm and
emission wavelength of 520 nm. The metabolic activity of cells was also normalized to the
amount of DNA.

4.4. Animal Experiments In Vivo

The study was conducted in accordance with the requirements of the Declaration of
Helsinki and ethics rules for experimental research on animals. The protocol was approved
by the Local Ethical Committee of Sechenov University (No. 06-23, 6 April 2023). Male
rabbits of the “Soviet Chinchilla” breed were used for the experiments.

Experimental models of free gingival graft (FGG) harvesting (Figure 8a) and vestibulo-
plasty (Figure 8b) were developed. The models were similar to those that can be obtained in
clinical practice [53,54], since the sizes of the created wound defects in rabbits were similar
to those in humans.
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Figure 8. Scheme of experiments in vivo. (a) Free gingival graft harvesting (from hard palate);
(b) vestibuloplasty on both right and left sides, with sagittal view of operation sites given;
(c) four pairs of compared groups (n = 3 rabbits for each pair), with total n = 6 samples investi-
gated in each group. Col—collagen membrane group; Col-LF—collagen–lactoferrin membrane group;
Mucograft®®—group with commercial membrane; control—non-treated defect group.

The rabbits were anesthetized with 1.5 mg/kg Zoletil® and 0.2 mg/kg Xyla® in-
tramuscularly. During the FGG harvesting, symmetrical defects with dimensions of
0.5 cm × 0.5 cm were formed in the hard palate region (one after the other) with a scalpel.
In the case of vestibuloplasty on the upper jaw (premaxilla bone), symmetrical defects with
dimensions of 0.5 cm × 0.5 cm were also formed in the area of the frontal group of teeth on
the left and right vestibule sides.

Subsequently, these defects were treated differently according to four study groups
(Figure 8c): a group of the collagen membrane (Col); a group of the collagen–lactoferrin
membrane (Col-LF); a group of the commercial membrane (Mucograft®, Geistlich Pharma
AG, Wolhusen, Switzerland); and a group without auxiliary membranes—spontaneous
healing by secondary tension (control). The fragments of 0.5 cm × 0.5 cm were cut from
the investigated membranes, and they were fixed to the formed defects using Prolene 6/0
knotted sutures. Since, in animals, the entire surface of the hard palate (two surgical sites)
and both sides of the maxilla were involved, it allowed combining different groups into
4 pairs in one animal: (1) Col-LF and control; (2) Col and control; (3) Col and Mucograft;
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(4) Col-LF and Mucograft®. Calculation of the required laboratory animal number for each
group was performed according to formula [55]:

Ntarget =
20

k + 1

where N is the target number of animals in each group, k is the number of experimental
groups.

According to our calculations, each group should have at least 4 animals (a total of
16 animals, 1 animal = 1 group). However, since two groups were paired and compared
simultaneously in one animal, using 3 animals per each pair (a total of 12 animals) gave
us n = 6 investigated samples for each group. This experimental design optimization is of
great value from an experimental point of view: less animals were used in this study (ethical
aspect), while more samples can be investigated in each group (6 vs. 4, statistical aspect).

After FGG harvesting and vestibuloplasty, the animals were examined for 14 days
(Figure 9). Intermediate postoperative examinations of the animals were performed on 3, 5,
7, and 14 days after surgery with visual assessment of oedema and hyperemia severity and
defect area regeneration.
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Figure 9. The timeline of investigations in the current study.

The oedema and hyperemia degrees of severity were evaluated semi-quantitatively in
points relative to the initial (healthy) state (Table A1; Appendix A). Regeneration of defects
was assessed quantitatively as a percentage of the total defect area by measuring with
a graduated periodontal probe, ruler, and caliper. Since the created defects were initially of
the same size (0.5 cm × 0.5 cm), their comparative analysis in percentages was eligible.

Animals were sacrificed on the 14th day after the operations by intramuscularly
overdosing anesthesias Zoletil® (15 mg/kg) and Xyla® (0.6 mL/kg). After that, group
samples were collected from the hard palate and oral vestibule and subjected to histological
and morphometric analyses.

4.5. Histologic and Morphometric Analysis

The collected tissue samples (n = 6 in each study group) were fixed in 10% neutral
buffered formalin and embedded in paraffin blocks in a strict orientation, ensuring that
sections were made in a plane perpendicular to the surface of the palate or gingiva. Sections
that were 3–4 µm thick were stained with hematoxylin and eosin (H&E) and Mallory
trichrome. The specimens were studied by standard optical microscopy using a LEICA
DM4000 B universal microscope equipped with a LEICA DFC7000 T video camera and LAS
V4.8 software (Leica Microsystems, Wetzlar, Germany). Signs of inflammation (exudation,
infiltration by immune cells, microcirculatory disorders) and regeneration (proliferation
of fibroblasts, maturity of granulation tissue) were semi-quantitatively evaluated in each
preparation according to a 4-point scale (Tables A2–A7; Appendix A).
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For immunohistochemical analysis, 3–4 µm-thick sections of tissue samples fixed in
10% neutral buffered formalin and embedded in paraffin blocks were deparaffinized and
incubated with 3% hydrogen peroxide for 10 min. Nonspecific staining was prevented by
blocking solution (Cell Marque, Rocklin, CA, USA), and the samples were incubated with
mouse monoclonal primary antibodies against α-smooth muscle actin, or α-SMA (A2547,
Merck, Rahway, NJ, USA, dilution 1:400). Visualization was performed using horseradish
peroxidase-conjugated secondary goat antibodies (G-21040, Invitrogen, USA, dilution 1:
1000) and diaminobenzidine with contrast staining with hematoxylin.

The expression of α-SMA in the implantation sites was evaluated using a semi-
quantitative system (Table A7; Appendix A). For determining neoangiogenesis levels, in
each sample stained with a-SMA antibodies, blood vessels were counted in 5 or more repre-
sentative fields of view at ×200 magnification and calculated as a mean value. Subsequently,
blood vessel density was calculated by dividing the counted number per investigated area,
and the corresponding values were expressed as blood vessels/mm2.

4.6. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.0 software (GraphPad
Software Inc., La Jolla, CA, USA). The Shapiro–Wilk test was used to test the normality of
data distribution. In case of normal distribution, pairwise comparison by Student’s test or
two-way analysis of variance (two-way ANOVA) followed by multiple comparisons using
Tukey’s test (in vitro matrix contact biocompatibility, wound regeneration at postopera-
tive examination) were performed. In these cases, the results of statistical analysis were
presented as mean ± standard deviation.

In case of discrete data, comparison was performed using the nonparametric Kruskal–
Wallis test followed by multiple comparisons using Dunn’s test (postoperative assessment
of hyperemia and edema, histologic, and morphometric analysis). Results were presented as
median values with a range [min; max]. Differences were considered significant at p < 0.05.

5. Conclusions

In this work, we have demonstrated that the SBA-EPD method is suitable for the pro-
duction of dental membranes that can be used for oral soft tissue regeneration. Particularly,
we have demonstrated that a major structural protein (collagen) can be co-precipitated
with other bioactive substances, such as lactoferrin, by this method. Lactoferrin, being
a component of Col-LF membranes, had a positive proliferative effect on cells of epithelial
and connective tissue in vitro, which proves that the selected collagen-LF ratio and LF
concentrations were optimal.

Similarly, the incorporation of LF into collagen membrane had a significant positive
anti-inflammatory and pro-regenerative effect on two in vivo models (FGG harvesting and
vestibuloplasty), both at postoperative macroscopic examination of the oral cavity and
at the level of histologic and morphometric analysis. In particular, the produced Col-LF
membranes surpassed the commercial analog (Mucograft®) in a number of parameters,
which allows us to declare them as a promising candidate for further clinical use for oral
soft tissue regeneration.
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Appendix A

Table A1. A scoring system for visual signs of exudation/hyperemia on postoperative examination.

Score Signs

0 No oedema or hyperemia
1 Mild oedema/ hyperemia of the oral mucosa
2 Moderate oedema/ hyperemia of the oral mucosa
3 Prominent oedema/ hyperemia of the oral mucosa

Table A2. Scoring system for morphologic signs of exudation at the implantation site.

Score Signs

0 No oedema
1 Mild signs of oedema, small amount of fluid in the intercellular space
2 Moderate signs of tissue oedema, average amount of fluid in the intercellular space
3 Prominent tissue oedema, significant amount of fluid in the intercellular space

Table A3. Scoring system for morphologic signs of inflammatory infiltration at the implantation site.

Score Signs

0 No inflammation

1 Presence of single inflammatory cells in the infiltrate (less than 10 cells in 1 field of
view at ×400 magnification)

2 Moderate number of inflammatory cells in the infiltrate (from 11 to 29 cells in 1 field
of view at ×400 magnification)

3 Large number of inflammatory cells in the infiltrate (more than 30 cells in 1 field of
view at ×400 magnification)

Table A4. Scoring system for morphologic signs of microcirculatory disorders in the implantation site.

Score Signs

0 No signs of microcirculation disorders
1 Marginal standing (wall-to-wall) of erythrocytes in the vascular lumen

2 Initial manifestations of erythrocyte aggregation and agglutination in the
vascular lumen

3 Stasis and sluggishness of erythrocytes in the vascular lumen

Table A5. Scoring system for morphologic signs of fibroblast proliferation at the implantation site.

Score Signs

0 No signs of fibroblast proliferation

1 Mild signs of hypertrophy and hyperplasia of fibroblasts, increase in their volume
by less than 10%

2 Moderate signs of hypertrophy and hyperplasia of fibroblasts, increase in their
volume by 20–30%

3 Prominent signs of hypertrophy and hyperplasia of fibroblasts, increase in their
volume by more than 30%
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Table A6. Scoring system for morphologic signs of granulation tissue maturity at the implantation site.

Score Signs

0 No granulation tissue
1 There is young granulation tissue with abundant signs of vascularization

2 There are thin bundles of connective tissue fibers and small numbers of vessels in
the granulation tissue

3 Granulation tissue is practically absent, but there is a mature
connective tissue formed

Table A7. Scoring system for evaluating the expression of antibodies against α-SMA.

Score Signs

0 No expression
1 Individual positively stained cells

2 Small number of positively stained cells (less than 19 per 1 field of view at
a magnification of 400)

3 Significant number of positively stained cells (more than 20 per 1 field of view at
a magnification of 400)
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