Diagnostic and Prognostic Potential of Exosomal Cytokines IL-6 and IL-10 in Polytrauma Patients
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hauser, C.J. Preclinical models of traumatic, hemorrhagic shock. Shock 2005, 24, 24–32. [Google Scholar] [CrossRef]
- Fleischmann, C.; Thomas-Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. Dtsch. Arztebl. Int. 2016, 113, 159–166. [Google Scholar] [CrossRef]
- Moreira, J. Severe Sepsis and Septic Shock. N. Engl. J. Med. 2013, 369, 2062–2063. [Google Scholar] [CrossRef]
- Huber-Lang, M. Sepsis nach Polytrauma. Trauma Berufskrankh 2018, 20, 73–76. [Google Scholar] [CrossRef]
- Pfeifer, R.; Tarkin, I.S.; Rocos, B.; Pape, H.-C. Patterns of mortality and causes of death in polytrauma patients--has anything changed? Injury 2009, 40, 907–911. [Google Scholar] [CrossRef]
- Mörs, K.; Wagner, N.; Sturm, R.; Störmann, P.; Vollrath, J.T.; Marzi, I.; Relja, B. Enhanced pro-inflammatory response and higher mortality rates in geriatric trauma patients. Eur. J. Trauma Emerg. Surg. 2021, 47, 1065–1072. [Google Scholar] [CrossRef]
- Kinzl, L.; Gebhard, F.; Arand, M. Polytrauma und Ökonomie. Unfallchirurgie 1996, 22, 179–185. [Google Scholar] [CrossRef]
- Sapan, H.B.; Paturusi, I.; Jusuf, I.; Patellongi, I.; Massi, M.N.; Pusponegoro, A.D.; Arief, S.K.; Labeda, I.; Islam, A.A.; Rendy, L.; et al. Pattern of cytokine (IL-6 and IL-10) level as inflammation and anti-inflammation mediator of multiple organ dysfunction syndrome (MODS) in polytrauma. Int. J. Burn. Trauma 2016, 6, 37–43. [Google Scholar]
- Qiao, Z.; Wang, W.; Yin, L.; Luo, P.; Greven, J.; Horst, K.; Hildebrand, F. Using IL-6 concentrations in the first 24 h following trauma to predict immunological complications and mortality in trauma patients: A meta-analysis. Eur. J. Trauma Emerg. Surg. 2018, 44, 679–687. [Google Scholar] [CrossRef]
- Frink, M.; van Griensven, M.; Kobbe, P.; Brin, T.; Zeckey, C.; Vaske, B.; Krettek, C.; Hildebrand, F. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 49. [Google Scholar] [CrossRef]
- Lenz, A.; Franklin, G.A.; Cheadle, W.G. Systemic inflammation after trauma. Injury 2007, 38, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.A.; Hoyt, B.W.; Rowe, C.J.; Dey, D.; Davis, T.A. Alarming Cargo: The Role of Exosomes in Trauma-Induced Inflammation. Biomolecules 2021, 11, 522. [Google Scholar] [CrossRef]
- Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 1996, 87, 2095–2147. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Sironi, M.; Toniatti, C.; Polentarutti, N.; Fruscella, P.; Ghezzi, P.; Faggioni, R.; Luini, W.; van Hinsbergh, V.; Sozzani, S.; et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997, 6, 315–325. [Google Scholar] [CrossRef]
- Stensballe, J.; Christiansen, M.; Tønnesen, E.; Espersen, K.; Lippert, F.K.; Rasmussen, L.S. The early IL-6 and IL-10 response in trauma is correlated with injury severity and mortality. Acta Anaesthesiol. Scand. 2009, 53, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D.; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- Saxena, A.; Khosraviani, S.; Noel, S.; Mohan, D.; Donner, T.; Hamad, A.R.A. Interleukin-10 paradox: A potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine 2015, 74, 27–34. [Google Scholar] [CrossRef]
- Weber, B.; Franz, N.; Marzi, I.; Henrich, D.; Leppik, L. Extracellular vesicles as mediators and markers of acute organ injury: Current concepts. Eur. J. Trauma Emerg. Surg. 2022, 48, 1525–1544. [Google Scholar] [CrossRef]
- Weber, B.; Henrich, D.; Schindler, C.R.; Marzi, I.; Leppik, L. Release of exosomes in polytraumatized patients: The injury pattern is reflected by the surface epitopes. Front. Immunol. 2023, 14, 1174. [Google Scholar] [CrossRef]
- Lässer, C.; Jang, S.C.; Lötvall, J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol. Asp. Med. 2018, 60, 1–14. [Google Scholar] [CrossRef]
- Eguchi, A.; Kostallari, E.; Feldstein, A.E.; Shah, V.H. Extracellular vesicles, the liquid biopsy of the future. J. Hepatol. 2019, 70, 1292–1294. [Google Scholar] [CrossRef]
- Hirsova, P.; Ibrahim, S.H.; Verma, V.K.; Morton, L.A.; Shah, V.H.; LaRusso, N.F.; Gores, G.J.; Malhi, H. Extracellular vesicles in liver pathobiology: Small particles with big impact. Hepatology 2016, 64, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, S.; Dupuy, A.; Le Mai, H.; Sailliet, N.; Logé, C.; Robert, J.-M.H.; Brouard, S. Exosomes as New Biomarkers and Drug Delivery Tools for the Prevention and Treatment of Various Diseases: Current Perspectives. Int. J. Mol. Sci. 2021, 22, 7763. [Google Scholar] [CrossRef]
- Fitzgerald, W.; Freeman, M.L.; Lederman, M.M.; Vasilieva, E.; Romero, R.; Margolis, L. A System of Cytokines Encapsulated in ExtraCellular Vesicles. Sci. Rep. 2018, 8, 8973. [Google Scholar] [CrossRef]
- Walsh, S.A.; Davis, T.A. Key early proinflammatory signaling molecules encapsulated within circulating exosomes following traumatic injury. J. Inflamm. 2022, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Jin, J.; Huang, C.; Li, J.; Luo, H.; Li, L.; Huang, Y.; Jiang, Y. Exosomes Derived From Septic Mouse Serum Modulate Immune Responses via Exosome-Associated Cytokines. Front. Immunol. 2019, 10, 1560. [Google Scholar] [CrossRef]
- Meier, T.B.; Guedes, V.A.; Smith, E.G.; Sass, D.; Mithani, S.; Vorn, R.; Savitz, J.; Teague, T.K.; McCrea, M.A.; Gill, J.M. Extracellular vesicle-associated cytokines in sport-related concussion. Brain Behav. Immun. 2022, 100, 83–87. [Google Scholar] [CrossRef]
- Gill, J.; Mustapic, M.; Diaz-Arrastia, R.; Lange, R.; Gulyani, S.; Diehl, T.; Motamedi, V.; Osier, N.; Stern, R.A.; Kapogiannis, D. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018, 32, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Peltz, C.B.; Kenney, K.; Gill, J.; Diaz-Arrastia, R.; Gardner, R.C.; Yaffe, K. Blood biomarkers of traumatic brain injury and cognitive impairment in older veterans. Neurology 2020, 95, e1126–e1133. [Google Scholar] [CrossRef] [PubMed]
- Goetzl, E.J.; Elahi, F.M.; Mustapic, M.; Kapogiannis, D.; Pryhoda, M.; Gilmore, A.; Gorgens, K.A.; Davidson, B.; Granholm, A.-C.; Ledreux, A. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019, 33, 5082–5088. [Google Scholar] [CrossRef]
- Thom, S.R.; Bhopale, V.M.; Yu, K.; Yang, M. Provocative decompression causes diffuse vascular injury in mice mediated by microparticles containing interleukin-1β. J. Appl. Physiol. 2018, 125, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
Cytokines (pg/mL) | Healthy | PT ER | PT 1d | PT 2d | PT 3d | PT 5d |
---|---|---|---|---|---|---|
Exosomal IL-6 | 0 | 0.2 ± 0.2 | 0.3 ± 0.3 | 0.2 ± 0.2 | 0.1 ± 0.1 | 0.1 ± 0.1 |
Exosomal IL-10 | 0.2 ± 0.3 | 0.3 ± 0.2 | 0.2 ± 0.1 | 0.2 ± 0.2 | 0.2 ± 0.2 | 0.4 ± 0.4 |
Exosomal Il-1β | nd | nd | nd | nd | nd | nd |
Exosomal TNF | nd | nd | nd | nd | nd | nd |
IL-6 | 0 | 471.0 ± 286.0 | 414.3 ± 332.9 | 354.2 ± 337.8 | 1057.5 ± 3115.9 | 45.7± 30.8 |
IL-10 | 1.5 ± 1.2 | 465.9 ± 352.1 | 28.5 ± 27.3 | 8.8 ± 8.4 | 9.8 ± 11.8 | 3.8 ± 4.9 |
Il-1β | 0 | 0.3 ± 1.2 | 1.9 ± 7.4 | 0.3 ± 1.1 | 0.3 ± 1.1 | nd |
TNF alpha | 0 | 1.9 ± 2.8 | 6.7 ± 6.6 | 6.6 ± 5.8 | 8.8 ± 7.3 | 2.8 ± 2.8 |
Clinical Parameter | Polytrauma Patients (n = 18) |
---|---|
Male/Female (%) | 61/39 |
ISS (Mean ± SD) | 35.5 ± 11.5 |
Death (%) | 16.7 |
Time in ICU (days) | 21.7 ± 15.6 |
Ventilation time (days) | 15.2 ± 16.8 |
Time in hospital (days) | 30.7 ± 19.3 |
Need for catecholamines (%) | 77.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weber, B.; Sturm, R.; Henrich, D.; Lupu, L.; Rottluff, K.; Marzi, I.; Leppik, L. Diagnostic and Prognostic Potential of Exosomal Cytokines IL-6 and IL-10 in Polytrauma Patients. Int. J. Mol. Sci. 2023, 24, 11830. https://doi.org/10.3390/ijms241411830
Weber B, Sturm R, Henrich D, Lupu L, Rottluff K, Marzi I, Leppik L. Diagnostic and Prognostic Potential of Exosomal Cytokines IL-6 and IL-10 in Polytrauma Patients. International Journal of Molecular Sciences. 2023; 24(14):11830. https://doi.org/10.3390/ijms241411830
Chicago/Turabian StyleWeber, Birte, Ramona Sturm, Dirk Henrich, Ludmila Lupu, Katrin Rottluff, Ingo Marzi, and Liudmila Leppik. 2023. "Diagnostic and Prognostic Potential of Exosomal Cytokines IL-6 and IL-10 in Polytrauma Patients" International Journal of Molecular Sciences 24, no. 14: 11830. https://doi.org/10.3390/ijms241411830
APA StyleWeber, B., Sturm, R., Henrich, D., Lupu, L., Rottluff, K., Marzi, I., & Leppik, L. (2023). Diagnostic and Prognostic Potential of Exosomal Cytokines IL-6 and IL-10 in Polytrauma Patients. International Journal of Molecular Sciences, 24(14), 11830. https://doi.org/10.3390/ijms241411830