Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice
Abstract
1. Introduction
2. Results
2.1. Iron Accumulation in the Renal Cortex of SCD Mice
2.2. Iron Intake and Storage in Renal Cortex
2.3. Iron Export from Epithelial Cells
2.4. Increased HAMP Expression in the Renal Cortex of SCD Mice
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. Hematology, Plasma Biochemistry and Iron Quantification
4.3. GFR Assessment
4.4. Iron Staining and Immunohistochemistry
4.5. RNA Extraction and Real-Time RT-PCR
4.6. Western Blot
4.7. Hepcidin and Ferritin Elisa
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutteridge, J.M. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Ponka, P.; Beaumont, C.; Richardson, D.R. Function and regulation of transferrin and ferritin. Semin. Hematol. 1998, 35, 35–54. [Google Scholar] [PubMed]
- Cavill, I. Erythropoiesis and iron. Best Pract. Res. Clin. Haematol. 2002, 15, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, N.; Pantopoulos, K. The IRP/IRE system in vivo: Insights from mouse models. Front. Pharmacol. 2014, 5, 176. [Google Scholar] [CrossRef] [PubMed]
- Arezes, J.; Foy, N.; McHugh, K.; Sawant, A.; Quinkert, D.; Terraube, V.; Brinth, A.; Tam, M.; LaVallie, E.R.; Taylor, S.; et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 2018, 132, 1473–1477. [Google Scholar] [CrossRef]
- Arosio, P.; Ingrassia, R.; Cavadini, P. Ferritins: A family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 2009, 1790, 589–599. [Google Scholar] [CrossRef]
- Hershko, C.; Peto, T.E. Non-transferrin plasma iron. Br. J. Haematol. 1987, 66, 149–151. [Google Scholar] [CrossRef]
- Link, G.; Pinson, A.; Hershko, C. Heart cells in culture: A model of myocardial iron overload and chelation. J. Lab. Clin. Med. 1985, 106, 147–153. [Google Scholar]
- Ersoy Dursun, F.; Aciksari, G.; Ozkok, S.; Incealtin, O. Evaluation of electrocardiography, echocardiography and cardiac T2* for cardiac complications in beta thalassemia major. Int. J. Cardiovasc. Imaging 2022, 38, 533–542. [Google Scholar] [CrossRef]
- Gutierrez, L.; House, M.J.; Vasavda, N.; Drasar, E.; Gonzalez-Gascon, Y.M.I.; Kulasekararaj, A.G.; St Pierre, T.G.; Thein, S.L. Tissue Iron Distribution Assessed by MRI in Patients with Iron Loading Anemias. PLoS ONE 2015, 10, e0139220. [Google Scholar] [CrossRef]
- Wood, J.C.; Tyszka, J.M.; Carson, S.; Nelson, M.D.; Coates, T.D. Myocardial iron loading in transfusion-dependent thalassemia and sickle cell disease. Blood 2004, 103, 1934–1936. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Barbuto, L.; Pistoia, L.; Positano, V.; Renne, S.; Peritore, G.; Fina, P.; Spasiano, A.; Allo, M.; Messina, G.; et al. Frequency, pattern, and associations of renal iron accumulation in sickle/beta-thalassemia patients. Ann. Hematol. 2022, 101, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Vasavda, N.; Gutierrez, L.; House, M.J.; Drasar, E.; St Pierre, T.G.; Thein, S.L. Renal iron load in sickle cell disease is influenced by severity of haemolysis. Br. J. Haematol. 2012, 157, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Schein, A.; Enriquez, C.; Coates, T.D.; Wood, J.C. Magnetic resonance detection of kidney iron deposition in sickle cell disease: A marker of chronic hemolysis. J. Magn. Reson. Imaging 2008, 28, 698–704. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Muckenthaler, M.; Galy, B.; Hentze, M.W.; Pantopoulos, K. Iron-mediated degradation of IRP2, an unexpected pathway involving a 2-oxoglutarate-dependent oxygenase activity. Mol. Cell. Biol. 2004, 24, 954–965. [Google Scholar] [CrossRef]
- Lim, P.J.; Duarte, T.L.; Arezes, J.; Garcia-Santos, D.; Hamdi, A.; Pasricha, S.R.; Armitage, A.E.; Mehta, H.; Wideman, S.; Santos, A.G.; et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat. Metab. 2019, 1, 519–531. [Google Scholar] [CrossRef]
- Li, H.; Choesang, T.; Bao, W.; Chen, H.; Feola, M.; Garcia-Santos, D.; Li, J.; Sun, S.; Follenzi, A.; Pham, P.; et al. Decreasing TfR1 expression reverses anemia and hepcidin suppression in beta-thalassemic mice. Blood 2017, 129, 1514–1526. [Google Scholar] [CrossRef]
- Kroot, J.J.; Laarakkers, C.M.; Kemna, E.H.; Biemond, B.J.; Swinkels, D.W. Regulation of serum hepcidin levels in sickle cell disease. Haematologica 2009, 94, 885–887. [Google Scholar] [CrossRef]
- Merle, U.; Fein, E.; Gehrke, S.G.; Stremmel, W.; Kulaksiz, H. The iron regulatory peptide hepcidin is expressed in the heart and regulated by hypoxia and inflammation. Endocrinology 2007, 148, 2663–2668. [Google Scholar] [CrossRef]
- Kulaksiz, H.; Theilig, F.; Bachmann, S.; Gehrke, S.G.; Rost, D.; Janetzko, A.; Cetin, Y.; Stremmel, W. The iron-regulatory peptide hormone hepcidin: Expression and cellular localization in the mammalian kidney. J. Endocrinol. 2005, 184, 361–370. [Google Scholar] [CrossRef]
- McCarthy, R.C.; Kosman, D.J. Glial cell ceruloplasmin and hepcidin differentially regulate iron efflux from brain microvascular endothelial cells. PLoS ONE 2014, 9, e89003. [Google Scholar] [CrossRef]
- Evans, P.; Cindrova-Davies, T.; Muttukrishna, S.; Burton, G.J.; Porter, J.; Jauniaux, E. Hepcidin and iron species distribution inside the first-trimester human gestational sac. Mol. Hum. Reprod. 2011, 17, 227–232. [Google Scholar] [CrossRef]
- Lakhal-Littleton, S.; Wolna, M.; Chung, Y.J.; Christian, H.C.; Heather, L.C.; Brescia, M.; Ball, V.; Diaz, R.; Santos, A.; Biggs, D.; et al. An essential cell-autonomous role for hepcidin in cardiac iron homeostasis. eLife 2016, 5, e19804. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zheng, X.; Zhang, J.; Zhao, S.; Wang, Z.; Wang, F.; Shang, W.; Barasch, J.; Qiu, A. Physiological functions of ferroportin in the regulation of renal iron recycling and ischemic acute kidney injury. Am. J. Physiol. Ren. Physiol. 2018, 315, F1042–F1057. [Google Scholar] [CrossRef] [PubMed]
- Wolff, N.A.; Liu, W.; Fenton, R.A.; Lee, W.K.; Thevenod, F.; Smith, C.P. Ferroportin 1 is expressed basolaterally in rat kidney proximal tubule cells and iron excess increases its membrane trafficking. J. Cell. Mol. Med. 2011, 15, 209–219. [Google Scholar] [CrossRef]
- Fuqua, B.K.; Lu, Y.; Frazer, D.M.; Darshan, D.; Wilkins, S.J.; Dunn, L.; Loguinov, A.V.; Kogan, S.C.; Matak, P.; Chen, H.; et al. Severe Iron Metabolism Defects in Mice with Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 405–427. [Google Scholar] [CrossRef] [PubMed]
- Ryan, T.M.; Ciavatta, D.J.; Townes, T.M. Knockout-transgenic mouse model of sickle cell disease. Science 1997, 278, 873–876. [Google Scholar] [CrossRef]
- O’Connell, K.E.; Mikkola, A.M.; Stepanek, A.M.; Vernet, A.; Hall, C.D.; Sun, C.C.; Yildirim, E.; Staropoli, J.F.; Lee, J.T.; Brown, D.E. Practical murine hematopathology: A comparative review and implications for research. Comp. Med. 2015, 65, 96–113. [Google Scholar]
- Rodrigues, W.F.; Miguel, C.B.; Napimoga, M.H.; Oliveira, C.J.; Lazo-Chica, J.E. Establishing standards for studying renal function in mice through measurements of body size-adjusted creatinine and urea levels. Biomed. Res. Int. 2014, 2014, 872827. [Google Scholar] [CrossRef]
- Kotze, M.J.; van Velden, D.P.; van Rensburg, S.J.; Erasmus, R. Pathogenic Mechanisms Underlying Iron Deficiency and Iron Overload: New Insights for Clinical Application. EJIFCC 2009, 20, 108–123. [Google Scholar]
- Qi, Z.; Whitt, I.; Mehta, A.; Jin, J.; Zhao, M.; Harris, R.C.; Fogo, A.B.; Breyer, M.D. Serial determination of glomerular filtration rate in conscious mice using FITC-inulin clearance. Am. J. Physiol. Ren. Physiol. 2004, 286, F590–F596. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, G.; Matakidou, A.; Robbins, P.A.; Lakhal-Littleton, S. The kidney hepcidin/ferroportin axis controls iron reabsorption and determines the magnitude of kidney and systemic iron overload. Kidney Int. 2021, 100, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Mostad, E.J.; Prohaska, J.R. Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Exp. Biol. Med. 2011, 236, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Hudson, D.M.; Curtis, S.B.; Smith, V.C.; Griffiths, T.A.; Wong, A.Y.; Scudamore, C.H.; Buchan, A.M.; MacGillivray, R.T. Human hephaestin expression is not limited to enterocytes of the gastrointestinal tract but is also found in the antrum, the enteric nervous system, and pancreatic beta-cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G425–G432. [Google Scholar] [CrossRef] [PubMed]
- Moulouel, B.; Houamel, D.; Delaby, C.; Tchernitchko, D.; Vaulont, S.; Letteron, P.; Thibaudeau, O.; Puy, H.; Gouya, L.; Beaumont, C.; et al. Hepcidin regulates intrarenal iron handling at the distal nephron. Kidney Int. 2013, 84, 756–766. [Google Scholar] [CrossRef]
- Kautz, L.; Meynard, D.; Monnier, A.; Darnaud, V.; Bouvet, R.; Wang, R.H.; Deng, C.; Vaulont, S.; Mosser, J.; Coppin, H.; et al. Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood 2008, 112, 1503–1509. [Google Scholar] [CrossRef]
- Doherty, J.L.; Larvie, D.Y.; Shivappa, N.; Hebert, J.R.; Armah, S.M. Inflammatory diets are associated with lower total iron binding capacity in sera of young adults. Int. J. Vitam. Nutr. Res. 2021, 93, 9–17. [Google Scholar] [CrossRef]
- Mohanty, P.; Jena, R.K.; Sethy, S. Variability of Iron Load in Patients of Sickle Cell Anaemia (HbSS): A study from Eastern India. J. Clin. Diagn. Res. 2017, 11, EC19–EC22. [Google Scholar] [CrossRef]
- Vichinsky, E.; Kleman, K.; Embury, S.; Lubin, B. The diagnosis of iron deficiency anemia in sickle cell disease. Blood 1981, 58, 963–968. [Google Scholar] [CrossRef]
- Wood, J.C. Diagnosis and management of transfusion iron overload: The role of imaging. Am. J. Hematol. 2007, 82 (Suppl. S12), 1132–1135. [Google Scholar] [CrossRef]
- van Raaij, S.; van Swelm, R.; Bouman, K.; Cliteur, M.; van den Heuvel, M.C.; Pertijs, J.; Patel, D.; Bass, P.; van Goor, H.; Unwin, R.; et al. Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci. Rep. 2018, 8, 9353. [Google Scholar] [CrossRef] [PubMed]
- Ataga, K.I.; Derebail, V.K.; Archer, D.R. The glomerulopathy of sickle cell disease. Am. J. Hematol. 2014, 89, 907–914. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.L.; Sysol, J.R.; Susma, A.; Setty, S.; Zhang, X.; Gudehithlu, K.P.; Arruda, J.A.L.; Singh, A.K.; Machado, R.F.; Gordeuk, V.R. Progressive glomerular and tubular damage in sickle cell trait and sickle cell anemia mouse models. Transl. Res. 2018, 197, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.N.; Ponka, P. Identification of an erythroid active element in the transferrin receptor gene. J. Biol. Chem. 2000, 275, 24185–24190. [Google Scholar] [CrossRef]
- Lok, C.N.; Loh, T.T. Regulation of transferrin function and expression: Review and update. Biol. Signals Recept. 1998, 7, 157–178. [Google Scholar] [CrossRef]
- Ward, D.T.; Hamilton, K.; Burnand, R.; Smith, C.P.; Tomlinson, D.R.; Riccardi, D. Altered expression of iron transport proteins in streptozotocin-induced diabetic rat kidney. Biochim. Biophys. Acta 2005, 1740, 79–84. [Google Scholar] [CrossRef]
- Smith, C.P.; Lee, W.K.; Haley, M.; Poulsen, S.B.; Thevenod, F.; Fenton, R.A. Proximal tubule transferrin uptake is modulated by cellular iron and mediated by apical membrane megalin-cubilin complex and transferrin receptor 1. J. Biol. Chem. 2019, 294, 7025–7036. [Google Scholar] [CrossRef]
- Saito, H.; Hayashi, H.; Tomita, A.; Ohashi, H.; Maeda, H.; Naoe, T. Increasing and decreasing phases of ferritin and hemosiderin iron determined by serum ferritin kinetics. Nagoya J. Med. Sci. 2013, 75, 213–223. [Google Scholar]
- Fertrin, K.Y.; Lanaro, C.; Franco-Penteado, C.F.; de Albuquerque, D.M.; de Mello, M.R.; Pallis, F.R.; Bezerra, M.A.; Hatzlhofer, B.L.; Olbina, G.; Saad, S.T.; et al. Erythropoiesis-driven regulation of hepcidin in human red cell disorders is better reflected through concentrations of soluble transferrin receptor rather than growth differentiation factor 15. Am. J. Hematol. 2014, 89, 385–390. [Google Scholar] [CrossRef]
- Omena, J.; Cople-Rodrigues, C.D.S.; Cardoso, J.; Soares, A.R.; Fleury, M.K.; Brito, F.; Koury, J.C.; Citelli, M. Serum Hepcidin Concentration in Individuals with Sickle Cell Anemia: Basis for the Dietary Recommendation of Iron. Nutrients 2018, 10, 498. [Google Scholar] [CrossRef]
- Veuthey, T.; D’Anna, M.C.; Roque, M.E. Role of the kidney in iron homeostasis: Renal expression of Prohepcidin, Ferroportin, and DMT1 in anemic mice. Am. J. Physiol. Ren. Physiol. 2008, 295, F1213–F1221. [Google Scholar] [CrossRef]
- Babitt, J.L.; Huang, F.W.; Wrighting, D.M.; Xia, Y.; Sidis, Y.; Samad, T.A.; Campagna, J.A.; Chung, R.T.; Schneyer, A.L.; Woolf, C.J. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 2006, 38, 531–539. [Google Scholar] [CrossRef]
- Agoro, R.; Mura, C. Inflammation-induced up-regulation of hepcidin and down-regulation of ferroportin transcription are dependent on macrophage polarization. Blood Cells Mol. Dis. 2016, 61, 16–25. [Google Scholar] [CrossRef]
- Belcher, J.D.; Chen, C.; Nguyen, J.; Milbauer, L.; Abdulla, F.; Alayash, A.I.; Smith, A.; Nath, K.A.; Hebbel, R.P.; Vercellotti, G.M. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood 2014, 123, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Fleming, R.E. Hepcidin activation during inflammation: Make it STAT. Gastroenterology 2007, 132, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.C.; Sun, C.W.; Ryan, T.M.; Pawlik, K.M.; Ren, J.; Townes, T.M. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 2006, 108, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Khaibullina, A.; Adjei, E.A.; Afangbedji, N.; Ivanov, A.; Kumari, N.; Almeida, L.E.F.; Quezado, Z.M.N.; Nekhai, S.; Jerebtsova, M. RON kinase inhibition reduces renal endothelial injury in sickle cell disease mice. Haematologica 2018, 103, 787–798. [Google Scholar] [CrossRef]
- Almeida, L.E.F.; Damsker, J.M.; Albani, S.; Afsar, N.; Kamimura, S.; Pratt, D.; Kleiner, D.E.; Quezado, M.; Gordish-Dressman, H.; Quezado, Z.M.N. The corticosteroid compounds prednisolone and vamorolone do not alter the nociception phenotype and exacerbate liver injury in sickle cell mice. Sci. Rep. 2018, 8, 6081. [Google Scholar] [CrossRef]
- Yamanishi, H.; Iyama, S.; Yamaguchi, Y.; Kanakura, Y.; Iwatani, Y. Total iron-binding capacity calculated from serum transferrin concentration or serum iron concentration and unsaturated iron-binding capacity. Clin. Chem. 2003, 49, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Suleiman, H.Y.; Miner, J.H. Synaptopodin Is Dispensable for Normal Podocyte Homeostasis but Is Protective in the Context of Acute Podocyte Injury. J. Am. Soc. Nephrol. 2020, 31, 2815–2832. [Google Scholar] [CrossRef] [PubMed]
- Scarfe, L.; Schock-Kusch, D.; Ressel, L.; Friedemann, J.; Shulhevich, Y.; Murray, P.; Wilm, B.; de Caestecker, M. Transdermal Measurement of Glomerular Filtration Rate in Mice. J. Vis. Exp. 2018, 140, e58520. [Google Scholar]
- Kumari, N.; Ammosova, T.; Diaz, S.; Lin, X.; Niu, X.; Ivanov, A.; Jerebtsova, M.; Dhawan, S.; Oneal, P.; Nekhai, S. Increased iron export by ferroportin induces restriction of HIV-1 infection in sickle cell disease. Blood Adv. 2016, 1, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Gutschow, P.; Schmidt, P.J.; Han, H.; Ostland, V.; Bartnikas, T.B.; Pettiglio, M.A.; Herrera, C.; Butler, J.S.; Nemeth, E.; Ganz, T.; et al. A competitive enzyme-linked immunosorbent assay specific for murine hepcidin-1: Correlation with hepatic mRNA expression in established and novel models of dysregulated iron homeostasis. Haematologica 2015, 100, 167–177. [Google Scholar] [CrossRef] [PubMed]
Parameter | SCD | Control | p | Reference Range |
---|---|---|---|---|
Hematocrit, % | 27.74 ± 1.43 | 45.02 ± 2.81 | 1.19 × 10−5 | 35–52 8 |
Hemoglobin, g/dL | 6.4 ± 0.21 | 11.38 ± 0.95 | 4.76 × 10−6 | 11.7–17.3 8 |
RBC 1, 106 µL | 6.94 ± 0.19 | 12.65 ± 0.86 | 6.85 × 10−7 | 7.8–10.6 8 |
MCV 2, fL 3 | 40.02 ± 1.46 | 33.28 ± 0.6 | 1.34 × 10−5 | 45–55 10 |
MCH 4, pg | 9.33 ±0.12 | 9.07 ± 0.29 | 0.2943 | 15.2–16.2 10 |
Reticulocytes, % | 38.06 ± 2.45 | 6.35 ± 0.96 | 1.75 × 10−9 | 3.57–15.2 8 |
Serum Fe, µg/dL | 165.11 ± 38.79 | 113.81 ± 33.37 | 0.0618 | 102.0–190.4 8 |
TIBC 5, µM | 532.83 ± 99.71 | 321.55 ± 149.12 | 0.05663 | 250–450 9 |
TSAT 6, % | 34.51 ± 9.08 | 37.81 ± 12.29 | 0.6814 | 25–37 9 |
Urinary creatinine, mg/dL | 40.88 ± 20.86 | 87.11 ± 17.35 | 0.03859 | 32.5–63.1 10 |
Urinary creatinine, mg per 24 h | 50.26 ± 13.42 | 53.22 ± 11.03 | 0.7721 | N/A 12 |
Urine volume per 24 h, mL | 1.38 ± 0.34 | 0.62 ± 0.11 | 0.0168 | 0.5–1.3 8 |
Urine Fe/urine Cr 7, pg/mg | 3.96 ± 2.27 | 1.93 ± 0.68 | 0.1906 | 0.95–3.6 9 |
Urine Fe, pg per 24 h | 131.55 ± 48.36 | 99.07 ± 39.99 | 0.4141 | N/A 12 |
GFR 11, µL/min | 91.1 ± 2.5 | 146.4 ± 30.4 | 0.0067 | N/A 12 |
Gene | Forward Primer | Reverse Primer |
---|---|---|
Slc40a1 | 5′-TTGCAGGAGTCATTGCTGCTA-3′ | 5′-TGGAGTTCTGCACACCATTGAT-3′ |
TfR1 | 5′-TCATGAGGGAAATCAATGATCGTA-3′ | 5′-GCCCCAGAAGATATGTCGGAA-3′ |
Dmt1 | 5′-GGCTTTCTTATGAGCATTGCCTA-3′ | 5′-GGAGCACCCAGAGCAGCTTA-3′ |
Hamp | 5′-CCATCAACAGATGAGACAGACTAC-3′ | 5′-TTGCAACAGATACCACACTGG -3′ |
Fth1 | 5′-TGATGAAGCTGCAGAACCAG-3′ | 5′-GTGCACACTCCATTGCATTC-3′ |
Bmp6 | 5′-GCTGAGTTCCGCGTCTACAA-3′ | 5′-ACCCGGGTGTCCAACAAAAA-3′ |
Heph | 5′-TTGTCTCATGAAGAACATTACAGCAC-3′ | 5′-CATATGGCAATCAAAGCAGAAGA-3′ |
CP | 5′-AAAGTCCCTCTGCCTCAGGT-3′ | 5′-TTTTCCCAGATTGTCCTGGT-3′ |
IL6 | 5′-TAGTCCTTCCTACCCCAATTT CC-3′ | 5′-TTGGTCCTTAGCCACTCCTTC-3′ |
IL1b | 5′-GACCTTCCAGGATGAGGACA-3′ | 5′-AGCTCATATGGGTCCGACAG-3′ |
Actb | 5′-CCTAGCACCATGAAGATCAAG-3′ | 5′-AAGGGTGTAAAACGCAGCTC-3′ |
Antibody | Host | WB Dilution | Reference/Supplier |
---|---|---|---|
FPN1/Slc40a1 | Rabbit | 1:1000 | PA5-22993, Invitrogen/ MTP11-A, Alpha diagnostics |
TfR1 | Rabbit | 1:1000 | AB84036, Abcam |
CP | Rabbit | 1:1000 | Ab48614, Abcam |
FtH | Rabbit | 1:1000 | SC-25617, SCBT |
Beta-Actin | Mouse | 1:10000 | SC-47778 HRP, SCBT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A.; Kumari, N.; Afangbedji, N.; Nekhai, S.; Jerebtsova, M. Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice. Int. J. Mol. Sci. 2023, 24, 10806. https://doi.org/10.3390/ijms241310806
Ahmad A, Kumari N, Afangbedji N, Nekhai S, Jerebtsova M. Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice. International Journal of Molecular Sciences. 2023; 24(13):10806. https://doi.org/10.3390/ijms241310806
Chicago/Turabian StyleAhmad, Asrar, Namita Kumari, Nowah Afangbedji, Sergei Nekhai, and Marina Jerebtsova. 2023. "Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice" International Journal of Molecular Sciences 24, no. 13: 10806. https://doi.org/10.3390/ijms241310806
APA StyleAhmad, A., Kumari, N., Afangbedji, N., Nekhai, S., & Jerebtsova, M. (2023). Induction of Hepcidin Expression in the Renal Cortex of Sickle Cell Disease Mice. International Journal of Molecular Sciences, 24(13), 10806. https://doi.org/10.3390/ijms241310806