PER2 Promotes Odontoblastic/Osteogenic Differentiation of Dental Pulp Stem Cells by Modulating Mitochondrial Metabolism
Abstract
:1. Introduction
2. Results
2.1. The Expression Pattern of PER2 in Human Dental Pulp Tissue
2.2. Characterization and Multi-Differentiation Capacity of hDPSCs
2.3. Effect of Odontoblastic/Osteogenic Induction on PER2 Expression in hDPSCs
2.4. PER2 Enhances Odontoblastic/Osteogenic Differentiation Potential of hDPSCs
2.5. Overexpression of PER2 in hDPSCs Enhances Collagen Secretion and Osteodentine-like Structure Formation
2.6. Mitochondrial Metabolism Evaluation in PER2-Knockdown or Overexpression hDPSCs during the Odontoblastic/Osteogenic Differentiation Process
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Reagents and Antibodies
4.3. Dental Pulp Tissue Preparation
4.4. Cell Culture
4.5. Flow Cytometry Analysis
4.6. Alkaline Phosphatase, Oil Red O and Alizarin Red S Staining
4.7. PER2 Knockdown and Overexpression in hDPSCs
4.8. Western Blot
4.9. Quantitative Real-Time PCR (qRT-PCR)
4.10. CCK-8 Assay
4.11. In Vivo Transplantation of hDPSCs
4.12. Histology, Immunohistochemistry and Immunofluorescence
4.13. Measurement of ATP Level
4.14. Mitochondrial Membrane Potential Detection
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board and Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [Green Version]
- Alge, D.L.; Zhou, D.; Adams, L.L.; Wyss, B.K.; Shadday, M.D.; Woods, E.J.; Gabriel Chu, T.M.; Goebel, W.S. Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J. Tissue Eng. Regen. Med. 2010, 4, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papagerakis, S.; Zheng, L.; Schnell, S.; Sartor, M.A.; Somers, E.; Marder, W.; McAlpin, B.; Kim, D.; McHugh, J.; Papagerakis, P. The circadian clock in oral health and diseases. J. Dent. Res. 2014, 93, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Papagerakis, S.; Schnell, S.D.; Hoogerwerf, W.A.; Papagerakis, P. Expression of clock proteins in developing tooth. Gene Expr. Patterns 2011, 11, 202–206. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Xie, S.J.; Que, K.H.; Yang, F.; Liu, J.; Wang, Z.R.; Zhou, X.D. Altered circadian rhythm of pulp sensibility in elderly diabetic and hypertensive patients. Chin. Med. J. 2007, 120, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.J.; Guo, B.; Zhou, X.D.; Que, K.H.; Xu, Z.; Wang, Z.R.; Chen, X.M. The influence of age upon circadian rhythm of human pulp sensibility. Sichuan Da Xue Xue Bao Yi Xue Ban 2007, 38, 678–680. [Google Scholar]
- Guo, B.; Xu, Z.; Chen, X.M.; Wang, Q.Q.; Xie, S.J.; Zhang, Q.; Zhou, X.D. Chronobiology of pulp sensibility in young people. Sichuan Da Xue Xue Bao Yi Xue Ban 2005, 36, 850–852. [Google Scholar]
- Rogers, E.H.; Fawcett, S.A.; Pekovic-Vaughan, V.; Hunt, J.A. Comparing Circadian Dynamics in Primary Derived Stem Cells from Different Sources of Human Adult Tissue. Stem Cells Int. 2017, 2017, 2057168. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Lazar, M.A. Transcriptional Control of Circadian Rhythms and Metabolism: A Matter of Time and Space. Endocr. Rev. 2020, 41, 707–732. [Google Scholar] [CrossRef]
- Zhuo, H.; Wang, Y.; Zhao, Q. The Interaction between Bmal1 and Per2 in Mouse BMSC Osteogenic Differentiation. Stem Cells Int. 2018, 2018, 3407821. [Google Scholar] [CrossRef]
- Fu, L.; Patel, M.S.; Bradley, A.; Wagner, E.F.; Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 2005, 122, 803–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seong, J.M.; Kim, B.C.; Park, J.H.; Kwon, I.K.; Mantalaris, A.; Hwang, Y.S. Stem cells in bone tissue engineering. Biomed. Mater. 2010, 5, 062001. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.T.; Gronthos, S.; Shi, S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.M.; Kong, Y.Y.; Li, Y.Y.; Zhang, W. MagT1 regulated the odontogenic differentiation of BMMSCs induced byTGC-CM via ERK signaling pathway. Stem Cell Res. Ther. 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLachlan, J.L.; Smith, A.J.; Bujalska, I.J.; Cooper, P.R. Gene expression profiling of pulpal tissue reveals the molecular complexity of dental caries. Biochim. Biophys. Acta 2005, 1741, 271–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Zheng, X.; Yang, M.; Li, R.; Song, Y. PER2-mediated ameloblast differentiation via PPARγ/AKT1/β-catenin axis. Int. J. Oral Sci. 2021, 13, 16. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, J.; Chen, G.; Yuan, Z.; Liu, J. Effects of BMAL1 on dentinogenic differentiation of dental pulp stem cells via PI3K/Akt/mTOR pathway. Int. Endod. J. 2022, 55, 505–516. [Google Scholar] [CrossRef]
- Hong, X.; Isern, J.; Campanario, S.; Perdiguero, E.; Ramírez-Pardo, I.; Segalés, J.; Hernansanz-Agustín, P.; Curtabbi, A.; Deryagin, O.; Pollán, A.; et al. Mitochondrial dynamics maintain muscle stem cell regenerative competence throughout adult life by regulating metabolism and mitophagy. Cell Stem Cell 2022, 29, 1298–1314.e10. [Google Scholar] [CrossRef]
- Chakrabarty, R.P.; Chandel, N.S. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021, 28, 394–408. [Google Scholar] [CrossRef]
- Maity, J.; Deb, M.; Greene, C.; Das, H. KLF2 regulates dental pulp-derived stem cell differentiation through the induction of mitophagy and altering mitochondrial metabolism. Redox Biol. 2020, 36, 101622. [Google Scholar] [CrossRef]
- Wang, J.; Qu, X.; Xu, C.; Zhang, Z.; Qi, G.; Jin, Y. Thermoplasmonic Regulation of the Mitochondrial Metabolic State for Promoting Directed Differentiation of Dental Pulp Stem Cells. Anal. Chem. 2022, 94, 9564–9571. [Google Scholar] [CrossRef]
- Ulgherait, M.; Chen, A.; McAllister, S.F.; Kim, H.X.; Delventhal, R.; Wayne, C.R.; Garcia, C.J.; Recinos, Y.; Oliva, M.; Canman, J.C.; et al. Circadian regulation of mitochondrial uncoupling and lifespan. Nat. Commun. 2020, 11, 1927. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, K.; Grimm, A.; Dallmann, R.; Oettinghaus, B.; Restelli, L.M.; Witzig, M.; Ishihara, N.; Mihara, K.; Ripperger, J.A.; Albrecht, U.; et al. Circadian Control of DRP1 Activity Regulates Mitochondrial Dynamics and Bioenergetics. Cell Metab. 2018, 27, 657–666.e5. [Google Scholar] [CrossRef] [Green Version]
- Neufeld-Cohen, A.; Robles, M.S.; Aviram, R.; Manella, G.; Adamovich, Y.; Ladeuix, B.; Nir, D.; Rousso-Noori, L.; Kuperman, Y.; Golik, M.; et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl. Acad. Sci. USA 2016, 113, E1673–E1682. [Google Scholar] [CrossRef] [Green Version]
- Monzel, A.S.; Enríquez, J.A.; Picard, M. Multifaceted mitochondria: Moving mitochondrial science beyond function and dysfunction. Nat. Metab. 2023, 5, 546–562. [Google Scholar] [CrossRef]
- Sui, B.; Chen, C.; Kou, X.; Li, B.; Xuan, K.; Shi, S.; Jin, Y. Pulp Stem Cell-Mediated Functional Pulp Regeneration. J. Dent. Res. 2019, 98, 27–35. [Google Scholar] [CrossRef]
- Yamada, Y.; Nakamura-Yamada, S.; Kusano, K.; Baba, S. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review. Int. J. Mol. Sci 2019, 20, 1132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fishbein, A.B.; Knutson, K.L.; Zee, P.C. Circadian disruption and human health. J. Clin. Investig. 2021, 131, e148286. [Google Scholar] [CrossRef]
- Ruan, W.; Yuan, X.; Eltzschig, H.K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug Discov. 2021, 20, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Alonso, N.; Larraz-Prieto, B.; Berg, K.; Lambert, Z.; Redmond, P.; Harris, S.E.; Deary, I.J.; Pugh, C.; Prendergast, J.; Ralston, S.H. Loss-of-Function Mutations in the ALPL Gene Presenting with Adult Onset Osteoporosis and Low Serum Concentrations of Total Alkaline Phosphatase. J. Bone Miner. Res. 2020, 35, 657–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eimar, H.; Tamimi, F.; Retrouvey, J.M.; Rauch, F.; Aubin, J.E.; McKee, M.D. Craniofacial and Dental Defects in the Col1a1Jrt/+ Mouse Model of Osteogenesis Imperfecta. J. Dent. Res. 2016, 95, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Studdert, J.B.; Bildsoe, H.; Masamsetti, V.P.; Tam, P.P.L. Visualization of the Cartilage and Bone Elements in the Craniofacial Structures by Alcian Blue and Alizarin Red Staining. Methods Mol. Biol. 2022, 2403, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.H.; Ho, K.N.; Lee, Y.C.; Chou, M.J.; Lew, W.Z.; Huang, H.M.; Lai, P.C.; Feng, S.W. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res. Ther. 2022, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Redmond, J.; Fulford, A.J.; Jarjou, L.; Zhou, B.; Prentice, A.; Schoenmakers, I. Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups. J. Clin. Endocrinol. Metab. 2016, 101, 3222–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Tang, Q.; Chen, G.; Lu, X.; Yin, Y.; Xie, M.; Long, Y.; Zheng, W.; Guo, F.; Shao, L.; et al. Circadian rhythm modulates endochondral bone formation via MTR1/AMPKβ1/BMAL1 signaling axis. Cell Death Differ. 2022, 29, 874–887. [Google Scholar] [CrossRef]
- Zheng, C.X.; Sui, B.D.; Qiu, X.Y.; Hu, C.H.; Jin, Y. Mitochondrial Regulation of Stem Cells in Bone Homeostasis. Trends Mol. Med. 2020, 26, 89–104. [Google Scholar] [CrossRef]
- Li, X.; Tian, B.M.; Deng, D.K.; Liu, F.; Zhou, H.; Kong, D.Q.; Qu, H.L.; Sun, L.J.; He, X.T.; Chen, F.M. LncRNA GACAT2 binds with protein PKM1/2 to regulate cell mitochondrial function and cementogenesis in an inflammatory environment. Bone Res. 2022, 10, 29. [Google Scholar] [CrossRef]
- Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2016, 78, 505–531. [Google Scholar] [CrossRef]
- Simula, L.; Campello, S. Monitoring the Mitochondrial Dynamics in Mammalian Cells. Methods Mol. Biol. 2018, 1782, 267–285. [Google Scholar] [CrossRef]
- Fang, D.; Yan, S.; Yu, Q.; Chen, D.; Yan, S.S. Mfn2 is Required for Mitochondrial Development and Synapse Formation in Human Induced Pluripotent Stem Cells/hiPSC Derived Cortical Neurons. Sci. Rep. 2016, 6, 31462. [Google Scholar] [CrossRef] [Green Version]
- Kasahara, A.; Cipolat, S.; Chen, Y.; Dorn, G.W., 2nd; Scorrano, L. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 2013, 342, 734–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, W.; Huang, Q.; He, H.; Huang, F. PER2 Promotes Odontoblastic/Osteogenic Differentiation of Dental Pulp Stem Cells by Modulating Mitochondrial Metabolism. Int. J. Mol. Sci. 2023, 24, 10661. https://doi.org/10.3390/ijms241310661
Huang W, Huang Q, He H, Huang F. PER2 Promotes Odontoblastic/Osteogenic Differentiation of Dental Pulp Stem Cells by Modulating Mitochondrial Metabolism. International Journal of Molecular Sciences. 2023; 24(13):10661. https://doi.org/10.3390/ijms241310661
Chicago/Turabian StyleHuang, Wushuang, Qi Huang, Hongwen He, and Fang Huang. 2023. "PER2 Promotes Odontoblastic/Osteogenic Differentiation of Dental Pulp Stem Cells by Modulating Mitochondrial Metabolism" International Journal of Molecular Sciences 24, no. 13: 10661. https://doi.org/10.3390/ijms241310661
APA StyleHuang, W., Huang, Q., He, H., & Huang, F. (2023). PER2 Promotes Odontoblastic/Osteogenic Differentiation of Dental Pulp Stem Cells by Modulating Mitochondrial Metabolism. International Journal of Molecular Sciences, 24(13), 10661. https://doi.org/10.3390/ijms241310661