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Abstract: Hepatic ischemia-reperfusion injury is a major cause of post-operative hepatic dysfunction
and liver failure after transplantation. Mitochondrial pathways can be either beneficial or detrimental
to hepatic cell apoptosis during hepatic ischemia/reperfusion injury, depending on multiple factors.
Hepatic ischemia/reperfusion injury may be induced by opened mitochondrial permeability transi-
tion pore, released apoptosis-related proteins, up-regulated B-cell lymphoma-2 gene family proteins,
unbalanced mitochondrial dynamics, and endoplasmic reticulum stress, which are integral parts of
mitochondrial pathways. In this review, we discuss the role of mitochondrial pathways in apoptosis
that account for the most deleterious effect of hepatic ischemia/reperfusion injury.

Keywords: mitochondria pathway; ischemia/reperfusion injury; apoptosis; liver

1. Introduction

Apoptosis is a normal physiological process of highly regulated cell death that oc-
curs in most multicellular organisms [1]. Apoptosis plays an important role in the cell
cycle and is an integral part of the immune system under physiological and pathological
conditions [2]. Disorders of apoptosis are associated with autoimmune diseases, bacte-
rial and viral diseases, heart disease, and neurodegeneration [3]. Apoptosis is defined
as an energy-dependent cell death which is one of the pathological characteristics of is-
chemia/reperfusion injury (IRI) [4]. There are two different pathways of cell apoptosis,
the extrinsic death receptor pathway and the intrinsic mitochondrial pathway. Irreversible
intracellular genomic damage is caused by various stimuli including gamma-ray irradia-
tion, endoplasmic reticulum stress, growth factor deprivation, and oxidative stress, which
activates the intrinsic pathway, known as the mitochondrial pathway [5,6]. This pathway is
responsible for mitochondrial electron transport chain breakage, reactive oxygen species
(ROS) production, adenosine triphosphate (ATP) depletion, mitochondrial membrane po-
tential (∆Ψm) decrease, and mitochondrial permeability transition pore (MPTP) opening,
thus leading to cell apoptosis [7].

Mitochondria is one of the most pivotal places of energy metabolism and is most sensi-
tive to ischemia and hypoxia. Some observe that mitochondria evolved a unique structure
composed of two layers of membrane to preserve some basic functions of organelles [8].
The inner and outer membrane of mitochondria form a unique space within mitochondria,
called the intermembrane space [9]. The inner membrane is highly impermeable and does
not provide porin, but contains specific transport proteins. The mitochondrial outer mem-
brane envelops the whole mitochondria and contacts the cytoplasm directly [10]. The outer
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membrane of mitochondria contains several intact proteins, known as porin or voltage-
dependent anion-selective channel, which contains a channel permeable to <5000 Dalton
molecules to transport macromolecules through mitochondrial membrane transfer pro-
teins [11]. Under the action of various injury factors, the entry of apoptosis-related proteins
between mitochondrial bilayer membranes into the cytoplasm begins, eventually leading
to cell apoptosis. Ischemia and hypoxia usually firstly damage the structure and function
of mitochondria in tissue cells [12]. Mitochondria play a key role in the apoptotic signal
transduction pathway during cell apoptosis, which is manifested as electron transfer rup-
ture of the mitochondrial respiratory chain, ROS production, ATP depletion, decreased
mitochondrial membrane potential, MPTP opening, and even loss of release of outer
membrane proteins, thus leading to cell apoptosis [7]. During liver ischemia reperfusion,
mitochondrial structure and function are impaired and induce liver cell apoptosis, which
are related to the opening of MPTP, the release of apoptosis-related proteins, the regulation
of B lymphocytoma-2 gene (Bcl-2) family proteins, mitochondrial dynamics imbalance, and
endoplasmic reticulum (ER) stress [13–15].

There are two main pathways of apoptosis: exogenous death receptor pathway and
endogenous mitochondrial apoptosis pathway. The external pathway refers to the death re-
ceptor pathway, activated by ligands and receptors. A variety of mediators, including TNFa,
Fas ligand, TRAIL, and TLIA. The ligand TRAIL is activated by TNFa and other factors, and
the pro-apoptotic mediators bind to their respective receptors to catalyze the activation of
many Caspase8, which further leads to the activation and pro-apoptotic of Caspase3 [16,17].
The internal pathway is also known as the mitochondrial pathway. MPTP opens when
the mitochondrial structure is damaged by external stimuli such as hypoxia, radiation,
and cytotoxin. With the pro-apoptotic factors into the cytosol, the Bcl-2 family activates
proapoptotic factors [2,18]. The translocation of Bax to the outer membrane of mitochondria
causes changes in mitochondrial membrane permeability, then the mitochondrial trans-
membrane potential is to reduce and depolarize, releasing cytochrome-C and other active
factors in the mitochondrial matrix. Cytochrome-C enters into the cytoplasm and binds
to Apaf-1 to form the oligomer under the synergistic effect of ATP/dATP, which activates
caspase-9 and downstream caspase-3, leading to cell apoptosis [19]. This review mainly
discusses the role of mitochondrial apoptosis pathway in hepatic ischemia-reperfusion in
recent years.

2. The Initiation of Apoptosis: Mitochondrial Fission and Fusion

Mitochondria keeps its dynamic renewal by its continuous fission and fusion [20].
Mitochondrial fission causes its division, while its fusion leads to the binding and prolon-
gation of phospholipid membranes in mitochondria (Figure 1). Mitochondria are strictly
controlled by mitotic proteins embedded in the outer and inner membranes through stimu-
lating mitochondrial fusion and fission. However, the dynamic cycle of fission and fusion
in mitochondria is destroyed when under stress or damaged. The damaged dynamics in
mitochondria may eventually lead to apoptosis by the excessive fission and reduced fusion
in mitochondria after hepatic IRI [21].

2.1. Mitochondrial Fission and Fission

Mitochondrial fission is due to the increased mitochondrial division or decreased mi-
tochondrial fusion [22–24]. The mitochondrial division damaged organelles are responsible
for mitochondrial fission and mitosis. These fragmented organelles fuse to an intercon-
nected network which renews the damaged mitochondrial DNA (mtDNA) [25]. Excessive
fission causes mitochondrial breakage and activates its apoptosis pathway, thus aggravat-
ing tissue damage and cell apoptosis [26]. Additionally, excessive fission of mitochondria
is a pre-symptom of cytochrome-C (cyt c) release [27], and the release of cyt c further
promotes the mitosis of mitochondria.
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Figure 1. Fusion–fission cycle in mitochondria. Mitochondria strictly control the fusion and fission 
process through mitotic proteins embedded in the inner and outer membranes to maintain the dy-
namic balance of biological energy. The mitofusins and Opa1 mediate the fusion of the mitochon-
drial membrane. Fusion and fission belong to the mitochondrial quality control cycle. The growth 
and division of pre-existing mitochondria are also involved. 
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by translocating Drp1 to mitochondria in a fission-based manner [28]. During mitochon-
drial fission, the cytoplasm-localized Drp1 was recruited to its outer membrane which 
mediated membrane division. It is reported that interrupted mitochondrial fission by 
Drp1 protects hepatocytes from IRI-induced apoptosis [29]. In addition, Drp1-mediated 
mitochondrial fragmentation is regulated by Drp1 phosphorylation at Ser616 and Ser637, 
which results in the activation and inactivation of Drp1, respectively [28]. Drp1 phosphor-
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Figure 1. Fusion–fission cycle in mitochondria. Mitochondria strictly control the fusion and fission
process through mitotic proteins embedded in the inner and outer membranes to maintain the dy-
namic balance of biological energy. The mitofusins and Opa1 mediate the fusion of the mitochondrial
membrane. Fusion and fission belong to the mitochondrial quality control cycle. The growth and
division of pre-existing mitochondria are also involved.

Long et al. [21] showed that mitochondrial dynamics are related to the regulation of
dynamin-related protein1(Drp1) and Mitochondrial fission protein 1 (MTFP1). Drp1 is a key
protein in mitochondrial fission, which is mainly present in the cytoplasm and transferred
to mitochondria after activation [28]. Hepatic IRI affects mitochondrial dynamics by
translocating Drp1 to mitochondria in a fission-based manner [28]. During mitochondrial
fission, the cytoplasm-localized Drp1 was recruited to its outer membrane which mediated
membrane division. It is reported that interrupted mitochondrial fission by Drp1 protects
hepatocytes from IRI-induced apoptosis [29]. In addition, Drp1-mediated mitochondrial
fragmentation is regulated by Drp1 phosphorylation at Ser616 and Ser637, which results
in the activation and inactivation of Drp1, respectively [28]. Drp1 phosphorylation at
Ser616 promotes mitochondrial fission, and Drp1 phosphorylation at Ser637 seems to
induce cell apoptosis. Drp1 Phosphorylation at Ser637 by protein kinase A (PKA) lengthens
mitochondria to inhibit cell apoptosis, whereas Drp1 dephosphorylation at Ser637 by
calcineurin (CaN) promotes mitochondrial fragmentation [30].

2.2. Mitochondrial Fusion

Mitochondrial fusion has long been regarded as a protective way to reduce mitochon-
drial fission [9]. During hepatic IRI, the fusion of damaged mitochondria could cause
a beneficial effect to maintain the survival function of mitochondria [26] by preventing
mitochondrial decomposition caused by the release of cyt c, xanthine oxidase (XO), and
ROS in mitochondrial [31]. Fusion is associated with the redistribution of metabolites,
proteins, and mtDNA in mitochondria. Fusion is also helpful for maintaining oxidative
phosphorylation and integrity of mtDNA, and enhancing the synthesis of ATP [32].

The consequence of fusion is related to intimal proteins optic atrophy 1 (Opa1), mi-
tochondrial fusion protein 1 (Mfn1), and Mfn2. Previous research has established that
Opa1-induced fusion may be affected by extracellular regulated protein kinases (ERK) and
sirtuin-3 (SIRT3) [33]. The highlight is that SIRT3 maintains mitochondrial homeostasis on
IRI by enhancing mitochondrial fusion triggered by Opa1 [32]. Inhibition of ERK eliminates
the regulatory effect of SIRT3 on Opa1 expression and mitochondrial fusion, resulting in
mitochondrial damage and apoptosis of renal tubular epithelial cells [10].

3. “Switch” Role of Mitochondrial Permeability Transition Pore

MPTP is a group of protein complexes with non-specificity and voltage dependencies
present between the inner and outer mitochondrial membranes (Figure 2). The outer
membrane of mitochondria contains many intact proteins known as porin, which contains
a channel that is permeable to <5000 Dalton molecules to transport macromolecules through
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mitochondrial membrane transfer proteins [11]. During mitochondrial damage, the inner
membrane of the mitochondrial collapses once the mitochondrial permeability transition
is initiated, allowing apoptosis-related proteins to rush out of the mitochondrial, and
eventually leading to cell apoptosis [34,35].
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VDAC on the OMM, ANT on the IMM.

The historical model of the mPTP comprised three components: voltage-dependent
anion channel (VDAC) in the outer membrane of mitochondria, adenine nucleotide translo-
case (ANT) in the inner membrane of mitochondria, and cyclophilin D (CypD) in the mito-
chondrial matrix. Crompton et al. [36] demonstrated that CsA was an effective inhibitor of
MPTP opening, and later studies showed that CsA inhibited pore opening through inhibi-
tion of matrix peptidyl prolyl cis-trans isomerase (PPIase). CsA is an inhibitor of CypD,
which proves that the protein on MPTP is CypD [37]. Matrix PPIase activity promotes
conformational changes in intimal proteins, but the composition of CypD is still under
investigation. Studies have shown that liver mitochondria of CypD knockout mice are
highly resistant to calcium-induced MPTP opening [38]. The mitochondrial phosphate
carrier (PiC) is consistent with the calcium-induced conformational change of PiC in mPTP
formation. Co-immunoprecipitation and GST-CyP-D pull-down analysis showed that CYP-
D interacts with PiC [39]. The bovine ANT1 of CAT complex is consistent with ANT, which
forms MPTP. It also suggests that ANT has a conformation of a large cavity extending from
the cytoplasmic side into the membrane, in which a contraction channel comprising three
spirals prevents pore formation [40,41]. If conformational changes facilitated by CYP-D
rearranged these helices, this may also be responsible for the formation of MPTP.

As a dynamic structure that closes during ischemia and opens during reperfusion,
MPTP plays a “switch” role in apoptosis [42–44]. MPTP brings destruction to the proton
gradient and electric potential of the mitochondrial inner membrane, leads to the inflow
of solutes and water, and increases the permeability of mitochondria, thus increasing the
burden on the mitochondrial. Subsequent swelling and breakdown of the outer membrane
activate the cascade reaction of pro-apoptosis [45–48]. It can thus be suggested that pro-
apoptotic proteins are released into the intracellular mediator, which contributes to the
release of cyt c, apoptosis inducing factor (AIF), and the formation of apoptotic bodies [8].
Another important finding was that ATP levels decreased significantly when most hepa-
tocyte mitochondria were affected by MPTP [49]. Recent cases reported by Sun et al. [50]
also support the hypothesis that this decline in ATP levels is often accompanied by mi-
tochondria swelling, activation of caspases, up-regulation of Bcl-2, and downregulation
of Bcl-2-associated X protein (Bax). Even if a small fraction of MPTP lifts a restriction,
mitochondrial homeostasis imbalance and cell apoptosis will still occur [20,51]. Surveys
conducted by Cai et al. [52] have shown that the cell apoptosis was effectively offset by
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inhibition of MPTP opening. During hepatic IRI, MPTP opening is induced by the following
alterations: over-production of ROS, calcium (Ca2+) overload, and ∆Ψm loss (Table 1).

Table 1. Influencing factors of MPTP opening. Excessive ROS, elevated calcium, and decreased ∆Ψm;
these factors are interconnected and can lead to the same events: the MPT pore opening, damage to
mitochondrial membranes, and release of pro-apoptotic proteins.

Factors How Effects Results

ROS
excessive ROS produce
after reperfusion and

CO exposure

promote mitochondrial
permeability transition and
depolarizes ∆Ψm; produce
lipid peroxides and other

toxic aldehydes

induce MPTP opening

Ca2+
Na+/Ca2+ commutator

overburden leads to
Ca2+ overload

induce PKC formation activate
NFkB activate Ca2+-dependent
enzymes; cause mitochondrial

integrity impairment

mitochondrial
membrane damage

∆Ψm
mitochondrial integrity

impaired causes
the ∆Ψm loss

block the synthesis of
mitochondrial RNA and

protein, uncoupling oxidative
phosphorylation, and

ATP depletion

release of apoptosis
drivers, cyt c

3.1. ROS Triggered MPTP Opening during Hepatic IRI

The early characteristics of hepatic IRI are the occurrence of oxidative stress and
the release of ROS, which directly lead to hepatocyte injury [53]. Mitochondria are both
targets and generators of ROS [54]. Under normal physiological states, hepatocytes can
withstand certain levels of ROS. However, excessive ROS can be produced when damaged
mitochondria become dysfunctional, resulting in greater damage to mitochondria [55,56].
Thus far, previous studies have suggested that excessive ROS production during hepatic
IRI can result in apoptosis due to the further damage of DNA, proteins, lipids, and other
cellular molecules [57].

Evidence suggests that the overproduction of ROS mainly occurs after blood and
oxygen return to the hypoxic liver [58]. This increase in ROS allows for mitochondrial
permeability transition, depolarization of ∆Ψm, and MPTP opening [59]. Another signif-
icant aspect of ROS-induced MPTP opening is that ROS interacts with polyunsaturated
fatty acids in biofilms to produce highly toxic and reactive molecules, resulting in the pro-
duction of lipid peroxides and poisonous aldehydes, such as 4-hydroxynonenal (4-HNE)
or malondialdehyde (MDA). Firstly, the accumulation of 4-HNE may activate a series of
signaling pathways that lead to liver cell apoptosis, including decreased integrity of the
mitochondrial membrane, increased permeability of mitochondrial, and inhibited electron
transport chain [60,61]. Secondly, MDA is a major metabolite of lipid peroxides that have
been demonstrated to be the main cause of cell membrane damage [62].

As key binding targets for carbon monoxide (CO), mitochondria are an important
target for CO-dependent regulation of cellular physiology and signal pathways due to the
richness in iron such as heme [63]. The toxicity of CO on mitochondria has been broadened
to relate to ROS generation, ∆Ψm, mitochondrial respiration, and mitochondrial-dependent
metabolic pathways. As noted by Jung et al. [64], CO regulates the production of mito-
chondrial ROS in a specific manner. At high concentrations, CO can inhibit mitochondrial
respiration and ATP production, and regulate the glycolytic pathway in a dose-dependent
manner [65]. On the other hand, as the key catalyst for the formation of ROS, iron is the
main instigator of MPTP. Intracellular chelated iron can promote hepatocyte oxidative
damage and MPTP-induced apoptosis [66]. During the phase of ischemic, the lysosome
releases chelatable ferrous iron (Fe2+), and then Fe2+ is absorbed into mitochondria by mi-
tochondrial Ca2+ uniporter. Once the Fe2+ overload occurs in mitochondria, the formation
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of hydrogen peroxide after reperfusion leads to the production of hydroxyl radicals (OHD).
In particular, OHD will damage DNA, protein, and cell membranes, resulting in MPTP
opening and cell apoptosis [67].

3.2. Calcium Overload and MPTP Opening during IRI

The imbalance of Ca2+ homeostasis is a common way that has a considerable im-
pact on hepatocyte injury. Intracellular Ca2+ concentration is approximately 10–100 nM,
10,000 times lower than extracellular Ca2+ concentration. This gradient can be maintained
by four mechanisms: (1) ATP-mediated transmembrane outflow; (2) Na+/K+-mediated
Ca2+/Na+ retrograde transport; (3) Ca2+ storage capacity of endoplasmic reticulum; and
(4) oxygen-dependent intracellular Ca2+ pump in mitochondria [68,69]. However, with the
increased concentration of cytoplasmic Ca2+, mitochondria can act as a buffer for redun-
dant Ca2+. This subsequently leads to the migration of abundant intracellular Ca2+ due to
the increase in intracellular Na+ concentration and the antiport of Na+/Ca2+. Moreover,
ischemia and hypoxia lead to an increase in cell membrane permeability, resulting in a
further pile-up of the intracellular Ca2+. Ischemia and hypoxia also violate the structure
and function of mitochondria, resulting in the release of large amounts of Ca2+ from the
endoplasmic reticulum (ER) and intracellular Ca2+ overload [70].

With the development of research, the molecular structure of mitochondrial calcium
ion transport has been identified as mitochondrial Ca2+ uniporter (MCU), Na+/Ca2+ ex-
changer (NCLX) and Ca2+/H+ antiporter (Letm1) [71]. The consensus is that MCU is
primarily responsible for mitochondrial Ca2+ influx and that MCU promotes Ca2+ transport
down its electrochemical gradient. MICU1 is an adjustable MCU containing Ca2+ binding
EF-Hand structure [72]. When intracellular Ca2+ concentration is low, it prevents Ca2+

from entering the MCU channel. The MiCU1/MiCU2 ratio, and its interaction with MCU,
determine the dynamics of Ca2+ transport to mitochondria. Overexpression of MICU1
gene also results in significantly sped up Ca2+ entry into mitochondria [72]. Letm1(K+/H+

exchanger), mediates mitochondrial Ca2+ and H+ transport. With the dual role of Letm1 as
a Ca2+/H+ exchanger, Letm1 transports Ca2+ in and out of mitochondria in a Ca2+ and pH
gradient-dependent manner [72]. When I/R injury occurs, the level of intracellular ATP
decreases, resulting in down-regulation of the activity of ATP-dependent Na+/K+-AT-pase
embedded in the cell membrane [73].

Mitochondria Ca2+ overload can promote lipid peroxidation and weaken the oxidative
phosphorylation of mitochondria, resulting in impaired structure and function of mito-
chondria and decreased ATP synthesis rate [69]. Interestingly, the damaged mitochondrial
membrane structure caused by lipid peroxidation aggravates Ca2+ overload. Therefore,
both mitochondria Ca2+ overload and lipid peroxidation generally occur in liver damage
after IRI. Further analysis showed that the increase in intracellular Ca2+ during the ischemia
period also promoted the production of XO. Chang et al. [74] conclude that cell reoxygena-
tion in the process of reperfusion causes XO to induce the production of superoxide and the
restoration of ATP levels, which allows mitochondria to actively uptake Ca2+, resulting in a
large amount of Ca2+ overload. To maintain the integrity of the mitochondrial membrane,
the mitochondrial ATP synthase reverses its activity to provide energy for different ion
pumps in the mitochondrial membrane [75]. However, this further increases the inflow of
Ca2+. Mitochondrial Ca2+ overload leads to mitochondrial membrane damage, especially
the decrease in mitochondrial transmembrane potential and MPTP opening. As a result,
pro-apoptotic factors are released to the cytoplasm and accelerate cell death [76].

The relationship between Ca2+ and MPTP opening is complex and related to a variety
of different pathways. Ca2+-induced MPTP opening has three separable but interrelated
mechanisms. Firstly, hypoxia has been reported to be an effective disruptor of oxidative
phosphorylation, hindering the production of ATP and leading to Ca2+ overload [20]. It was
suggested that the extent mitochondrial Na+/Ca2+ commutator overburdened and inactive
state exacerbated with Ca2+ overload, causing the concentration of Ca2+ to increase enough
to trigger the activation of MPTP opening [26,74]. Secondly, the increase in intracellular
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Ca2+ content induces the formation of protein kinase C (PKC). Nakazato et al. [77] points
out that PKC shows a strong indirect elevating effect on nuclear transcription factor kappa B
(NFkB) activation and ROS production, thus promoting MPTP opening. Lastly, intracellular
Ca2+ overload can activate Ca2+-dependent enzymes, such as calpain, and phospholipase
C [78]. Calpain is a Ca2+-dependent intracellular cysteine protease [79]. An uncontrolled
increase in Ca2+ levels can lead to continuous activation of calpain. Cannistra et al. [66]
suggested that calpain-induced degradation of autophagy-related 7 and Beclin-1 leads to
autophagy defect and MPTP-dependent hepatocyte death after IRI.

3.3. Mitochondrial Membrane Potential Loss and MPTP Opening during IRI

∆Ψm is an increasingly important aspect in maintaining mitochondrial function and
inhibiting hepatocyte apoptosis [80]. The loss of ∆Ψm is one of the earliest events in the
cascade of apoptosis. Under normal physiological conditions, the existence of ∆Ψm mainly
depends on the closed MPTP [5]. In light of recent research, MPTP opening destroys the
integrity of the mitochondrial membrane and makes the ∆Ψm lose or collapse [74]. After
∆Ψm loss, the synthesis of mtRNA and protein was blocked, followed by uncoupling
oxidative phosphorylation and ATP depletion, resulting in osmotic swelling and outer
membrane rupture, leading to mitochondrial permeability transition, releasing apoptosis-
driving factors such as cyt c, which leads to cell apoptosis [81].

Ca2+/calmodulin dependent protein kinase II (CaMKII) proved an important mem-
ber of the CaMK family. CaMKII is a kind of protein activated by Ca2+ and calmodulin.
Zhang et al. [7] demonstrated that CaMKIIγ could induce the change of ∆Ψm and mito-
chondrial permeability. In the same vein, Kang et al. [82] found that the overexpression
of CaMKII γ caused significant ultrastructural damage, such as mitochondria swelling,
hepatocyte necrosis, mitochondria membrane rupture, and atrophy. Furthermore, phospho-
lipases of CaMKII can regulate the influx of Ca2+ into mitochondria [76]. This mechanism
is similar to that reported by Joiner et al. [83] who report CaMK II activity can regulate the
influx of Ca2+ into mitochondria and promote apoptosis.

3.4. Regulatory Role of Akt/GSK-3β Pathway on MPTP Opening

The Akt/GSK-3β pathway has significant biological functions in MPTP opening. Many
prosurvival signaling pathways inactivate glycogen GSK-3β by regulating phosphorylated
GSK-3β, then increase the opening of MPTP and regulate the IRI [84]. The reperfusion
injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways
are considered the two main pathways of MPTP opening [85,86]. To date, previous research
has shown that GSK-3β at Ser9 is phosphorylated by Akt, resulting in the interaction with
MPTP regulatory factors and inhibiting the opening of MPTP during reperfusion [45].

At the same time, the phosphorylation of GSK-3β can also actively regulateβ-Catenin [87].
Zhao et al. [84] demonstrate that administration of GSK-3β inhibitors before IRI can increase
the accumulation of intracellular β-catenin, thus activating the GSK-3β/β-catenin signaling
pathway and further enhancing the expression of Bcl-2.

4. The Release of Apoptosis-Related Proteins

During hepatic IRI, apoptosis-related proteins are released from the intermembrane
space to the cytoplasm due to the undermined structure of mitochondria. The release of
apoptosis-related proteins after IRI is known to activate the apoptosis-related signaling
pathway [88]. Thus far, previous studies have demonstrated that the proteins related to
apoptosis include cyt c, AIF, b-catenin, caveolin-1, and endonuclease, as well as mitochon-
dria apoptosis proteins such as the second mitochondrial activator of caspase (Smac) and
mitochondrial serine protease [89,90]. Among those apoptosis-related proteins, the release
of cyt c has tighter relations with apoptosis.

Cyt c function as an apoptosis protein activator due to its electron carrier role in the
mitochondrial electron transport chain [91]. Cyt c released from mitochondria enters the
cytoplasm, resulting in a blocked respiratory chain and electron transport of mitochondria,
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reduced energy supply of cells, and the conformational changes of mitochondria [81].
Subsequently, as shown in Figure 3, a polymer composed of apoptotic protease activating
factor-1(Apaf-1), cyt c, and Caspase3, namely apoptotic bodies, is formed, which triggers
the caspase cascade and leads to apoptosis [46,92].
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Figure 3. Cytochrome-c released from mitochondrial. Cyt c released from mitochondria enters the
cytoplasm, resulting in blocked respiratory chain and electron transport of mitochondria, reduced
energy supply of cells, and the conformational changes of mitochondria. Cyt c forms apoptotic bodies
and participates in the apoptosis pathway of Caspase cells.

According to Kalpage et al. [92], the phosphorylation of cyt c during IRI aggravates
tissue injury through maximum electron transport chain flow, ∆Ψm hyperpolarization, and
excessive ROS production. The accumulation of oxidized cyt c in the cytoplasm can lead to
apoptosis [93,94]. In addition, the adaptor protein p66shc oxidizes cyt c to produce ROS,
which leads to MPTP opening, followed by the release of more cyt c into the cytoplasm [95].

Previously published studies on the regulatory mechanism of cyt c release during
apoptosis are not fully understood. However, it has been established that Bcl-2, Bcl2-like
1(Bcl-xL), and Bax protein are major regulators of VDAC which may exert certain effects in
regulating the release of cyt c [96]. To the start, stimulation of proapoptotic factors resulted
in the decreased capability of Bcl-2 in maintaining the integrity of the mitochondrial mem-
brane and enforced Bax translocation outside the mitochondrial membrane. Afterwards, cyt
c is released from the mitochondrial matrix owing to mitochondrial permeability transition
and decreased mitochondrial transmembrane potential. In the next place, the released cyt c
enters the cytoplasm and binds to Apaf-1 to form an oligomer, activating Caspase-9 and
downstream Caspase-3 [19].

Cherian et al. [97] demonstrated that the AIF pathway is another typical way of apopto-
sis. AIF has antioxidant and survival-promoting effects when it is located in mitochondria.
However, AIF transferred to the nucleus after being released from the intermembrane space
triggering caspase-independent apoptotic via activating poly (ADP-ribose) polymerase-1
(PARP-1) [98].

5. Regulatory Role of B Cell Lymphoma-2(Bcl-2) Family Proteins

The Bcl-2 family proteins can be categorized into two groups: (1) anti-apoptotic factors
such as Bcl-2 and Bcl-xL; (2) proapoptotic factors such as Bax and Bad (Figure 4). On the
one hand, Bcl-2 family proteins can accurately promote the mitochondrial permeability
transition that allows the outflow of mitochondrial content. On the other hand, Bcl-2
family proteins can induce the opening of MPTP and promote the release of apoptosis-
related proteins [99]. Bax and Bcl-2 are the most widely researched member of Bcl-2 family
proteins and have been extensively regarded as a key factor in the activation or inhibition
of apoptotic pathways. Pro-apoptotic Bax promotes apoptosis by forming oligomers in
the outer membrane of mitochondria and participating in the release of apoptosis-related
molecules such as cyt c. By contrast, anti-apoptotic Bcl-2 inhibits mitochondrial apoptosis
by blocking the release and oligomerization of Bax [100]. In short, Bax can trigger the
release of cyt c to the cytoplasm, while Bcl-2 inhibits cyt c release.
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accurately promote the mitochondrial permeability transition that allows the outflow of mitochondrial
content. They can also induce the opening of mitochondrial MPTP and promote the release of
apoptosis-related proteins. The Bcl-2/Bax ratio of the Bcl-2 family determines cell survival or
apoptosis after certain stimuli.

5.1. Pro-Apoptotic Bcl-2 Family Proteins

Under normal physiological conditions, pro-apoptotic Bcl-2 proteins such as Bax, BH3-
Interacting domain death agonist (Bid), Bcl2 associated death promoter (Bad), and Bcl-2
interacting mediator (Bim) reside in the cytoplasm. However, these proteins translocate to
mitochondria after receiving apoptosis signals and then promote the release of cyt c.

Accordingly, cells under the stress state exhibited translocate of Bax and mitochondrial
permeability transition, which promotes the release of cyt c from the intermembrane space
to the cytoplasm [101,102]. Furthermore, Bax is involved in the interaction with a series
of membrane proteins, such as ANT and VDAC, to enhance the mitochondrial release of
cyt c, AIF, and SMAC/DIABLO. The binding of Ca2+ to cardiolipin boosts the transport
of Bax and Bid from the cytoplasm to the mitochondrial outer membrane [74]. Bid is
the only member of the Bcl-2 superfamily that functions to link the extrinsic apoptotic
pathway and the mitochondrial amplification loop of the intrinsic pathway [103]. Bid
further synergistically enhanced the toxicity of Bax with the increase in mitochondrial Ca2+

concentration. As regards Bad, Bad translocates to mitochondria and forms a pre-apoptotic
complex with Bcl-xL. Survival factors will inhibit the translocation of Bad, induce Bad
phosphorylation, and lead to cytoplasmic aggregation [45].

5.2. Anti-Apoptotic Bcl-2 Family Proteins

Bcl-2 is the most potent anti-apoptotic protein known. Bcl-2 inhibits apoptosis by
inhibiting Bax activity, stabilizing the ∆Ψm, and inhibiting cyt c release and caspase
activation [104–106]. Wu et al. [19] identifies that the overexpression of Bcl-2 prevents the
outflow of cyt c from mitochondria and the initiation of apoptosis. By contrast, repressed
expression of Bcl-2 leads to Bax protein migration and binding to the permeability transition
pore of the mitochondrial membrane, resulting in the loss of selective ion permeability.
This gives rise to the release of intermembrane substances such as cyt c and AIF into
the cytoplasm [99].
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Recent evidence suggests that ROS responded significantly to the balance of anti-
apoptotic and pro-apoptotic proteins in mitochondria [107]. As an inhibitor of apoptosis,
Bcl-2 can prevent apoptosis caused by free radicals and lipid peroxidation. Bcl-2 has antiox-
idant properties owing to its participation in the redox process and inhibiting the formation
of ROS [104,108]. Aside from reduced IR-induced necrosis and apoptosis, Bcl-2 also reduces
ATP production by inhibiting the TCA cycle and mitochondrial respiration [106]. During
ischemia, when hypoxia inhibits ∆Ψm and mitochondrial ATP production, F1Fo-ATP can
reverse and consume the ATP produced by TCA.

6. ATP Depletion

Recent research has revealed that the main mechanism of IRI is mitochondrial damage
caused by severe ATP depletion in the hepatic microenvironment during ischemia [109].
The ∆Ψm is formed by pumping protons through the respiratory chain into the intermem-
brane space [106]. It is now understood that ∆Ψm is a major influencer of the production
and destruction of ATP [110]. When cold ischemia occurs, hypoxia and deficiency of
metabolites will lead to decreased ATP synthesis, destructed ATP-dependent enzymes,
and increased concentration of adenosine diphosphate (ADP). During this period, the
ATP produced will be applied to maintain the ∆Ψm resulting in insufficient production
of ATP [34].

In the case of ATP depletion, cells begin to upregulate survival mechanisms such as
protective autophagy to fulfill the energy demand [111], while the ATP depletion touches
off the increase in Na+, which in turn inhibits the activity of Na+/K+/ATPase [34]. As
ubiquitous enzymes, Na+/K+/ATPase and Ca2+/ATPase are important in maintaining
the function of the mitochondrial membrane by regulating the ionic balance [112]. The
activity of these ATP enzymes depends to a large extent on the fluidity of the membrane
and the level of ATP. When the activity of ATP enzymes is reduced, excessive Na2+,
Ca2+, and hydration will damage the structure of mitochondria [112]. In addition, ATP
deficiency leads to the dysfunction of ATP enzyme-mediated ion transport and increases
intracellular and mitochondrial Ca2+ content, which further aggravates MPTP opening [10].
Mitochondrial uncoupling leads to the decrease in ATP depletion, which plays a decisive
role in the pathogenesis of liver diseases. The dysfunctional and uncoupled mitochondria
increase the sensitivity of apoptosis. One interesting finding is that the uncoupling protein
(UCP) in the mitochondrial inner membrane can eliminate the concentration difference
of transmembrane protons on both sides of the mitochondrial inner membrane, slowing
down the process of oxidative phosphorylation and hindering the production of ATP [113].

7. Endoplasmic Reticulum Stress

ER stress is an adaptive response to the accumulation of misfolded proteins in the
ER [114]. Thus far, previous studies have indicated that ER stress is closely related to
mitochondrial damage. The emergence of ER stress is attributed to many pathological
events, such as hypoxia, glucose deficiency, and oxidative stress, as mitochondria have a
contact point that establishes a solid connection with the ER [115].

Disturbances of Ca2+ homeostasis are another important mediator of ER stress-induced
cell apoptosis (Figure 5). With the continuation of ER stress, Ca2+ is released from the
ER reservoir to the mitochondria, resulting in mitochondrial Ca2+ overload [37]. In turn,
Ca2+ overload induces the synthesis of GSK-3β that activates mitochondrial VDAC, which
leads to the activation of MPTP and release of cyt c [116]. Consequently, the pro-apoptotic
proteins caspase-9 and caspase-3 were activated [115,117].
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8. The Role of Nitric Oxide in I/R Injury

Nitric oxide (NO) is a double-edged sword. It participates in the occurrence and
development of the pathophysiological process of hepatic I/R injury, regulates local blood
flow, inhibits platelet aggregation and leukocyte adhesion, and removes superoxide com-
pounds as an endothelium derived relaxing factor. Superoxide anion is a natural scavenger.
However, it also inhibits mitochondrial respiration and reacts with peroxides to produce
peroxynitrite, which can cause lipid peroxidation or damage proteins to form nitrotyrosine
and induce apoptosis, thus damaging the liver [118]. There are three different nitric oxide
synthase (NOS) isoenzymes in organisms, neural nitric oxide synthase (nNOS), inducible
nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS). There are iNOS
and eNOS in the liver [119]. Theruvath TP et al. found that eNOS deficiency would aggra-
vate ischemia and reperfusion injury, mainly manifested as increased ALT, necrosis, and
apoptosis of liver cells, and increased exudation of mononuclear macrophages in eNOS
deficiency group. In addition, blood flow rate and vascular diameter also decreased [120].
Varadarajan R [121] and Hines IN [122] have experimentally confirmed that eNOS-mediated
production of NO can alleviate hepatic I/R injury. From these studies, eNOS is a major
source of cellular protection through endogenous nitric oxide. Studies have shown that
in the early stage of tissue reperfusion, the overproduction of nitric oxide can attenuate
the inflammatory cascade and can also be stimulated by the iNOS produced by the pro-
inflammatory cascade. The role of NO in ischemia-reperfusion may be: (1) antioxidant free
radical activity, reduce the production of lipid peroxidation products, protect the integrity
of cell membrane, maintain the normal operation of cell signal transduction system, and
protect the enzyme active protein DNA from oxygen free radical attack, blocking the cell
apoptosis pathway induced by free radical; (2) protecting the integrity of mitochondrial
structure and function, stabilizing the permeability of mitochondrial membrane, preventing
calcium overload and apoptosis inducing factor release into the cytoplasm, and preventing
the occurrence of apoptosis. It is related to anti-oxygen free radical activity, improving cell
energy supply and preventing hepatocyte apoptosis [123].

9. Other Mitochondrial-Mediated Apoptosis Signaling Pathways

c-Jun N-terminal kinase (JNK) signaling pathway is one of the considerable pathways
that regulate mitochondrial-mediated apoptosis [84]. The causation of the JNK signal path-
way activates due to the upregulated level of mitogen-activated protein (MAP) kinases [124].
Zhai C.L. et al. [124] found that JNK may induce apoptosis by regulating the proapoptotic
protein Bim. In addition, JNK activation can promote the release of cyt c from mitochondria,
cleavage of caspase-3, and necrosis, as well as increase the production of ROS [125].

The Wnt/β-catenin pathway has established its biological role in cell growth and
differentiation. Liu et al. [126] demonstrated that the ∆Ψm of Wnt1 overexpression mice
was stable and that the level of hepatocyte apoptosis involved in the mitochondrial pathway
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decreased after IRI compared with the control group. Wnt1 overexpression mice also
showed an increase in the activity of tricarboxylic acid and the level of ATP [127]. Above all,
results indicate that overexpression of Wnt1 can maintain mitochondrial function after IRI.

10. Conclusions

Mitochondria have gradually become a popular target for various therapeutic strate-
gies for liver diseases. It is important to discuss the protective mechanism and treatment of
hepatic IRI by inhibiting excessive mitochondrial division, improving the mitochondrial
fusion barrier [128,129], inhibiting MPTP opening, activating mitochondrial autophagy,
and other methods which treat hepatic ischemia reperfusion [130,131]. It was found that
gastroditin preconditioning induced autophagy during I/R through ampK-Mammalian
target of Rapamycin (mTOR) signaling pathway, including increased pAMPK/AMPK
ratio. The p-MTOR/mTOR ratio was decreased, lc3-II expression was down-regulated,
and P62 expression was increased [132]. Competition between autophagy and apoptosis
may be an important factor in gastrodin reducing apoptosis. Pgc-1 α is the “molecular
switch” of mitochondrial biogenesis. Currently, most of the therapeutic drugs studied
focus on the activation of PGC-1α and its target genes in order to activate mitochondrial
biogenesis and correct the energy crisis under the background of IRI. Pgc-1 α inhibits
mitochondrial division by directly and negatively regulating Drp1 expression by binding
to the Drp1 promoter.

The main therapeutic strategies for hepatic IRI include drug therapy, mitochondrial
transplantation, and cell or organ transplantation. Drug therapy mainly includes small
molecule drugs, natural compound drugs, or protein drugs. Kon et al. [133] reported a
novel mitochondrial permeability conversion inhibitor DS44170716, which inhibits Ca2+

induced mitochondrial swelling in isolated rat liver by reducing mitochondrial membrane
potential, blocking Ca2+ entry into mitochondria and inhibiting the activation of MPTP.
HepG2 cells were protected from Ca2+ induced cell death. Natural compounds such as
paeoniflorin [134], quercetin [135], irisin [4], and betulin [136] have been confirmed to
prevent or treat liver injury through mitochondrial protection. Lin et al. [137] proved
that, in a rat model of hepatic IRI, in vitro mitochondrial transplantation can reduce mi-
tochondrial oxidative stress, cytochrome C release, and liver cell necrosis through overall
mitochondrial repair. As a new therapeutic strategy, mitochondrial transplantation is
attracting the attention of researchers from various disciplines. However, due to the in-
stability of mitochondria and other factors, implementing this strategy needs a lot of
research. Mesenchymal stem cell therapy has proven to be an effective therapy for rapid
restoration of mitochondrial function, especially for severe injury caused by liver failure
or IRI. Zheng et al. [138] found that bone marrow mesenchymal stem cells can reduce the
excessive production of mitochondrial ROS, reduce the accumulation of mitochondrial
fragments, restore ATP production and up-regulate mitochondrial mitosis, and improve
the apoptosis of liver cells in hepatic IRI.

Combined with the above, the mitochondrial pathway has a pivotal role in apopto-
sis during hepatic IRI. The mitochondrial pathways emerged as a reliable regulator of
apoptosis and provided a theoretical basis for clinical treatment and prevention of hepatic
IRI. However, more clinical and laboratory evidence on mitochondrial pathway-mediated
apoptosis is still needed to establish a greater degree of accuracy on this matter.
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