Recent PELE Developments and Applications in Drug Discovery Campaigns
Abstract
1. Introduction
2. Molecular Modelling Advances
3. Combining ML and MM
3.1. MM Data Augmentation Enhances ML Downstream Tasks
3.2. Directed Generation of New Chemical Entities
3.3. Screening of Ultra-Large Databases
4. Combining fragPELE and aquaPELE
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CADD | Computer-Aided Drug Design |
RNA | Ribonucleic Acid |
DNA | Deoxyribunocleic Acid |
ADMET | Chemical absorption, distribution, metabolism, excretion, and toxicity |
MM | Molecular Modelling |
ML | Machine Learning |
MC | Monte Carlo |
FEP | Free Energy Perturbation |
PELE | Protein Energy Landscape Exploration |
CSAR | Community Structure-Activity Resource |
BSC | Barcelona Supercomputing Center |
MD | Molecular Dynamics |
MDFP | Molecular Dynamic Finger Prints |
QED | Quantitative Estimate of Druglikeness |
SA | Synthesis Accessibility |
B | Billion |
HPC | High Performance Computing |
References
- Ferreira, L.L.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef]
- Perez, C.; Molina, A.; Lozoya, E.; Segarra, V.; Municoy, M.; Guallar, V. Survey On 2D, 3D And 4D Artificial Intelligence Algorithms In Early Drug Discovery. WIREs Comput. Mol. Sci. 2022; in press. [Google Scholar]
- Cabeza de Vaca, I.; Zarzuela, R.; Tirado-Rives, J.; Jorgensen, W.L. Robust Free Energy Perturbation Protocols for Creating Molecules in Solution. J. Chem. Theory Comput. 2019, 15, 3941–3948. [Google Scholar] [CrossRef]
- Borrelli, K.W.; Vitalis, A.; Alcantara, R.; Guallar, V. PELE: Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique. J. Chem. Theory Comput. 2005, 1, 1304–1311. [Google Scholar] [CrossRef]
- Lecina, D.; Gilabert, J.F.; Guallar, V. Adaptive simulations, towards interactive protein-ligand modeling. Sci. Rep. 2017, 7, 8466. [Google Scholar] [CrossRef]
- Kotev, M.; Pascual, R.; Almansa, C.; Guallar, V.; Soliva, R. Pushing the Limits of Computational Structure-Based Drug Design with a Cryo-EM Structure: The Ca2+ Channelα2δ-1 Subunit as a Test Case. J. Chem. Inf. Model. 2018, 58, 1707–1715. [Google Scholar] [CrossRef]
- Perez, C.; Soler, D.; Soliva, R.; Guallar, V. FragPELE: Dynamic Ligand Growing within a Binding Site. A Novel Tool for Hit-To-Lead Drug Design. J. Chem. Inf. Model. 2020, 60, 1728–1736. [Google Scholar] [CrossRef]
- Gilabert, J.F.; Lecina, D.; Estrada, J.; Guallar, V. Monte Carlo Techniques for Drug Design: The Success Case of PELE. In Methods and Principles in Medicinal Chemistry; Gervasio, F.L., Spiwok, V., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2018; pp. 87–103. [Google Scholar] [CrossRef]
- Carlson, H.A.; Smith, R.D.; Damm-Ganamet, K.L.; Stuckey, J.A.; Ahmed, A.; Convery, M.A.; Somers, D.O.; Kranz, M.; Elkins, P.A.; Cui, G.; et al. CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma. J. Chem. Inf. Model. 2016, 56, 1063–1077. [Google Scholar] [CrossRef]
- Municoy, M.; Roda, S.; Soler, D.; Soutullo, A.; Guallar, V. aquaPELE: A Monte Carlo-Based Algorithm to Sample the Effects of Buried Water Molecules in Proteins. J. Chem. Theory Comput. 2020, 16, 7655–7670. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Tirado-Rives, J. Molecular modeling of organic and biomolecular systems usingBOSS andMCPRO. J. Comput. Chem. 2005, 26, 1689–1700. [Google Scholar] [CrossRef] [PubMed]
- Liosi, M.E.; Ippolito, J.A.; Henry, S.P.; Krimmer, S.G.; Newton, A.S.; Cutrona, K.J.; Olivarez, R.A.; Mohanty, J.; Schlessinger, J.; Jorgensen, W.L. Insights on JAK2 Modulation by Potent, Selective, and Cell-Permeable Pseudokinase-Domain Ligands. J. Med. Chem. 2022, 65, 8380–8400. [Google Scholar] [CrossRef]
- Udier-Blagović, M.; Tirado-Rives, J.; Jorgensen, W.L. Validation of a Model for the Complex of HIV-1 Reverse Transcriptase with Nonnucleoside Inhibitor TMC125. J. Am. Chem. Soc. 2003, 125, 6016–6017. [Google Scholar] [CrossRef] [PubMed]
- Udier-Blagović, M.; Tirado-Rives, J.; Jorgensen, W.L. Structural and Energetic Analyses of the Effects of the K103N Mutation of HIV-1 Reverse Transcriptase on Efavirenz Analogues. J. Med. Chem. 2004, 47, 2389–2392. [Google Scholar] [CrossRef]
- Zhang, C.H.; Spasov, K.A.; Reilly, R.A.; Hollander, K.; Stone, E.A.; Ippolito, J.A.; Liosi, M.E.; Deshmukh, M.G.; Tirado-Rives, J.; Zhang, S.; et al. Optimization of Triarylpyridinone Inhibitors of the Main Protease of SARS-CoV-2 to Low-Nanomolar Antiviral Potency. ACS Med. Chem. Lett. 2021, 12, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.A.; Bodnarchuk, M.S.; Essex, J.W. Water Sites, Networks, And Free Energies with Grand Canonical Monte Carlo. J. Am. Chem. Soc. 2015, 137, 14930–14943. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Melling, O.J.; Dong, W.; Essex, J.W.; Mobley, D.L. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo. J. Comput. Aided Mol. Des. 2022, 36, 767–779. [Google Scholar] [CrossRef]
- Suruzhon, M.; Bodnarchuk, M.S.; Ciancetta, A.; Wall, I.D.; Essex, J.W. Enhancing Ligand and Protein Sampling Using Sequential Monte Carlo. J. Chem. Theory Comput. 2022, 18, 3894–3910. [Google Scholar] [CrossRef]
- Li, Z.; Scheraga, H.A. Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc. Natl. Acad. Sci. USA 1987, 84, 6611–6615. [Google Scholar] [CrossRef]
- Grebner, C.; Lecina, D.; Gil, V.; Ulander, J.; Hansson, P.; Dellsen, A.; Tyrchan, C.; Edman, K.; Hogner, A.; Guallar, V. Exploring Binding Mechanisms in Nuclear Hormone Receptors by Monte Carlo and X-ray-derived Motions. Biophys. J. 2017, 112, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Deri, B.; Kanteev, M.; Goldfeder, M.; Lecina, D.; Guallar, V.; Adir, N.; Fishman, A. The unravelling of the complex pattern of tyrosinase inhibition. Sci. Rep. 2016, 6, 34993. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Alibés, A.; Noguera-Julian, M.; Gil, V.; Paredes, R.; Soliva, R.; Orozco, M.; Guallar, V. Computational Prediction of HIV-1 Resistance to Protease Inhibitors. J. Chem. Inf. Model. 2016, 56, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Kotev, M.; Soliva, R.; Orozco, M. Challenges of docking in large, flexible and promiscuous binding sites. Bioorg. Med. Chem. 2016, 24, 4961–4969. [Google Scholar] [CrossRef]
- Grebner, C.; Iegre, J.; Ulander, J.; Edman, K.; Hogner, A.; Tyrchan, C. Binding Mode and Induced Fit Predictions for Prospective Computational Drug Design. J. Chem. Inf. Model. 2016, 56, 774–787. [Google Scholar] [CrossRef]
- Borrelli, K.W.; Cossins, B.; Guallar, V. Exploring hierarchical refinement techniques for induced fit docking with protein and ligand flexibility. J. Comput. Chem. 2009, 31, 1224–1235. [Google Scholar] [CrossRef]
- Gilabert, J.F.; Grebner, C.; Soler, D.; Lecina, D.; Municoy, M.; Gracia Carmona, O.; Soliva, R.; Packer, M.J.; Hughes, S.J.; Tyrchan, C.; et al. PELE-MSM: A Monte Carlo Based Protocol for the Estimation of Absolute Binding Free Energies. J. Chem. Theory Comput. 2019, 15, 6243–6253. [Google Scholar] [CrossRef]
- Saen-Oon, S.; Lozoya, E.; Segarra, V.; Guallar, V.; Soliva, R. Atomistic simulations shed new light on the activation mechanisms of RORγ and classify it as Type III nuclear hormone receptor regarding ligand-binding paths. Sci. Rep. 2019, 9, 17249. [Google Scholar] [CrossRef]
- Gygli, G.; Lucas, M.F.; Guallar, V.; van Berkel, W.J.H. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. PLoS Comput. Biol. 2017, 13, e1005787. [Google Scholar] [CrossRef]
- Díaz, L.; Soler, D.; Tresadern, G.; Buyck, C.; Perez-Benito, L.; Saen-Oon, S.; Guallar, V.; Soliva, R. Monte Carlo simulations using PELE to identify a protein–protein inhibitor binding site and pose. RSC Adv. 2020, 10, 7058–7064. [Google Scholar] [CrossRef]
- Ash, J.; Fourches, D. Characterizing the Chemical Space of ERK2 Kinase Inhibitors Using Descriptors Computed from Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2017, 57, 1286–1299. [Google Scholar] [CrossRef]
- Riniker, S. Molecular Dynamics Fingerprints (MDFP): Machine Learning from MD Data To Predict Free-Energy Differences. J. Chem. Inf. Model. 2017, 57, 726–741. [Google Scholar] [CrossRef]
- Ding, W.; Nan, Y.; Wu, J.; Han, C.; Xin, X.; Li, S.; Liu, H.; Zhang, L. Combining multi-dimensional molecular fingerprints to predict the hERG cardiotoxicity of compounds. Comput. Biol. Med. 2022, 144, 105390. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Wei, G.W. AGL-Score: Algebraic Graph Learning Score for Protein–Ligand Binding Scoring, Ranking, Docking, and Screening. J. Chem. Inf. Model. 2019, 59, 3291–3304. [Google Scholar] [CrossRef]
- Bao, J.; He, X.; Zhang, J.Z.H. DeepBSP—A Machine Learning Method for Accurate Prediction of Protein–Ligand Docking Structures. J. Chem. Inf. Model. 2021, 61, 2231–2240. [Google Scholar] [CrossRef]
- Sanner, M.F.; Dieguez, L.; Forli, S.; Lis, E. Improving Docking Power for Short Peptides Using Random Forest. J. Chem. Inf. Model. 2021, 61, 3074–3090. [Google Scholar] [CrossRef]
- Probst, D.; Reymond, J.L. A probabilistic molecular fingerprint for big data settings. J. Cheminformatics 2018, 10, 66. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein–Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Kung, P.P.; Sinnema, P.J.; Richardson, P.; Hickey, M.J.; Gajiwala, K.S.; Wang, F.; Huang, B.; McClellan, G.; Wang, J.; Maegley, K.; et al. Design strategies to target crystallographic waters applied to the Hsp90 molecular chaperone. Bioorg. Med. Chem. Lett. 2011, 21, 3557–3562. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, A.J.; Angove, H.; Carr, M.G.; Chessari, G.; Congreve, M.; Coyle, J.E.; Cosme, J.; Graham, B.; Day, P.J.; Downham, R.; et al. Discovery of (2,4-Dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3-dihydroisoindol-2-yl]methanone (AT13387), a Novel Inhibitor of the Molecular Chaperone Hsp90 by Fragment Based Drug Design. J. Med. Chem. 2010, 53, 5956–5969. [Google Scholar] [CrossRef] [PubMed]
- Nittinger, E.; Gibbons, P.; Eigenbrot, C.; Davies, D.R.; Maurer, B.; Yu, C.L.; Kiefer, J.R.; Kuglstatter, A.; Murray, J.; Ortwine, D.F.; et al. Water molecules in protein–ligand interfaces. Evaluation of software tools and SAR comparison. J. Comput.-Aided Mol. Des. 2019, 33, 307–330. [Google Scholar] [CrossRef]
- Darby, J.F.; Hopkins, A.P.; Shimizu, S.; Roberts, S.M.; Brannigan, J.A.; Turkenburg, J.P.; Thomas, G.H.; Hubbard, R.E.; Fischer, M. Water Networks Can Determine the Affinity of Ligand Binding to Proteins. J. Am. Chem. Soc. 2019, 141, 15818–15826. [Google Scholar] [CrossRef]
- Foloppe, N.; Fisher, L.M.; Francis, G.; Howes, R.; Kierstan, P.; Potter, A. Identification of a buried pocket for potent and selective inhibition of Chk1: Prediction and verification. Bioorg. Med. Chem. 2006, 14, 1792–1804. [Google Scholar] [CrossRef]
- Schrödinger Release 2022-3: Maestro; Schrödinger, LLC: New York, NY, USA, 2021.
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical p K a Predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef]
- Gallicchio, E.; Zhang, L.Y.; Levy, R.M. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. J. Comput. Chem. 2002, 23, 517–529. [Google Scholar] [CrossRef]
Systems | Scaffold | Growing | |||||
---|---|---|---|---|---|---|---|
PDB Scaffold | Water ID | PDB Grown | |||||
HSP90 (1) | 3RLQ | A249 | 1.0 | 1.84 | 3RLR | −0.45 | |
A286 | 1.25 | - | |||||
HSP90 (2) | 2XAB | A2246 | 1.0 | ✓ | 2XJG | −1.0 | |
A2115 | 0.60 | ✓ | +0.05 | ||||
BRD4 | 5I80 | A319 | 0.85 | ✓ | 5I88 | −0.85 | |
A336 | 0.29 | ✓ | −0.29 | ||||
TAF1 | 5I29 | A1891 | 0.16 | ✓ | 5I1Q | A1891: −0.13 | |
A1860: −0.79 | |||||||
A1860 | 0.84 | ✓ | 6BQD | A1891: −0.16 | |||
A1860: −0.71 | |||||||
SiaP WT | 2V4C | A2346 | 0.07 | ✓ | 3B50 | −0.07 | |
CHK1 | 2C3L | A2056 | 0.02 | ✓ | 2C3K | −0.02 | |
A2127 | 1.0 | 1.44 | −0.91 | ||||
A2052 | 0.07 | 1.52 | −0.07 | ||||
A2043 | 0.02 | 1.98 | −0.02 | ||||
Control | HSP90 (1) | 3RLQ | A249 | 1.0 | 1.84 | - | +0.03 |
A286 | 1.25 | 0.0 | |||||
HSP90 (2) | - | A1 | 1.0 | ✓ | 3RLP | −0.03 | |
A3 | 0.8 | ✓ | +0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puch-Giner, I.; Molina, A.; Municoy, M.; Pérez, C.; Guallar, V. Recent PELE Developments and Applications in Drug Discovery Campaigns. Int. J. Mol. Sci. 2022, 23, 16090. https://doi.org/10.3390/ijms232416090
Puch-Giner I, Molina A, Municoy M, Pérez C, Guallar V. Recent PELE Developments and Applications in Drug Discovery Campaigns. International Journal of Molecular Sciences. 2022; 23(24):16090. https://doi.org/10.3390/ijms232416090
Chicago/Turabian StylePuch-Giner, Ignasi, Alexis Molina, Martí Municoy, Carles Pérez, and Victor Guallar. 2022. "Recent PELE Developments and Applications in Drug Discovery Campaigns" International Journal of Molecular Sciences 23, no. 24: 16090. https://doi.org/10.3390/ijms232416090
APA StylePuch-Giner, I., Molina, A., Municoy, M., Pérez, C., & Guallar, V. (2022). Recent PELE Developments and Applications in Drug Discovery Campaigns. International Journal of Molecular Sciences, 23(24), 16090. https://doi.org/10.3390/ijms232416090