Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin
Abstract
1. Introduction
2. Results
3. Method and Material
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Labeit, S.; Kolmerer, B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995, 270, 293–296. [Google Scholar] [CrossRef]
- Wang, R.; Li, J.; Li, X.; Guo, J.; Liu, J.; Li, H. Engineering protein polymers of ultrahigh molecular weight via supramolecular polymerization: Towards mimicking the giant muscle protein titin. Chem. Sci. 2019, 10, 9277–9284. [Google Scholar] [CrossRef] [PubMed]
- Li, H.B.; Linke, W.A.; Oberhauser, A.F.; Carrion-Vazquez, M.; Kerkviliet, J.G.; Lu, H.; Marszalek, P.E.; Fernandez, J.M. Reverse engineering of the giant muscle protein titin. Nature 2002, 418, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Suay-Corredera, C.; Pricolo, M.R.; Velazquez-Carreras, D.; Pathak, D.; Nandwani, N.; Pimenta-Lopes, C.; Sanchez-Ortiz, D.; Urrutia-Irazabal, I.; Vilches, S.; Dominguez, F.; et al. Nanomechanical phenotypes in cardiac myosin-binding protein c mutants that cause hypertrophic cardiomyopathy. ACS Nano 2021, 15, 10203–10216. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Marszalek, P.E. Exploiting a mechanical perturbation of a titin domain to identify how force field parameterization affects protein refolding pathways. J. Chem. Theory Comput. 2020, 16, 3240–3252. [Google Scholar] [CrossRef] [PubMed]
- Zacharchenko, T.; von Castelmur, E.; Rigden, D.J.; Mayans, O. Structural advances on titin: Towards an atomic understanding of multi-domain functions in myofilament mechanics and scaffolding. Biochem. Soc. Trans. 2015, 43, 850–855. [Google Scholar] [CrossRef]
- Fleming, J.R.; Rigden, D.J.; Mayans, O. The importance of chain context in assessing small nucleotide variants in titin: In silico case study of the i10-i11 tandem and its arrhythmic right ventricular cardiomyopathy linked position t2580. J. Biomol. Struct. Dyn. 2021, 39, 3480–3490. [Google Scholar] [CrossRef]
- Lanzicher, T.; Zhou, T.; Saripalli, C.; Keschrumrus, V.; Smith Iii, J.E.; Mayans, O.; Sbaizero, O.; Granzier, H. Single-molecule force spectroscopy on the n2a element of titin: Effects of phosphorylation and carp. Front. Physiol. 2020, 11, 173. [Google Scholar] [CrossRef]
- Zhang, W.; Hou, J.; Li, N.; Zhang, W.K. Application of atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) in polymer characterization. Acta Polym. Sin. 2021, 52, 1523–1546. [Google Scholar]
- Bao, Y.; Huang, X.; Xu, J.; Cui, S. Effect of intramolecular hydrogen bonds on the single-chain elasticity of poly(vinyl alcohol): Evidencing the synergistic enhancement effect at the single-molecule level. Macromolecules 2021, 54, 7314–7320. [Google Scholar] [CrossRef]
- Hao, X.; Zhang, J.; Yang, Y.; Wang, H.; Chi, Q. Single-molecule interactions between heme proteins and carboxylic groups in various chemical environments. Chemelectrochem 2020, 7, 4441–4445. [Google Scholar] [CrossRef]
- Le, S.; Yu, M.; Yan, J. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin-talin/alpha-catenin linkages. Sci. Adv. 2019, 5, eaav2720. [Google Scholar] [CrossRef]
- Koo, H.; Park, I.; Lee, Y.; Kim, H.J.; Jung, J.H.; Lee, J.H.; Kim, Y.; Kim, J.H.; Park, J.W. Visualization and quantification of microrna in a single cell using atomic force microscopy. J. Am. Chem. Soc. 2016, 138, 11664–11671. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Woodside, M.T. Mechanical strength of RNA knot in zika virus protects against cellular defenses. Nat. Chem. Biol. 2021, 17, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Rojo, R.; Alonso-Caballero, A.; Fernandez, J.M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl. Acad. Sci. USA 2020, 117, 21346–21353. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Caballero, A.; Echelman, D.J.; Tapia-Rojo, R.; Haldar, S.; Eckels, E.C.; Fernandez, J.M. Protein folding modulates the chemical reactivity of a gram-positive adhesin. Nat. Chem. 2021, 13, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Rico-Pasto, M.; Alemany, A.; Ritort, F. Force-dependent folding kinetics of single molecules with multiple intermediates and pathways. J. Phys. Chem. Lett. 2022, 13, 1025–1032. [Google Scholar] [CrossRef]
- Rissone, P.; Bizarro, C.V.; Ritort, F. Stem loop formation drives rna folding in mechanical unzipping experiments. Proc. Natl. Acad. Sci. USA 2022, 119, e2025575119. [Google Scholar] [CrossRef]
- Zhang, X.; Kou, X.; Zhang, W.; Zhang, W. Identification of the new type of g-quadruplex with multiple vacant sites in human telomeric DNA. CCS Chem. 2021, 3, 3192–3204. [Google Scholar] [CrossRef]
- Ma, L.; Xu, M.; Oberhauser, A.F. Naturally occurring osmolytes modulate the nanomechanical properties of polycystic kidney disease domains. J. Biol. Chem. 2010, 285, 38438–38443. [Google Scholar] [CrossRef]
- Bustamante, C.J.; Chemla, Y.R.; Liu, S.; Wang, M.D. Optical tweezers in single-molecule biophysics. Nat. Rev. Methods Primers 2021, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Cai, W.; Cao, N.; Qian, H.-J.; Lu, Z.-Y.; Cui, S. Understanding the extraordinary flexibility of polydimethylsiloxane through single-molecule mechanics. ACS Mater. Lett. 2022, 4, 329–335. [Google Scholar] [CrossRef]
- Liu, Z.; Moreira, R.A.; Dujmović, A.; Liu, H.; Yang, B.; Poma, A.B.; Nash, M.A. Mapping mechanostable pulling geometries of a therapeutic anticalin/ctla-4 protein complex. Nano Lett. 2021, 22, 179–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Gao, X.; Li, H. Single molecule force spectroscopy reveals the mechanical design governing the efficient translocation of the bacterial toxin protein rtx. J. Am. Chem. Soc. 2019, 141, 20498–20506. [Google Scholar] [CrossRef] [PubMed]
- Wolny, M.; Batchelor, M.; Bartlett, G.J.; Baker, E.G.; Kurzawa, M.; Knight, P.J.; Dougan, L.; Takagi, Y.; Woolfson, D.N.; Paci, E.; et al. Design and characterization of long and stable de novo single alpha-helix domains. Biophys. J. 2017, 112, 189a. [Google Scholar] [CrossRef][Green Version]
- Arora, N.; Hazra, J.P.; Rakshit, S. Anisotropy in mechanical unfolding of protein upon partner-assisted pulling and handle-assisted pulling. Commun. Biol. 2021, 4, 925. [Google Scholar] [CrossRef]
- Brockwell, D.J.; Paci, E.; Zinober, R.C.; Beddard, G.S.; Olmsted, P.D.; Smith, D.A.; Perham, R.N.; Radford, S.E. Pulling geometry defines the mechanical resistance of a beta-sheet protein. Nat. Struct. Biol. 2003, 10, 731–737. [Google Scholar] [CrossRef]
- Takahashi, H.; Rico, F.; Chipot, C.; Scheuring, S. Alpha-helix unwinding as force buffer in spectrins. ACS Nano 2018, 12, 2719–2727. [Google Scholar] [CrossRef]
- Ding, Y.; Apostolidou, D.; Marszalek, P. Mechanical stability of a small, highly-luminescent engineered protein nanoluc. Int. J. Mol. Sci. 2021, 22, 55. [Google Scholar] [CrossRef]
- Zhang, X.; Rico, F.; Xu, A.; Moy, V. Atomic force microscopy of protein-protein interactions. In Handbook of Single-Molecule Biophysics; Hinterdorfer, P., Oijen, A., Eds.; Springer: New York, NY, USA, 2009; pp. 555–570. [Google Scholar]
- Tian, F.; Tong, B.; Sun, L.; Shi, S.; Zheng, B.; Wang, Z.; Dong, X.; Zheng, P. N501y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ace2. Elife 2021, 10, e69091. [Google Scholar] [CrossRef]
- Hinterdorfer, P.; Baumgartner, W.; Gruber, H.J.; Schilcher, K.; Schindler, H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 1996, 93, 3477–3481. [Google Scholar] [CrossRef]
- Oh, Y.J.; Kohler, M.; Lee, Y.; Mishra, S.; Park, J.W.; Hinterdorfer, P. Label-free probing of binding affinity using topography and recognition imaging. Biophys. J. 2020, 118, 174a–175a. [Google Scholar] [CrossRef]
- Cao, W.; Dong, C.; Kim, S.; Hou, D.; Tai, W.; Du, L.; Im, W.; Zhang, X.F. Biomechanical characterization of SARS-CoV-2 spike rbd and human ace2 protein-protein interaction. Biophys. J. 2021, 120, 1011–1019. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.S.; Gruber, S.; Hausch, A.; Gomes, P.; Milles, L.F.; Nicolaus, T.; Schendel, L.C.; Navajas, P.L.; Procko, E.; Lietha, D.; et al. A tethered ligand assay to probe sars-cov-2:Ace2 interactions. Proc. Natl. Acad. Sci. USA 2022, 119, e2114397119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, J.; Li, E.; Hu, C.; Luo, S.Z.; He, C. Ultrahigh adhesion force between silica-binding peptide sb7 and glass substrate studied by single-molecule force spectroscopy and molecular dynamic simulation. Front. Chem. 2020, 8, 600918. [Google Scholar] [CrossRef]
- Wojcikiewicz, E.P.; Abdulreda, M.H.; Zhang, X.H.; Moy, V.T. Force spectroscopy of lfa-1 and its ligands, icam-1 and icam-2. Biomacromolecules 2006, 7, 3188–3195. [Google Scholar] [CrossRef]
- Wang, Y.J.; Rico-Lastres, P.; Lezamiz, A.; Mora, M.; Solsona, C.; Stirnemann, G.; Garcia-Manyes, S. DNA binding induces a nanomechanical switch in the rrm1 domain of tdp-43. J. Phys. Chem. Lett. 2018, 9, 3800–3807. [Google Scholar] [CrossRef]
- Milles, L.F.; Schulten, K.; Gaub, H.E.; Bernardi, R.C. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science 2018, 359, 1527–1533. [Google Scholar] [CrossRef]
- Prescilla-Ledezma, A.; Linares, F.; Ortega-Muñoz, M.; Retana Moreira, L.; Jódar-Reyes, A.B.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F.; Osuna, A. Molecular recognition of surface trans-sialidases in extracellular vesicles of the parasite trypanosoma cruzi using atomic force microscopy (afm). Int. J. Mol. Sci. 2022, 23, 7193. [Google Scholar] [CrossRef]
- Lipke, P.N.; Rauceo, J.M.; Viljoen, A. Cell-cell mating interactions: Overview and potential of single-cell force spectroscopy. Int. J. Mol. Sci. 2022, 23, 1110. [Google Scholar] [CrossRef]
- Yang, J.; Petitjean, S.J.L.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ace2 receptor. Nat. Commun. 2020, 11, 4541. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, F.; Shi, S.; Deng, Y.; Zheng, P. Enzymatic protein–protein conjugation through internal site verified at the single-molecule level. J. Phys. Chem. Lett. 2021, 12, 10914–10919. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Curtolo, F.; Deng, Y.; Wu, T.; Tian, F.; Ma, Q.; Liu, Y.; Zuo, J.; Arantes, G.M.; Zheng, P. Highly dynamic polynuclear metal cluster revealed in a single metallothionein molecule. Research 2021, 2021, 9756945. [Google Scholar] [CrossRef] [PubMed]
- Pill, M.F.; East, A.L.L.; Marx, D.; Beyer, M.K.; Clausen-Schaumann, H. Mechanical activation drastically accelerates amide bond hydrolysis, matching enzyme activity. Angew. Chem. Int. Ed. 2019, 58, 9787–9790. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, C.-Q.; Sun, C.; Xia, J.; Sun, L.; Li, J.; Xu, H. Exploring the difference of bonding strength between silver(i) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087–7093. [Google Scholar] [CrossRef]
- Lei, H.; Ma, Q.; Li, W.; Wen, J.; Ma, H.; Qin, M.; Wang, W.; Cao, Y. An ester bond underlies the mechanical strength of a pathogen surface protein. Nat. Commun. 2021, 12, 5082. [Google Scholar] [CrossRef]
- López-García, P.; de Araujo, A.D.; Bergues-Pupo, A.E.; Tunn, I.; Fairlie, D.P.; Blank, K.G. Fortified coiled coils: Enhancing mechanical stability with lactam or metal staples. Angew. Chem. Int. Ed. 2021, 60, 232–236. [Google Scholar] [CrossRef]
- Xiang, W.; Li, Z.; Xu, C.-Q.; Li, J.; Zhang, W.; Xu, H. Quantifying the bonding strength of gold-chalcogen bonds in block copolymer systems. Chem. Asian J. 2019, 14, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Deng, Y.; Tian, F.; Shi, S.; Zheng, P. Detection of weak non-covalent cation-π interactions in ngal by single-molecule force spectroscopy. Nano Res. 2022, 15, 4251–4257. [Google Scholar] [CrossRef]
- Rico, F.; Russek, A.; Gonzalez, L.; Grubmuller, H.; Scheuring, S. Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations. Proc. Natl. Acad. Sci. USA 2019, 116, 6594–6601. [Google Scholar] [CrossRef]
- Nie, J.Y.; Tian, F.; Zheng, B.; Wang, Z.Y.; Zheng, P. Exploration of metal-ligand coordination bonds in proteins by single-molecule force spectroscopy. Chem. Lett. 2021, 50, 1667–1675. [Google Scholar] [CrossRef]
- Nunes-Alves, A.; Arantes, G.M. Mechanical unfolding of macromolecules coupled to bond dissociation. J. Chem. Theory Comput. 2018, 14, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pang, X.; Zhao, J.; Zhang, Q.; Shan, Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. Nanoscale 2021, 13, 17318–17324. [Google Scholar] [CrossRef] [PubMed]
- Razgoniaev, A.O.; Glasstetter, L.M.; Kouznetsova, T.B.; Hall, K.C.; Horst, M.; Craig, S.L.; Franz, K.J. Single-molecule activation and quantification of mechanically triggered palladium–carbene bond dissociation. J. Am. Chem. Soc. 2021, 143, 1784–1789. [Google Scholar] [CrossRef]
- Song, G.; Tian, F.; Liu, H.; Li, G.; Zheng, P. Pioglitazone inhibits metal cluster transfer of mitoneet by stabilizing the labile Fe–N bond revealed at single-bond level. J. Phys. Chem. Lett. 2021, 12, 3860–3867. [Google Scholar] [CrossRef]
- Pang, S.M.; Le, S.; Yan, J. Mechanical responses of the mechanosensitive unstructured domains in cardiac titin. Biol. Cell 2018, 110, 65–76. [Google Scholar] [CrossRef]
- Yuan, G.; Le, S.; Yao, M.; Qian, H.; Zhou, X.; Yan, J.; Chen, H. Elasticity of the transition state leading to an unexpected mechanical stabilization of titin immunoglobulin domains. Angew. Chem. Int. Ed. 2017, 56, 5490–5493. [Google Scholar] [CrossRef]
- Williams, P.M.; Fowler, S.B.; Best, R.B.; Luis Toca-Herrera, J.; Scott, K.A.; Steward, A.; Clarke, J. Hidden complexity in the mechanical properties of titin. Nature 2003, 422, 446. [Google Scholar] [CrossRef]
- Carrion-Vazquez, M.; Oberhauser, A.F.; Fowler, S.B.; Marszalek, P.E.; Broedel, S.E.; Clarke, J.; Fernandez, J.M. Mechanical and chemical unfolding of a single protein: A comparison. Proc. Natl. Acad. Sci. USA 1999, 96, 3694–3699. [Google Scholar] [CrossRef]
- Giganti, D.; Yan, K.; Badilla, C.L.; Fernandez, J.M.; Alegre-Cebollada, J. Disulfide isomerization reactions in titin immunoglobulin domains enable a mode of protein elasticity. Nat. Commun. 2018, 9, 185. [Google Scholar] [CrossRef]
- Popa, I.; Kosuri, P.; Alegre-Cebollada, J.; Garcia-Manyes, S.; Fernandez, J.M. Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy. Nat. Protoc. 2013, 8, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Bang, M.-L.; Centner, T.; Fornoff, F.; Geach, A.J.; Gotthardt, M.; McNabb, M.; Witt, C.C.; Labeit, D.; Gregorio, C.C.; Granzier, H.; et al. The complete gene sequence of titin, expression of an unusual 700-KDa titin isoform, and its interaction with obscurin identify a novel z-line to i-band linking system. Circ. Res. 2001, 89, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S.W.; Nash, M.A.; Fried, D.B.; Slutzki, M.; Barak, Y.; Bayer, E.A.; Gaub, H.E. Single-molecule dissection of the high-affinity cohesin-dockerin complex. Proc. Natl. Acad. Sci. USA 2012, 109, 20431–20436. [Google Scholar] [CrossRef]
- Deng, Y.; Wu, T.; Wang, M.; Shi, S.; Yuan, G.; Li, X.; Chong, H.; Wu, B.; Zheng, P. Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level. Nat. Commun. 2019, 10, 2775. [Google Scholar] [CrossRef]
- LeBlanc, M.A.; Fink, M.R.; Perkins, T.T.; Sousa, M.C. Type III secretion system effector proteins are mechanically labile. Proc. Natl. Acad. Sci. USA 2021, 118, e2019566118. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, X.; He, B.; Zhao, Z.; Zheng, Z.; Zhang, P.; Shi, X.; Kwok, R.T.K.; Lam, J.W.Y.; Qin, A.; et al. A simple approach to bioconjugation at diverse levels: Metal-free click reactions of activated alkynes with native groups of biotargets without prefunctionalization. Research 2018, 2018, 3152870. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, Z.; Deng, Y.; Tian, F.; Wu, Q.; Zheng, P. Combination of click chemistry and enzymatic ligation for stable and efficient protein immobilization for single-molecule force spectroscopy. CCS Chem. 2022, 4, 598–604. [Google Scholar] [CrossRef]
- Cao, Y.; Lam, C.; Wang, M.; Li, H. Nonmechanical protein can have significant mechanical stability. Angew. Chem. Int. Ed. 2006, 45, 642–645. [Google Scholar] [CrossRef] [PubMed]
- Marko, J.F.; Siggia, E.D. Stretching DNA. Macromolecules 1995, 28, 8759–8770. [Google Scholar] [CrossRef]
- Garg, S.; Singaraju, G.S.; Yengkhom, S.; Rakshit, S. Tailored polyproteins using sequential staple and cut. Bioconjugate Chem. 2018, 29, 1714–1719. [Google Scholar] [CrossRef]
- Tian, F.; Li, G.; Zheng, B.; Liu, Y.; Shi, S.; Deng, Y.; Zheng, P. Verification of sortase for protein conjugation by single-molecule force spectroscopy and molecular dynamics simulations. Chem. Commun. 2020, 56, 3943–3946. [Google Scholar]
- Lv, S.; Dudek, D.M.; Cao, Y.; Balamurali, M.M.; Gosline, J.; Li, H. Designed biomaterials to mimic the mechanical properties of muscles. Nature 2010, 465, 69–73. [Google Scholar] [PubMed]
- Li, H.; Cao, Y. Protein mechanics: From single molecules to functional biomaterials. Acc. Chem. Res. 2010, 43, 1331–1341. [Google Scholar] [PubMed]
- Khoury, L.R.; Slawinski, M.; Collison, D.R.; Popa, I. Cation-induced shape programming and morphing in protein-based hydrogels. Sci. Adv. 2020, 6, eaba6112. [Google Scholar] [CrossRef]
- Hoffmann, T.; Tych, K.M.; Crosskey, T.; Schiffrin, B.; Brockwell, D.J.; Dougan, L. Rapid and robust polyprotein production facilitates single-molecule mechanical characterization of beta-barrel assembly machinery polypeptide transport associated domains. ACS Nano 2015, 9, 8811–8821. [Google Scholar]
- Yang, R.; Wong, Y.H.; Nguyen, G.K.T.; Tam, J.P.; Lescar, J.; Wu, B. Engineering a catalytically efficient recombinant protein ligase. J. Am. Chem. Soc. 2017, 139, 5351–5358. [Google Scholar]
Polyprotein | 9G Linker | No Linker |
---|---|---|
I(27–32) | 308 ± 64 pN (n = 1148) | 324 ± 54 pN (n = 1808) |
I(28–30) | 325 ± 35 pN (n = 965) | 330 ± 36 pN (n = 860) |
I(30–32) | 320 ± 33 pN (n = 1120) | 276 pN/345 pN (n = 1804) |
Polyprotein | 9G Linker | No Linker |
---|---|---|
I(27–32) | 186 ± 55 pN (n = 225) | 203 ± 34 pN (n = 360) |
I(28–30) | 159 ± 23 pN (n = 477) | 175 ± 24 pN (n = 404) |
I(30–32) | 197 ± 26 pN (n = 570) | 172 ± 30 pN (n = 910) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, B.; Tian, F.; Zheng, P. Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. Int. J. Mol. Sci. 2022, 23, 9836. https://doi.org/10.3390/ijms23179836
Tong B, Tian F, Zheng P. Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. International Journal of Molecular Sciences. 2022; 23(17):9836. https://doi.org/10.3390/ijms23179836
Chicago/Turabian StyleTong, Bei, Fang Tian, and Peng Zheng. 2022. "Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin" International Journal of Molecular Sciences 23, no. 17: 9836. https://doi.org/10.3390/ijms23179836
APA StyleTong, B., Tian, F., & Zheng, P. (2022). Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. International Journal of Molecular Sciences, 23(17), 9836. https://doi.org/10.3390/ijms23179836